Supersymmetric Yang-Mills on the Lattice

Angel Sherletov

August 8, 2022

Overview

3d Maximal SYM

Extension of previous work¹

- Lattice Supersymmetry Motivation
- Formulation background
- Results for 3d Maximal SYM

¹arXiv:2010.00026 by S. Catterall, J. Giedt, R. G. Jha, D. Schaich and T. Wiseman

Motivation

Lattice field theory promises first-principles predictions for strongly coupled supersymmetric QFTs

- Better understanding of quantum mechanics
- Holography
- BSM physics

Supersymmetry on the lattice

Formally $\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \ \mathcal{O}(\phi) \ e^{-S[\phi]}$ Regularize by formulating theory in finite, discrete, euclidean space-time with spacing a At the end take continuum limit $(a \to 0)$

Supersymmetry on the lattice

Formally $\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \ \mathcal{O}(\phi) \ e^{-S[\phi]}$ Regularize by formulating theory in finite, discrete, euclidean space-time with spacing a At the end take continuum limit $(a \to 0)$

Supersymmetry is a space-time symmetry – spinor generators Q'_{α} and $\overline{Q}'_{\dot{\alpha}}$ $\left\{Q'_{\alpha}, \overline{Q}^{J}_{\dot{\beta}}\right\} = 2\delta^{IJ}\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$ broken in discrete space-time

Supersymmetry on the lattice

Formally $\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}\phi \ \mathcal{O}(\phi) \ e^{-S[\phi]}$ Regularize by formulating theory in finite, discrete, euclidean space-time with spacing a At the end take continuum limit $(a \to 0)$

Supersymmetry is a space-time symmetry – spinor generators Q'_{α} and $\overline{Q}'_{\dot{\alpha}}$ $\left\{Q'_{\alpha}, \overline{Q}^{J}_{\dot{\beta}}\right\} = 2\delta^{IJ}\sigma^{\mu}_{\alpha\dot{\beta}}P_{\mu}$ broken in discrete space-time

Idea

Preserve susy sub-algebra in discrete lattice space-time

 \longrightarrow correct continuum limit with substantially less fine tuning

3d Maximal SYM

3d maximal SYM can be treated as dimensional reduction of 4d maximal SYM.

4d

Gauge field A_{μ} plus 6 scalars Φ^{IJ} $\mathcal{N} = 4$ four-component fermions $\Psi^{I} \longleftrightarrow 16$ supersymmetries Q_{α}^{I} and $\overline{Q}_{\dot{\alpha}}^{I}$ Global SU(4) \sim SO(6) R symmetry

All fields massless and in adjoint rep. of SU(N) gauge group Symmetries relate kinetic, Yukawa and Φ^4 terms \longrightarrow single coupling $\lambda = g^2 N$.

3d Maximal SYM

3d maximal SYM can be treated as dimensional reduction of 4d maximal SYM.

3d

Gauge field A_{μ} plus 7 scalars Φ $\mathcal{N} = 8$ two-component fermions $\Psi^{\mathrm{I}} \longleftrightarrow 16$ supersymmetries Q_{α}^{I} and $\overline{Q}_{\dot{\alpha}}^{\mathrm{I}}$ Global SO(8) R symmetry

All fields massless and in adjoint rep. of SU(N) gauge group Symmetries relate kinetic, Yukawa and Φ^4 terms \longrightarrow single coupling $\lambda = g^2 N$.

Twisting SYM

Construction from 'topological' twisting

Decompose fields in terms of reps of $SO(d)_{tw} \equiv diag [SO(d)_{rot} \otimes SO(d)_R]$

Change of variables $\longrightarrow \mathcal{Q}s$ transform with integer "spin" under SO(d)_{tw}

Need $Q = 2^d$ supersymmetries in d dimensions

Twisting SYM

4d maximal SYM

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathcal{Q} + \mathcal{Q}_{\mu}\gamma_{\mu} + \mathcal{Q}_{\mu\nu}\gamma_{\mu}\gamma_{\nu} + \overline{\mathcal{Q}}_{\mu}\gamma_{\mu}\gamma_{5} + \overline{\mathcal{Q}}\gamma_{5} \\ \longrightarrow \mathcal{Q} + \mathcal{Q}_{a}\gamma_{a} + \mathcal{Q}_{ab}\gamma_{a}\gamma_{b} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

 $\{\mathcal{Q},\mathcal{Q}\}=2\mathcal{Q}^2=0 \quad \longrightarrow \quad \mathcal{Q}$ subalgebra can be preserved in discrete space-time

Twisting SYM

3d maximal SYM $\{Q, Q_a, Q_{ab}\} \longrightarrow \{Q, Q_5, Q_a, Q_{a5}, Q_{ab}\}$ with $a, b = 1, \dots, 4$ Same decomposition but now two closed subalgebras $\{Q, Q\} = 2Q^2 = 0$ and $\{Q_5, Q_5\} = 2Q_5^2 = 0$

Fields decomposed in similar way

Fields also transform with integer spin under $\mathrm{SO}(3)_{\mathrm{tw}}$ — no spinors

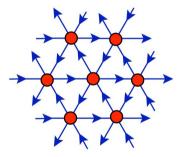
$$\Psi$$
 and $\overline{\Psi} \longrightarrow \eta, \psi_5, \psi_a, \chi_{a5}$ and χ_{ab}

 A_{μ} and $\Phi \longrightarrow$ complexified gauge field A_a and $\overline{A}_a \longrightarrow U(N)$ gauge theory

d + 1 links in d dimensions

Use A_d^* lattice - *d*-dimensional analog of 2d triangular lattice

- Basis vectors linearly dependent and not orthogonal Large S_{d+1} point group symmetry
- S_{d+1} ireps match onto irreps of $\mathrm{SO}(d)_{\mathrm{tw}}$



Deformations to stabilize lattice calculations

Dimensional reduction stabilization (4d code with $N_x = 1$)

1) Potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_N)^{\dagger}(\varphi - \mathbb{I}_N)\right]$ to break center symmetry in reduced dir(s) φ - link in reduced dir

9/14

Deformations to stabilize lattice calculations

Dimensional reduction stabilization (4d code with $N_x = 1$)

1) Potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_N)^{\dagger}(\varphi - \mathbb{I}_N)\right]$ to break center symmetry in reduced dir(s) φ - link in reduced dir

2) Add SU(*N*) scalar potential $\propto \mu^2 \sum_{a} \text{Tr} \left[\left(\mathcal{U}_a \overline{\mathcal{U}}_a - \mathbb{I}_N \right)^2 \right]$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \rightarrow 0$

Deformations to stabilize lattice calculations

Dimensional reduction stabilization (4d code with $N_x = 1$)

1) Potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_N)^{\dagger}(\varphi - \mathbb{I}_N)\right]$ to break center symmetry in reduced dir(s) φ - link in reduced dir

2) Add SU(*N*) scalar potential $\propto \mu^2 \sum_{a} \text{Tr} \left[\left(\mathcal{U}_a \overline{\mathcal{U}}_a - \mathbb{I}_N \right)^2 \right]$

Softly breaks susy $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 o 0$

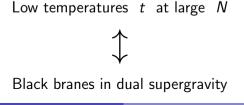
3)Constrain U(1) plaquette determinant $\sim \zeta \sum_{a < b} (\det \mathcal{P}_{ab} - 1)$ Implemented supersymmetrically by modifying auxiliary field equations of motion

3d maximal SYM thermodynamics

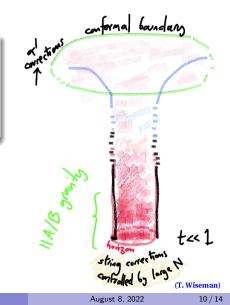
Formulate on $r_1 \times r_2 \times r_\beta$ (skewed) 3-torus

Thermal boundary conditions

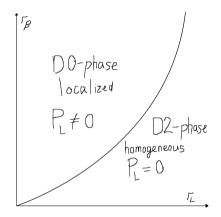
 \longrightarrow dimensionless temperature $t = \frac{T}{\lambda} = \frac{1}{r_{\beta}}$



arXiv:2010.00026

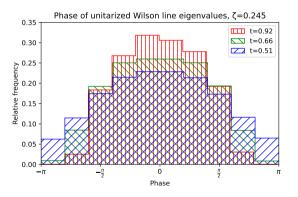


Phase transition: expectations



Wilson line P_L signals the transition

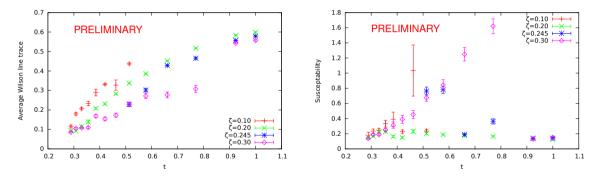
Phase transition



Wilson line eigenvalue phases sensitive to transition

Temperature decreases \longrightarrow Wilson line eigenvalues phases more uniform

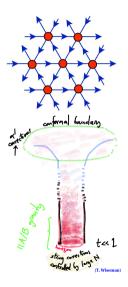
Phase transition



Preserving susy sub-algebra enables lattice calculations

Localized-homogeneous phase transition

Larger volumes and lattices with $N_L \neq N_t$ in the future



Thank you for your attention!

Collaborators Simon Catterall, Joel Giedt, Raghav Jha, David Schaich, Toby Wiseman