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Motivation

Holographic Cosmology
Interested in a class of conjectured gauge/gravity dualities for cosmology1

Cosmology in d+ 1 dimensions ⇔ QFT in d dimensions

Dictionary:
⟨Tij(q̄)Tkl(−q̄)⟩ = A(q̄)Πijkl +B(q̄)πijπkl (1)

1 McFadden, P. & Skenderis, K. Holography for cosmology. Physical Review D - Particles, Fields, Gravitation and
Cosmology 81. arXiv: 0907.5542 (2010)
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Motivation

Holographic Cosmology

Scalar power spectrum:

∆2
R(q) =

−q3

16π2ImB(−iq)
=

∆2
0

1 + gq∗
q log | q

βgq∗ |
(2)

at two loops,

∆2
R(q) =

∆2
0

1 + gq∗
q log | q

βgq∗ |
(3)

In ΛCDM, the spectrum follows a power law:

∆2
0

(
q

q∗

)ns−1

(4)
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Motivation

Holographic Cosmology
Perturbative results fit the CMB power spectrum well against ΛCDM,
except for low multipoles2

2 Afshordi, N. et al. Constraining holographic cosmology using Planck data. Physical Review D 95. arXiv: 1703.05385
(2017)
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Tµν Renormalisation

Tµν Renormalisation
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Tµν Renormalisation

Discretisation
3D action:

S =
a3N

g

∑
x∈Λ3

Tr
{∑

µ

[∆µϕ(x)]
2 + (m2 −m2

c)ϕ
2(x) + ϕ4(x)

}
(5)

ϕ are traceless hermitian N ×N matrices valued in the su(N) algebra and
∆µ is the forward discrete derivative. The theory is perturbatively
IR-divergent, but nonperturbatively finite3. Bare lattice Tµν :

T 0
µν =

N

g
Tr
{
2(∆̄µϕ)(∆̄νϕ)− δµν

[∑
ρ

(∆̄ρϕ)
2 + (m2 −m2

c)ϕ
2 + ϕ4

]

+ ξ

[
δµν
∑
ρ

(∆̄ρϕ)
2 − (∆̄µϕ)(∆̄νϕ)

]}
(6)

3 Cossu, G. et al. Nonperturbative Infrared Finiteness in a Superrenormalizable Scalar Quantum Field Theory. Physical
Review Letters 126. arXiv: 2009.14768 (June 2021)
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Tµν Renormalisation

Discretisation

However, this naïvely discretised form of Tµν breaks the Ward Identity
when the lattice regulator is removed

⟨∆̄µT
0
µν(x)P (y)⟩ = −

⟨
δP (y)

δϕ(x)
∆̄νϕ(x)

⟩
+ ⟨Xν(x)P (y)⟩ (7)

Formally, the expectation value ⟨Xν(x)P (y)⟩ should go to zero as a → 0.
However, radiative corrections induce mixings with lower-dimensional
operators and in fact it diverges with a−1. Our renormalisation
prescription will be then to counteract this linearly divergent term by
subtracting it from T 0

µν .
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Tµν Renormalisation

Operator Mixing

T 0
µν contains divergent mixings with all lower-dimensional operators the

theory allows for. In 4D there are 5 of those4. In 3D, there is only one:

Õ = δµνTrϕ2 (8)

Therefore, the renormalisation condition we impose is that the WI be
recovered as we remove the lattice regulator:

TR
µν = T 0

µν −
Nc3
a

δµνTrϕ2 (9)

Perturbatively,

c1-loop
3 =

(
2− 3

N2

)(
6Z0 − 1

12

)
(10)

4 Caracciolo, S. et al. The energy-momentum tensor on the lattice: The scalar case. Nuclear Physics, Section B 309
(1988)
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Tµν Renormalisation

Extracting c3

We can find c3 with the aid of the following lattice correlator:

C0
µν(q) =

N

g
a3
∑
x

e−iq·x⟨T 0
µν(x)Trϕ2(0)⟩ = Cµν(q)+

g

a
c3δµνC2(q)+

κ

a
δµν ,

(11)
where the κ/a factor is a contact term, and

C2(q) =

(
N

g

)2

a3
∑
x

e−iq·x⟨Trϕ2(x)Trϕ2(0)⟩ (12)

Both the renormalisation and the contact terms diverge as 1/a. Is there a
way to filter out the contact term so we are left only with the c3 term?
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Tµν Renormalisation

The Window Function

Consider the following function, defined in the interval [0,∞):

Γ(x) =


0, 0 ≤ x ≤ r0

Γ̄r0,ϵ(x), r0 < x < r0 + ϵ

1, r0 + ϵ ≤ x < ∞
(13)

where, between r0 and r0 + ϵ, the function is defined as

Γ̄r0,ϵ(x) = 1−
∫ r0+ϵ
x duβ(u, r0, ϵ)∫ r0+ϵ
r0

duβ(u, r0, ϵ)
(14)

where here we have

β(x, r0, ϵ) = exp

[
− ϵ

(x− r0)(r0 + ϵ− x)

]
(15)
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Tµν Renormalisation

The Window Function
Γ is C∞ and interpolates smoothly between 0 and 1.
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Tµν Renormalisation

The Window Function
F [Γr0,ϵ](p) decays faster than any power of 1

|p| , and the decay is
faster the larger the value of ϵ.
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Tµν Renormalisation

The Position-Space Method

Let us define “windowing” a lattice operator O(q) as the following
operation:

Wr0,ϵ[O](q) =
( a
L

)3∑
x

e−iq·x Γr0,ϵ(|x|)
∑
q′

eiq
′·xO(q′) (16)

This operation “kills” all contact terms by removing their compact
support.
It mixes high and low momenta of the original operator.
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Tµν Renormalisation

The Position-Space Method

If we apply the window function to the full expression of the lattice
correlator, the contact term is removed:

Wr0,ϵ[C
0
µν ](q) = Wr0,ϵ[Cµν ](q)+

g

a
c3δµνWr0,ϵ[C2](q)+�������

Wr0,ϵ

[κ
a
δµν

]
. (17)

Dividing through by W [C2] and rearranging,

c3 =
a

g

(
Wr0,ϵ[C

0
µν ](q)−Wr0,ϵ[Cµν ](q)

Wr0,ϵ[C2](q)

)
. (18)
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Tµν Renormalisation

The Position-Space Method

Now if we consider the zero mode in the large-ϵ limit, one can show that:

c3 ∼
a

g

(
C0
µν(0)

C2(0)
− b2

ϵ

)
(19)

where b2 is some constant. This suggests that we can vary ϵ while
measuring the ratio between the bare correlators and fit these results to
the form

aWr0,ϵ[C
0
22](ql = 0)

Wr0,ϵ[C2](ql = 0)
= c̄3 +

b

ϵ
, (20)
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Tµν Renormalisation

The Position-Space Method
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Figure: Position-Space method against results obtained using the Wilson Flow
method5. ag = 0.1, (am)2 = −0.0313

5 Del Debbio, L. et al. Renormalization of the energy-momentum tensor in three-dimensional scalar SU(N) theories
using the Wilson flow. Physical Review D 103. arXiv: 2009.14767 (June 2021)

H.B.R. (University of Edinburgh) Position-Space Renormalisation
August 10th, 2022

19 / 27

https://arxiv.org/abs/2009.14767


Tµν Renormalisation

The Position-Space Method
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Figure: Summary of results for value of c3 using the Position-Space method.
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Two-Point Function Renormalisation

Two-Point Function Renormalisation
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Two-Point Function Renormalisation

Perturbation Theory

In the continuum,

Cµνρσ = ⟨TR
µν(q)T

R
ρσ(−q)⟩ = A(q)Πµνρσ +B(q)πµνπρσ (21)

where
πµν = δµν −

qµqν
q2

(22)

is the transverse projector and

Πµνρσ =
1

2
(πµρπνσ + πµσπνρ − πµνπρσ) (23)

is the transverse-traceless projector.
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Two-Point Function Renormalisation

Windowing Cµνρσ - Exploratory Results

C0
µνρσ will have contact terms of the form γ0/(ag)

3 and (q̂/g)2β0/(ag).
On synthetic data: generate distributions of the form

C(q)

g3
= α0

(
q̂

g

)3

+
β0
ag

(
q̂

g

)2

+
γ0

(ag)3
(24)

with Gaussian noise added (with a tunable s.d. σ), then apply the window
and fit results against the windowed pure p̂3 continuum result, thus
restoring the value of α0, which gives us the renormalised function.
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Two-Point Function Renormalisation

Windowing Cµνρσ - Exploratory Results
Synthetic data generated at various levels of noise σ:
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Outlook and Conclusion

Outlook and Conclusion
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Outlook and Conclusion

Next Steps

Position-Space renormalisation can readily help us renormalise the
lattice Tµν operator by removing the compact support of contact
terms.
It shows promise for renormalising the two-point function of Tµν as
well, at least on synthetic data.
Applying this to the lattice two-point function requires better control
of discretisation effects and noise.
The same strategy can in principle be used to renormalise Tµν and its
two-point function in more complicated theories, for instance coupled
with gauge fields. This is one of our objectives for the near future.
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Questions

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant agreement No 757646.
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