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For a more detailed description, see: Phys. Rev. D 106, 034502
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Introduction to SYM and definitions of operators

Introduction to the Supersymmetric A'=1 Yang-Mills
(SYM) theory with gauge group SU(N,)

> |t describes the strong interactions between gluons and gluinos.

» SYM shares some of the fundamental properties of supersymmetric

theories.

» It is amenable to high-accuracy nonperturbative investigations.
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Introduction to SYM and definitions of operators

Lagrangian of SYM

The Lagrangian of SYM in the continuum is:

1
ESYM:_4 v uu"— )\a EDL A"

v = Oply — &,uu +iglug, uy] . Dy = 0uA + igluy, Al

This definition includes the coupling constant g, the field strength tensor
U = uy,, T and the gluino field A = AT,
T are generators of the SU(N,) algebra.

e Lgy\ is invariant, up to a total derivative, under the following
supersymmetric transformation:

dguy = — €PN,
1 v
65)\a = Zuguh”ﬁ ]6

In order to quantize the theory, one should also include the gauge-fixing
term and the corresponding term involving the ghost field ¢® which arises

from the Faddeev-Popov procedure.
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Introduction to SYM and definitions of operators

Supercurrent Definition

The supercurrent S,, stems from the application of Noether's theorem to
supersymmetric transformations of Lgywm. In Euclidean space S, takes
the form:

1
S, = -5 tre(upo[1ps Yol uA)

Its lattice discretization is not unique. A standard definition which we
adopt in this work is:

1 N
S;L = **tYC(Fpo[’Ypa'Ya]'Yu)‘)a

2
where
s
pr = @(QMV - Qvu)
Qp,l/: X7X+MUX+[,L,X+,U,+VUX+M+V,X+VUX+V,X

+ Ux,x+u Ux+u,x+ufp, UX+V7;L,X7;L Uxf,u,,x
+ Ux,x—,u Ux—y,x—p—v Ux—u—u,x—y Ux—y,x

+ Ux,x—u Ux—u,x—u+u Ux—u—}—u,x—}—u Ux+u,x
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Introduction to SYM and definitions of operators

Operator mixing upon renormalization

At the operator level, the supercurrent suffers from mixing with both
gauge invariant (class G) and noninvariant operators (classes A, B, C),
which respect the same global symmetries.

Class G: Gauge-invariant operators.

Class A: BRST variation of operators.

Class B: Operators which vanish by the equations of motion.

Class C: Other operators which do not belong to the above classes.
The mixing operators:

» Must have the same index structure as S, i.e., one free spinor

index, one Lorentz index, no free color and zero ghost number.
» Their dimensionality must not exceed 7/2.
» Must respect symmetries of the employed action.

6/25



Computational setup for the renormalization of the supercurrent operator

Computational setup for the renormalization of the
supercurrent operator — Methodology

Produce a list of candidate operators which mix with S,,.

Compute (careful selection of) appropriate Green's functions
containing S,,. [Specific choices of the external momenta for the
Green's functions.]

Apply renormalization conditions in the MS scheme.

Extract of all mixing coefficients and renormalization constants of
the operator S,, unambiguously.
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Computational setup for the renormalization of the supercurrent operator

Calculation setup - List of candidate operators which mix
with S,

In particular, class G contains another dimension 7/2 gauge invariant
operator. In the literature, it is denoted as:

T, =2tre(uu vy N)
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Computational setup for the renormalization of the supercurrent operator

Calculation setup - List of candidate operators which mix
with S,

We present all candidate gauge noninvariant operators which can mix
with 5, and belong to classes A, B, cl:

1 . _
On = tre((@om ) — g trelle. 2y,
Op1 = tTC(”u@)‘)7 Op2 =trc(¢w@/\)
Oci = tre(ugA), Oco =tre(dyur), Ocs = tre(d0,N), Ocs = tre((Ouh) N)

Ocs = tTC((auuu)'Yu)‘)a Oce = tTC(“V'Yuau)‘)a Ocr=1ig tI"C([Uana]['Vpa’Ya]’Yu)‘)

Ocg = ig trC([uua Uu]’)’z/)\), Oco=1ig trC([Ca E]'Y#A)

1QOperators O¢5 and ) ¢q, taken together with D41, are linearly dependent;
however, keeping both of them in the list affords us with additionaliconsistency-checks.
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Computational setup for the renormalization of the supercurrent operator

Renormalization of S,

» The renormalized supercurrent can be written as a linear
combination of these operators:

2 9
SK=ZssSP+Zs7 1,8+ ZsmOm® +>_ Zs5iOs® +  Zsci
i—1 i-1

> We calculate bare Green's functions of S,, with external elementary
quantum (and ghost) fields in momentum space both in lattice and
dimensional regularizations at one-loop order. The Green's functions
which we calculate have external gluinos, gluons and ghosts:

<ugl(_q1) SM(X) S\Q2(Q2)>amp,
(U5 (—q1) up?(—a2) Su(x) A**(3)) amp,

<Ca3(q3) SM(X) Eaz(q2)5\al(_q1)>amp-
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Computational setup for the renormalization of the supercurrent operator

Tree Level two-point

Tree Level three-point

Tree Level three-point

Operators Green's function Green's function Green's function _
(external legs: uy, (—q1) A(g2)) (external legs: uy up A) (external legs: ¢ € A)
Su —i(d1ve — a1.)7 gl vplvu/2 0
Tu (a1, 7w — 1) —&@Buvyp +Suprr) 0
O a1 i1, v/ (2a) 0 (&/2)vpu
o1 TS u0da/2 — 2 Gopp F o)/ 0
Opgo ivYovuda /2 =28 VuYp 0
Oc1 5/1,1/ /2 0 0
Oc2 Yo /2 0 0
Oc3 iz, /2 0 0
ocs Tvar, /2 0 0
Ocs T /2 0 0
Oce Yy /2 0 0
Oct 0 —glvw, vplvu 0
Ocs 0 —&@upvp +puv10)/2 0
Oco 0 0 —(&/2vpu

Table 1: The two-point and three-point tree-level Green's functions of S, and
T, as well as of gauge noninvariant operators which may mix with S,,. The
Green's functions are shown apart from overall exponential and color factors.
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Computational setup for the renormalization of the supercurrent operator

Lattice Action and choices of the external momenta

» \We make use of the Wilson formulation on the lattice, with the
addition of the clover (SW) term for gluino fields.

» The same operators may mix with T, given that they share the
same quantum numbers; we compute the renormalization factor and
the mixing coefficients for T, as well.

» Sufficient set of choices for external momenta are:

® Three choices for 2-pt (external u(gi)A(q2)): g2 =0, g1 =0,
92 = —q1.

® One choice for 3-pt (external u(qg1)u(g2)A(g3)): (g2 =0, g3 = —q1.)
):

® One choice for 3-pt (external A\(g1)¢(q2)c(93)): (g2 = g1, g3 = 0).
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Computational setup for the renormalization of the supercurrent operator

Feynman diagrams for (u,S,\) and (u, T, \)

The one-loop Feynman diagrams (one-particle irreducible (1P1))
contributing to corresponding Green's functions are shown below.

- 6
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Figure 1: One-loop Feynman diagrams contributing to the two-point Green's
functions (1, S, A\) and (u, T,A). A wavy (dashed) line represents gluons
(gluinos). A cross denotes the insertion of S,(T,). Diagrams 2, 4 do not
appear in dimensional regularization; they do however show up in the lattice
formulation.
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Computational setup for the renormalization of the supercurrent operator

Feynman diagrams for (u,u,S,\) and (u,u,T,\)

wg';fff;m

Figure 2: One-loop Feynman diagrams contributing to the three-point Green's
functions (u, u,S,\) and (u,u,T,)\) . Diagrams 1, 2, 3, 5, 6, 11, and 13 do
not appear in dimensional regularization but they contribute in the lattice
regularization. A mirror version of diagrams 3, 4, 5, 6, 8, 10, 14, 15 and 16
must also be included.
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Computational setup for the renormalization of the supercurrent operator

Feynman diagrams for (c S,

!
!
Y
|

ez

g I o q.{-u(u.u simgezs  rrres

Figure 3: One-loop Feynman diagrams contributing to the three-point Green's
functions (¢ S, €A) and (c T,,&)). The “double dashed” line is the ghost
field. Diagrams 1 and 2 do not appear in dimensional regularization; they do
however show up in the lattice formulation.
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Results for Green's functions and for the mixing matrix on the lattice

Results for Green's functions and for the mixing matrix on
the lattice

» Both MS-renormalized and bare Green's functions have the same
tensorial structures.

» The difference between the one-loop MS- renormalized Green's
functions (Green's functions in dimensional regularization,
D =4 — 2¢, with 1/e — 0) and the corresponding bare lattice
Green’s functions is polynomial in the external momenta.

» The difference is proportional to the tree level value of the Green's
functions of the operators.
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Results for Green's functions and for the mixing matrix on the lattice

Results for 2pt Green's function of S, for the choice g, =0

The resulting expression for the difference between the two-point
MS-renormalized and lattice bare Green's functions of S, is (for
g = 0):

(%5} _QQ M78 (o5} _a2 LR J—
(up*(—q1) Su A (q2)>amp|q2:o* (U (—q1) Su A (q2)>amp|q2:o =

2
i g 160‘1 Oézefchx

39.47842 78.95683
1672 2

N, (’7’1/“/;1‘41 + Y qu) - N.

Tvqip

+NC ( - 599999 ¢16/¢ v + ’\/yq1,1599722

+(Vo Yl + Vg1 — 2“/1/671;L)( — 30.57429 + 5.17830«

3
4555193y, + 5.377Loswr + 5 (1 — a)log (32ﬂ2))>]

» Absence of g-independent terms means that the lower-dimensional
operators do not mix with S,,.
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Results for Green's functions and for the mixing matrix on the lattice

Renormalization condition for the 2-pt Green's functions of

S,

The condition applied to the gluino-gluon Green's function of the
operator S,, reads to one loop:

<U5 55 ;\R>amp

Z7M2 2, SN amp

Z,M? 2712 Zss (uf SBXEY mp
Zst(ul T,BNBYIee + Zopy (uf Om® NB)5ee

amp

2

B~ B3IB\t
E Zsgi{u, Opi” A®) omn
i—1

ZZsa u; Oc® XB)m + O(gh)
i=1
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Results for Green's functions and for the mixing matrix on the lattice

Results for 2pt Green's function of S, for the choice g, =0

From the choice g» = 0 we extract these:

_ 2
LR,MS g —9.86960
Ze =14 i (T + N(—2.3170 + 14.49751c2y — 1.23662csw )
2
LR ,MS g
L T e e
LR,MS LR,MS LR,MS LR,MS LR,MS
Zspi = Zsci =Zscs =Zsca  =Zscs =0

> Z_é?’MS is finite: this is in line with its classical conservation.

> ZSL$’MS is related to the ~-trace anomaly corresponding to
super-conformal symmetry breaking and is identical to the one loop
level S-function.

» No mixing with QOa1, Oc1, Oca, Ocs, Ocs.
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Results for Green's functions and for the mixing matrix on the lattice

2-pt Green’s function of S, for the choice g; =0

2
i& Ne X
1672

(e %1 _th WS (65} _042 LR i
(U (1) S, A%(q2) amp oy — (U (~ 1) S A%(@2)) ooy =

1 , 1
55% 2 glg2x 5 [%MQ (0.80802 -5 log (a°/1%) ) — #26, (0.38395 + log (ﬁf))]

From the choice g; = 0 we determine the following:

— 2
ZIRMS &N (~0.38395 — log (a°F°))
167
ZIRNS & 080802 _ - log (72)
552 1671'2 Cc . 2
LRMS LRMS _
Zscs = Zscg =0
> ZSL,;*BTS and Zé‘géNTS are logarithmically divergent mixing coefficients.

» No mixing with Oc¢3, Oce.
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Results for Green's functions and for the mixing matrix on the lattice

2-pt Green’s function of S, for the choice g» = —q;

The choice g = —q; serves as a consistency check for the above
results.

(US (—aq1) Su A2(g) amp!%

39.47842 78.95683
T(WUV}Lﬁl + 7#‘711}) - T

= (up*(— Cll)5 A% *(92) amp| =

Q=—q

2
H g 150(1 (o)
"16722

Tvaip

1
+ N <0.80802%qu +4.383967, 91 + 57 Yuthlog (%)
(Vo Vudr + 7910 — 27091, ) (— 31.38231 + 5.17830a

—4.55519c3; + 5.37708cswr + 2log (a72) — galog (a*7%))

10,1, (—5.61605 + log (22/32)) >]
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Results for Green's functions and for the mixing matrix on the lattice

Renormalization conditions for the 3-pt Green's functions
of 5,

(ufuf 55 MY omp = 2;1/2 Zqus<ufu5 55 XBY o + Zsr<ul’,3u:,3 T.B S\Bﬁﬁi

amp

2
+ Z ZSBi<U5UpB OBIB 5\B>tree
i=1

8
+ Z Zsci{uful OcBXBYiee + 0(g*)
i—7

(CRSRERNR) sy = 2712 Zs5(cBSREONE) sy + Zs7 (B T, BEENE) e
+  Zsa(cBOn® EBS\B>Z§;
+  Zsco(cP OB EBS\B>Z§Z +0(g*)
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Results for Green's functions and for the mixing matrix on the lattice

3-pt Green’s functions of S,

The three-point Green's functions determine the mixing with O¢7, Ocs
and ch.
The results for the first one is shown below:
e [e% o MS
(U (=) up? (= a2) Su A (@3))] 0,20 41—
g3Nc

1672

— (U (—q) S (—q2) Su A" (ga)) | =

q2=0,q3=—q1

fForo203 |(5, ~, ﬁ,wp%)(w'jvﬂ — 12.48660 + 3.28231c

—2.27761c3w + 2.68854csw r

e

» No mixing with O¢7 and Ocg.

The lattice Green's function containing gluino-ghost-antighost external
fields is identical to the continuum one.

» No mixing with Oc¢g.
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Summary — Conclusion

Summary — Conclusion

The first two rows of the mixing matrix are derived from Lattice
Perturbation theory in the MS scheme.

- SE - - Sy( -
TR T,
ok Oa1
OF Zss Zst 0 Zsgp1 Zsgp 0--- 0 o
B _\Zrs Zrr 0 Zmei Zmez 0--- 0 Bl
P I
0& Oc
LOE, ] | Oco

In our ongoing work, we utilize the GIRS scheme; this scheme is more

accesible via non-perturbative calculations. s
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Summary — Conclusion

Acknowledgements

Thank you for your attention!

|A

RESEARCH &
INNOVATION
FOUNDATION

We acknowledge financial support from the projects “Quantum Fields on the Lattice” and “Lattice Studies of Strongly Coupled Gauge
Theories: Renormalization and Phase Transition”, funded by the Cyprus Research and Innovation Foundation (RIF) under the contract
numbers EXCELLENCE/0918/0066 and EXCELLENCE/0421/0025, respectively.

25 /25



	Introduction to SYM and definitions of operators
	Computational setup for the renormalization of the supercurrent operator
	Results for Green's functions and for the mixing matrix on the lattice
	Summary – Conclusion

