

Spectroscopy of chimera baryons on Sp(4) lattice gauge theory

Ho Hsiao

Supervisor: C.-J. David Lin

National Yang-Ming Chiao-Tung University(NYCU), Taiwan NYCU

陽明交大NYCU

Collaboration

Ed Bennett, Biagio Lucini, Michele Mesiti, Maurizio Piai

Jong-Wan Lee, Deog Ki Hong

Davide Vadacchino

Numerical calculations are accomplished by arXiv:0805.2058 modifying the HiRep code.

Prepository: https://github.com/sa2c/HiRep

Outline

- Introduction:
 - ▶ Sp(4) gauge theory: A Composite Higgs model
 - Chimera baryon operators
- Preliminary results
 - Projections
 - Mass hierarchy of chimera baryons
 - $m_{ps}^{(f)}$ massless limit
- Summary

Composite Higgs Models

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$
M2	SO(9)	$5 imes \mathbf{F}$	$6 imes \mathbf{Spin}$	$\psi \chi \chi$
M3	SO(7)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$\psi\psi\chi$
M5	Sp(4)	$5 \times \mathbf{A}_2$	$6 imes \mathbf{F}$	$\psi \chi \chi$
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$\psi \chi \chi$
M7	SO(10)	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi \chi \chi$
M8	Sp(4)	$4 imes {f F}$	$6 \times \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$\psi\psi\chi$
M10	SO(10)	4×1 The minim	$\psi\psi\chi$	
M11	SU(4)	Barnard et al, arXiv:1311.6562 $4 \times (\mathbf{F}, \mathbf{F})$ $6 \times \mathbf{A}_2$		$\psi\psi\chi$
M12	SU(5)	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes ({f A}_2, {\overline {f A}_2})$	$\left[egin{array}{c} \psi\psi\chi,\psi\chi\chi \end{array} ight]$

D. Franzosi and G. Ferretti, arXiv:1905.08273

LAVICE

Our choice of model

- Sp(4) gauge theory with 2F+3AS <u>Dirac fermions</u>
- Breaking pattern:

4F+6AS 2 component Weyl fermions

$$G/H = \underbrace{SU(4) \times SU(6)}/Sp(4) \times SO(6)$$

Enhanced global symmetry due to the (pseudo-) reality

- SU(4)/Sp(4) gives 5 goldstone bosons.
 - ▶ 4: SM Higgs doublet
 - ▶ 1: made heavy in model building
- SU(3) embedded in antisymmetric representation:

$$SU(6) \rightarrow SO(6) \supset SU(3)$$
QCD colour SU(3)

Chimera Baryon

Interpolating operators

Chimera Baryon

• Spin projector for Σ -type baryon:

$$(P^{3/2})^{ij} = \delta^{ij} - \frac{1}{3}\gamma^i\gamma^j$$

$$\left(P^{1/2}\right)^{ij} = \frac{1}{3}\gamma^i \gamma^j$$

Two-point function

$$C_{ij}(t) = \sum_{\overrightarrow{x}} \left\langle \mathcal{O}_{CB}^{i}(x) \bar{\mathcal{O}}^{j}_{CB}(0) \right\rangle \text{ with } \mathcal{O}_{CB}^{i} = \left(\bar{\psi} \gamma^{i} \psi \right) \chi$$

$$\to C_{\Sigma}^{1/2}(t) = \operatorname{Tr}\left[\left(P^{1/2}\right)^{ij}C_{jk}(t)\right]$$

Parity projection

$$\begin{split} C_{\text{CB}}(t) &= \sum_{\overrightarrow{x}} \left\langle \mathcal{O}_{\text{CB}}(x) \overline{\mathcal{O}}_{\text{CB}}(0) \right\rangle \\ &\to P_e \left[c_e e^{-m_e t} + c_o e^{-m_o (T-t)} \right] - P_o \left[c_o e^{-m_o t} + c_e e^{-m_e (T-t)} \right] \end{split}$$

Projector:

$$P_{eo} = \frac{1}{2}(1 \pm \gamma^0)$$

Study Plan

- Quenched fundamental and antisymmetric fermions arXiv:1912.06505
- $N_f = 2$ dynamical fundamental fermions arXiv:1909.12662
- $n_f = 3$ dynamical antisymmetric fermions (Ongoing)
- Fully dynamical 2F + 3AS fermions arXiv:2202.05516
 - Chimera baryon (quenched studies first)
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

Projection-Parity

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection obtained with quenched approximation.

Projection-Spin

Comparison of effective mass plot between two spin projected states and the state without spin projection.

Mass hierarchy

Effective mass plot of chimera baryons calculated with different F bare masses $m_0^{(f)} = -0.6$ (left) and $m_0^{(f)} = -0.69$ (right) at fixed AS bare mass $m_0^{(as)} = -0.81$. The lattice size is 60×48^3 with $\beta = 8.0$.

Mass hierarchy

Mass ratios calculated with different bare masses on a 48×24^3 and $\beta = 7.62$ lattice.

$m_{ps}^{(f)}$ Massless limit

am_0	-0.8	-0.9	-0.95	-1.0	-1.05
χ^2 /d.o.f.	0.12	0.03	0.36	0.97	1.2

Summary

- Chimera baryons
 - Λ: <u>Top partner</u> in composite Higgs model
 - Σ and Σ^* with different spin
- Projection
 - Spin
 - Parity
- The mass hierarchy of chimera baryons model building
- Exploratory spectrum of chimera baryon at the $m_{ps}^{(f)}$ massless limit as a guide for fully dynamical study.

END

Backup Slides

Our choice of model

Top partner — Chimera baryon

$$\Psi = (\psi \psi \chi)$$

$$\vdash \text{Carry QCD colour}$$

→ Similar to the well-know see-saw mechanism

Mass hierarchy

Mass hierarchy

Mass ratios calculated with different bare masses on a 48×24^3 and $\beta = 7.62$ lattice.

Summary

- Chimera baryons are an important feature of composite Higgs models, which play role of top partner in partial top compositeness.
- We present the interpolating operator of Λ and Σ (in QCD analogy) chimera baryons. The former is the top partner, and the later can be further separate into two states through spin projection.
- We perform the parity projection to extract our interest state in this study, the parity even state.
- The mass hierarchy of chimera baryons depends on the input bare masses, such behaviour is important to model buildings.
- We explore the spectrum of chimera baryon at the $m_{ps}^{(f)}$ massless limit using a single ensemble in quenched approximation, which could be a guide for fully dynamical study.