

Gradient flow anomalous dimensions for ten-flavor SU(3) gauge theory

Curtis Taylor Peterson, Anna Hasenfratz and Oliver Witzel
On behalf of the Lattice Strong Dynamics (LSD) collaboration

LATICE

Ten-flavor SU(3) gauge theory and the renormalization group (RG)

- Ten-flavor SU(3) gauge theory
 - Interesting for composite Higgs modelling (e.g., LSD 4+6 system)
 - There is ongoing debate over the existence of an infrared fixed point (IRFP)
- Of particular interest are mesonic and baryonic running operator anomalous dimensions

[Hasenfratz, Rebbi, Witzel PRD 101, 114508 (2020)] [Kuti, Fodor, Holland, Wong PoS LATTICE2021 (2021) 396] [LSD PRD 103, 014504 (2020)] [Cacciapaalia, Pica, Sannino Phys. Rep. 877 (2020)]

Ten-flavor SU(3) gauge theory and the renormalization group (RG)

- Ten-flavor SU(3) gauge theory
 - Interesting for composite Higgs modelling (e.g., LSD 4+6 system)
 - There is ongoing debate over the existence of an infrared fixed point (IRFP)
- Of particular interest are mesonic and baryonic running operator anomalous dimensions

per per scale
$$\beta(\mu;g^2) \equiv \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} g^2(\mu)$$

$$\gamma_{\mathcal{O}}(\mu; g^2) \equiv \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \log Z_{\mathcal{O}}(\mu)$$

[Hasenfratz, Rebbi, Witzel PRD 101, 114508 (2020)] [Kuti, Fodor, Holland, Wong PoS LATTICE2021 (2021) 396] [LSD PRD 103, 014504 (2020)] [Cacciapaalia, Pica, Sannino Phys. Rep. 877 (2020)]

LAVICE

Ten-flavor SU(3) gauge theory and the renormalization group (RG)

- Ten-flavor SU(3) gauge theory
 - Interesting for composite Higgs modelling (e.g., LSD 4+6 system)
 - There is ongoing debate over the existence of an infrared fixed point (IRFP)
- Of particular interest are mesonic and baryonic running operator anomalous dimensions

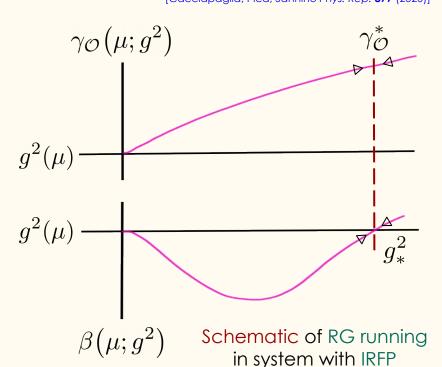
RG beta-functior

Energy scale
$$\beta \left(\mu;g^2\right) \equiv \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} g^2(\mu)$$

Operator anomalous dimension

$$\gamma_{\mathcal{O}}(\mu; g^2) \equiv \mu \frac{\mathrm{d}}{\mathrm{d}\mu} \log Z_{\mathcal{O}}(\mu)$$

[Hasenfratz, Rebbi, Witzel PRD 101, 114508 (2020)]
[Kuti, Fodor, Holland, Wong PoS LATTICE2021 (2021) 396]
[LSD PRD 103, 014504 (2020)]
[Cacciapaglia, Pica, Sannino Phys. Rep. 877 (2020)]

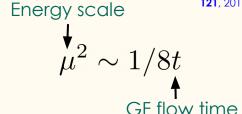


[Carosso, Hasenfratz, Neil *PRL* **121**, 201601 (2018)]

- Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values
 - Must take infinite volume limit
 - We can avoid rescaling step for certain quantities using MCRG principles

[Carosso, Hasenfratz, Neil *PRL* **121**, 201601 (2018)]

- Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values
 - Must take infinite volume limit
 - We can avoid rescaling step for certain quantities using MCRG principles



[Carosso, Hasenfratz, Neil *PRL* **121**, 201601 (2018)]

- Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values
 - Must take infinite volume limit

2/12

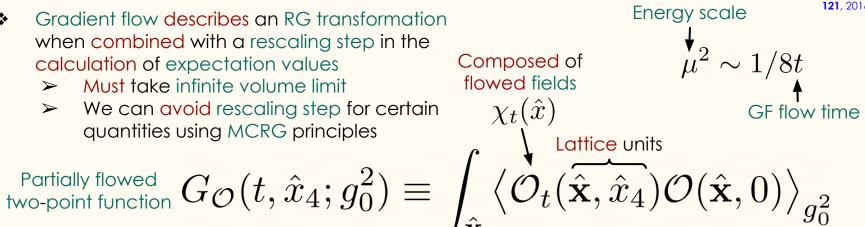
We can avoid rescaling step for certain quantities using MCRG principles

Partially flowed two-point function
$$G_{\mathcal{O}}(t,\hat{x}_4;g_0^2) \equiv \int_{\hat{\mathbf{x}}} \left\langle \mathcal{O}_t(\hat{\mathbf{x}},\hat{x}_4)\mathcal{O}(\hat{\mathbf{x}},0) \right\rangle_{g_0^2}$$

[Carosso, Hasenfratz, Neil PRL **121**, 201601 (2018)]

- Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values
 - Must take infinite volume limit
 - We can avoid rescaling step for certain quantities using MCRG principles

Partially flowed
$$G_{\mathcal{O}}(t,\hat{x}_4;g_0^2) \equiv$$

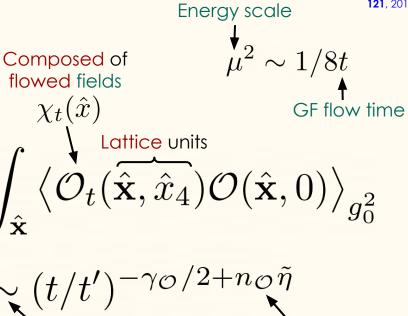


[Carosso, Hasenfratz, Neil PRL **121**, 201601 (2018)]

- Gradient flow describes an RG transformation when combined with a rescaling step in the calculation of expectation values
 - Must take infinite volume limit
 - We can avoid rescaling step for certain quantities using MCRG principles

Partially flowed two-point function $G_{\mathcal{O}}(t,\hat{x}_4;g_0^2) \equiv \int_{\hat{\mathbf{x}}} \langle \mathcal{O}_t(\hat{\mathbf{x}},\hat{x}_4)\mathcal{O}(\hat{\mathbf{x}},0) \rangle_{g_0^2}$

$$\frac{G_{\mathcal{O}}(t, \hat{x}_4; g_0^2)}{G_{\mathcal{O}}(t', \hat{x}_4; g_0^2)}$$



$$\frac{G_{\mathcal{O}}(t,\hat{x}_4;g_0^2)}{G_{\mathcal{O}}(t',\hat{x}_4;g_0^2)} \sim \underbrace{(t/t')^{-\gamma_{\mathcal{O}}/2+n_{\mathcal{O}}\tilde{\eta}}}_{8t/a^2,8t'/a^2\gg 1} \underbrace{\overset{\text{Comes}}{\underset{\text{from }Z_\chi}{\text{cand}}}}_{\text{cand}}$$

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

Matches onto tree-level
$$\overline{\rm MS}$$
 coupling $g_{
m GF}^2(t;g_0^2)\equiv \mathcal{N}\langle t^2E(t)
angle_{g_0^2}$

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

Matches onto tree-level
$$\overline{\rm MS}$$
 coupling $g_{
m GF}^2(t;g_0^2)\equiv \mathcal{N}\langle t^2E(t)
angle_{g_0^2}$

$$\mathcal{R}_{\mathcal{O}}\big(t,\hat{x}_4;g_0^2\big) \equiv \frac{G_{\mathcal{O}}(t,\hat{x}_4;g_0^2)}{G_{\mathcal{V}}(t,\hat{x}_4;g_0^2)^{n_{\mathcal{O}}/n_{\mathcal{V}}}}$$
 Independent of
$$\hat{x}_4 \text{ for} \qquad \qquad \text{Cancels off } n_{\mathcal{O}}\tilde{\eta}$$

$$\hat{x}_4 \gg \sqrt{8t/a}$$

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

Matches onto tree-level
$$\overline{\rm MS}$$
 coupling
$$g_{\rm GF}^2 (t;g_0^2) \equiv \mathcal{N} \langle t^2 E(t) \rangle_{g_0^2}$$

$$\beta_{\rm GF}(t;g_0^2) = -t\frac{\mathrm{d}}{\mathrm{d}t}g_{\rm GF}^2(t;g_0^2)$$

$$\mathcal{R}_{\mathcal{O}}\big(t,\hat{x}_4;g_0^2\big) \equiv \frac{G_{\mathcal{O}}(t,\hat{x}_4;g_0^2)}{G_{\mathcal{V}}(t,\hat{x}_4;g_0^2)^{n_{\mathcal{O}}/n_{\mathcal{V}}}}$$
 Independent of
$$\hat{x}_4 \text{ for} \qquad \text{Cancels off } n_{\mathcal{O}}\tilde{\eta}$$

$$\hat{x}_4 \gg \sqrt{8t/a}$$

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

Matches onto tree-level
$$\overline{\rm MS}$$
 coupling
$$g_{\rm GF}^2 (t;g_0^2) \equiv \mathcal{N} \langle t^2 E(t) \rangle_{g_0^2}$$

$$\beta_{GF}(t; g_0^2) = -t \frac{\mathrm{d}}{\mathrm{d}t} g_{GF}^2(t; g_0^2)$$
$$\gamma_{\mathcal{O}}(t, \hat{x}_4; g_0^2) = -2t \frac{\mathrm{d}}{\mathrm{d}t} \log \mathcal{R}_{\mathcal{O}}(t, \hat{x}_4; g_0^2)$$

$$\mathcal{R}_{\mathcal{O}} \big(t, \hat{x}_4; g_0^2 \big) \equiv \frac{G_{\mathcal{O}} (t, \hat{x}_4; g_0^2)}{G_{\mathcal{V}} (t, \hat{x}_4; g_0^2)^{n_{\mathcal{O}}/n_{\mathcal{V}}}}$$
 Independent of
$$\hat{x}_4 \text{ for} \qquad \qquad \text{Cancels off } n_{\mathcal{O}} \tilde{\eta}$$

$$\hat{x}_4 \gg \sqrt{8t/a}$$

GF can be used to define a scheme for the renormalization of local operators

[Carosso, Hasenfratz., Neil PRL 121, 201601 (2018)] [Hasenfratz, Monahan, Rizik, Schindler, Witzel PoS LATTICE2021 (2021) 155]

Matches onto tree-level
$$\overline{\rm MS}$$
 coupling
$$g_{\rm GF}^2 (t;g_0^2) \equiv \mathcal{N} \langle t^2 E(t) \rangle_{g_0^2}$$

$$\mathcal{R}_{\mathcal{O}}(t, \hat{x}_4; g_0^2) \equiv \frac{G_{\mathcal{O}}(t, \hat{x}_4; g_0^2)}{G_{\mathcal{V}}(t, \hat{x}_4; g_0^2)^{n_{\mathcal{O}}/n_{\mathcal{V}}}}$$

Independent of
$$\hat{x}_4$$
 for $\hat{x}_4 \gg \sqrt{8t}/a$

Cancels off
$$n_{\mathcal{O}}\tilde{\eta}$$

$$\beta_{\rm GF}(t;g_0^2) = -t\frac{\mathrm{d}}{\mathrm{d}t}g_{\rm GF}^2(t;g_0^2)$$

$$\gamma_{\mathcal{O}}(t, \hat{x}_4; g_0^2) = -2t \frac{\mathrm{d}}{\mathrm{d}t} \log \mathcal{R}_{\mathcal{O}}(t, \hat{x}_4; g_0^2)$$

We can trade t dependence for $g_{\mathrm{GF}}^2 \left(t; g_0^2 \right)$ dependence

See also:

[O. Witzel: Wed. 2:00 PM]

[A. Shindler: Wed. 4:30 PM] [C. Monahan: Wed. 4:50]

[C.H. Wong: Thu. 12:10 PM] [R. Harlander: Thu. 12:30 PM]

[A. Harlander: Inv. 12:30 PM]
[A. Hasenfratz: Fri. 8:50 AM]

Simulation details

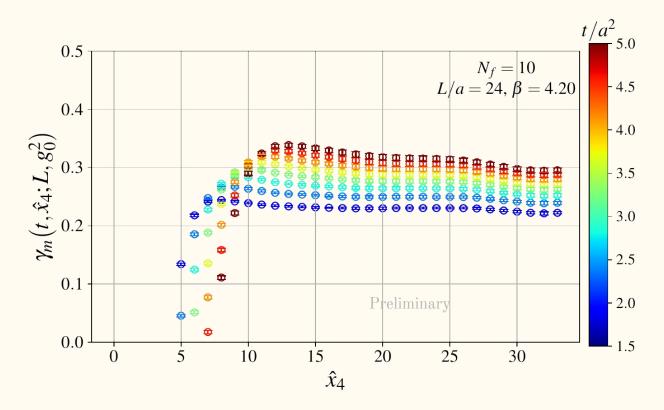
Ten-flavor simulations are performed using Symanzik gauge action with stout smeared Möbius domain wall fermions (DWF) using GRID

- > Bare gauge couplings $\beta \equiv 6/g_0^2 = 5.00, 6.00, 4.20, 4.60$ 4.10, 4.05
- ightharpoonup Volumes $24^3 \times 64$ and $32^3 \times 64$
- Gradient flow performed with Wilson flow using QLUA
 - We define the gradient flow coupling in finite volume using tree-level normalization
 - Corrects for gauge zero modes and tree-level cutoff effects

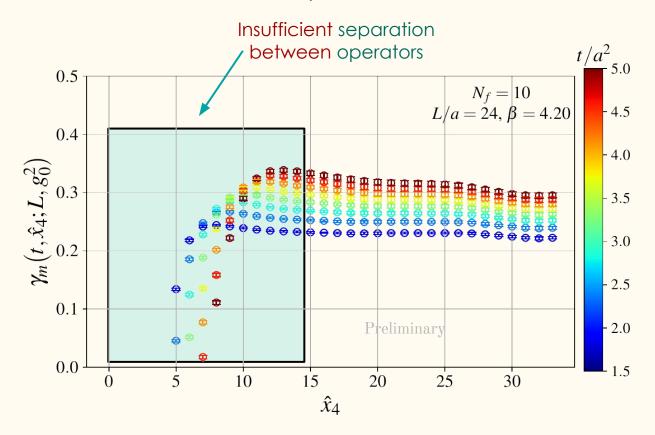
[Boyle, Yamaguchi, Cossu, Portelli LATTICE2015 (2015) 023]
[Pochinsky PoS LATTICE2008 (2008) 040]
[Fodor, Holland, Kuti, Mondal, Nogradi, JHEP 09 (2014) 018]

$$\begin{split} g_{\mathrm{GF}}^2 \left(t; L, g_0^2\right) \\ &\equiv \frac{\mathcal{N}}{C(t, L)} \langle t^2 E(t) \rangle_{L, g_0^2} \\ &\stackrel{\mathrm{Tree-level}}{\underset{\mathrm{normalization}}{\underset{\mathrm{factor}}{\sim}}} \end{split}$$

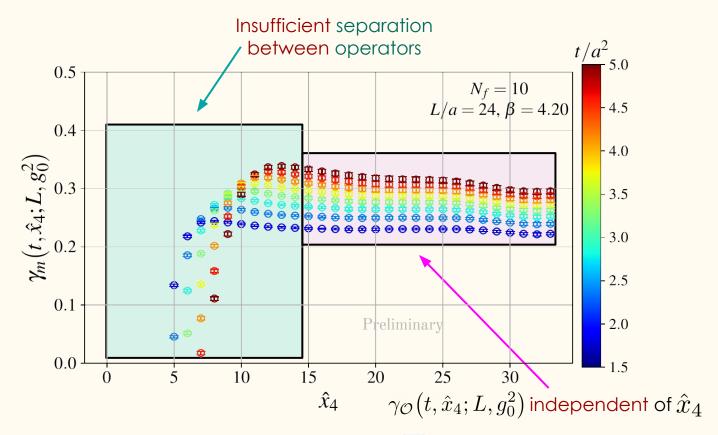
Anomalous dimension \hat{x}_4 -independence



Anomalous dimension \hat{x}_4 -independence



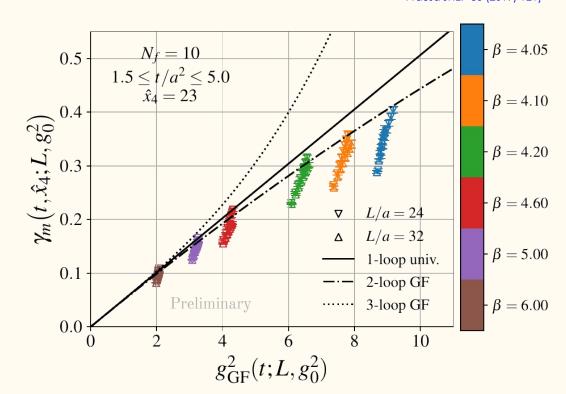
Anomalous dimension \hat{x}_4 -independence



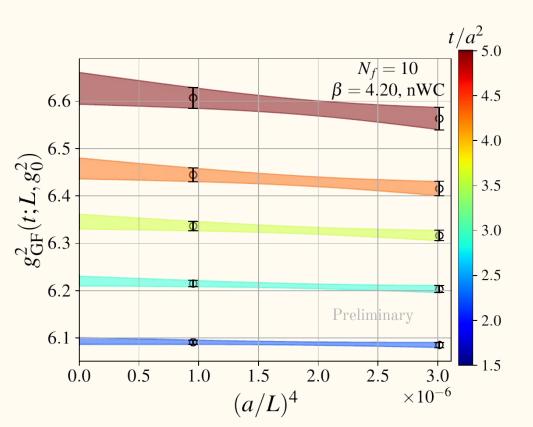
Anomalous dimension (no extrapolations)

[Artz, Harlander, Lange, Neumann, Prausa JHEP **06** (2019) 121]

- Finite volume effects appear to be small
- Each bare gauge coupling appears to approach the 1- and 2-loop GF curves from perturbation theory



Infinite volume limit (GF coupling)



7/12

Leading-order finite volume effects predicted from scaling of Yang-Mills energy density

$$g_{\text{GF}}^2(t; L, g_0^2) \approx g^2(t; g_0^2) + k(t^2/L^4)$$

Infinite volume limit (anomalous dimension)

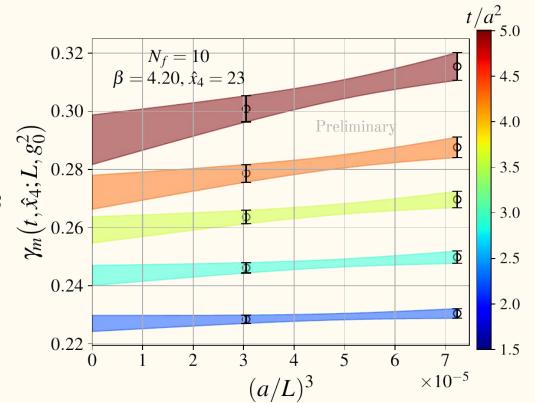
Leading finite volume effects predicted by scaling of two-point function

$$\gamma_{\mathcal{O}}(t,\hat{x}_4;L,g_0^2)$$

$$\approx \gamma_{\mathcal{O}}(t, \hat{x}_4; L, g_0^2) + \kappa (t/L^2)^{\delta_{\mathcal{O}}/2}$$

$$\delta_{\mathcal{O}} pprox 3$$
 (meson)

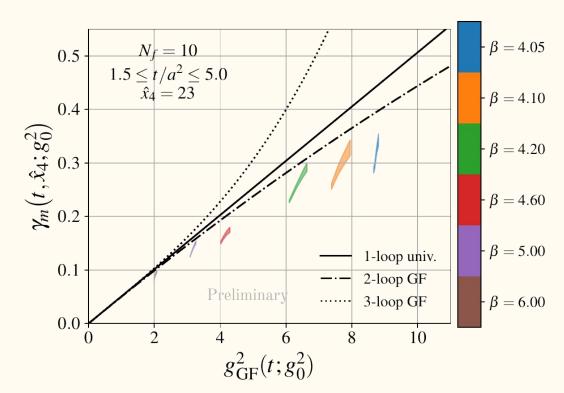
$$pprox 9/2$$
 (baryon)



Infinite volume limit (final result)

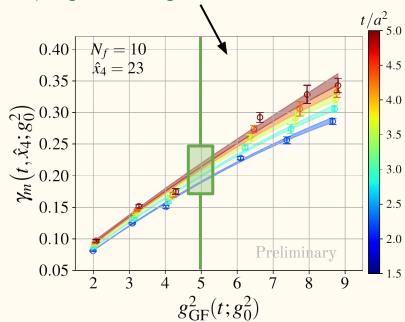
Bare gauge couplings do not overlap

Must interpolate between bare gauge coupling



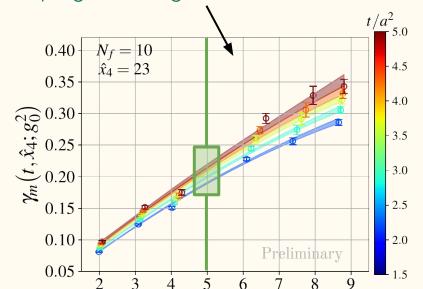
Continuum limit (extrapolation)

Interpolation between bare gauge couplings at fixed gradient flow time



Continuum limit (extrapolation)

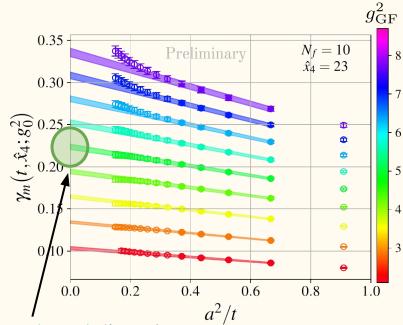
Interpolation between bare gauge couplings at fixed gradient flow time



 $g_{GF}^2(t;g_0^2)$

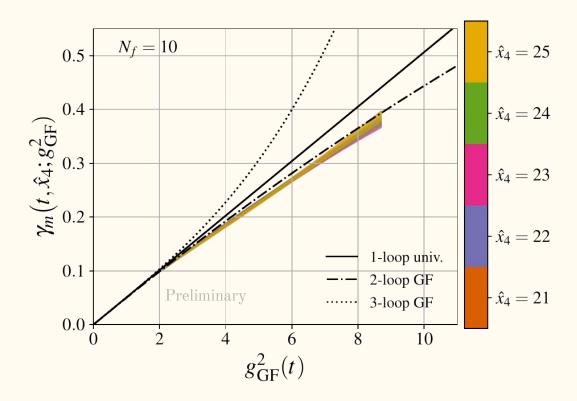
$$\gamma_{\mathcal{O}}(t, \hat{x}_4; g_0^2)$$

 $\approx \gamma_{\mathcal{O}}(t, \hat{x}_4) + c(a^2/t)$



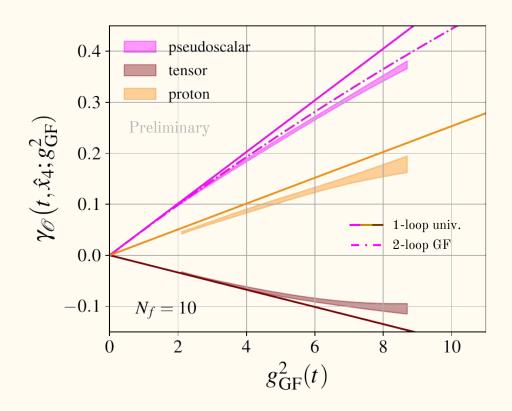
Continuum extrapolation at fixed gradient flow coupling

Continuum limit (final result)

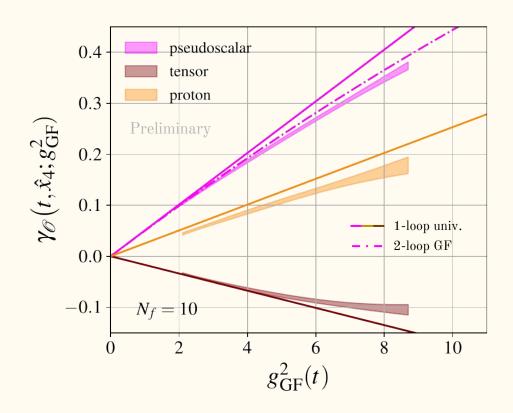


Continuum mass anomalous dimension appears to closely follow 2-loop GF

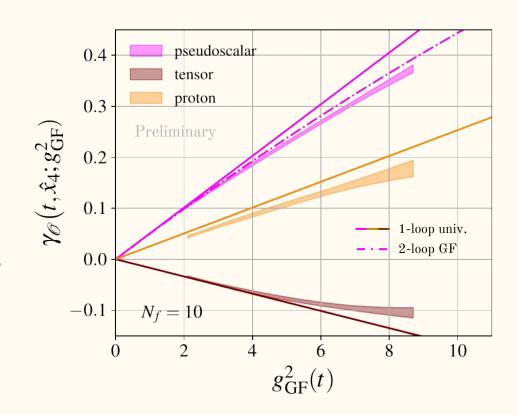
We have also calculated proton and tensor anomalous dimensions



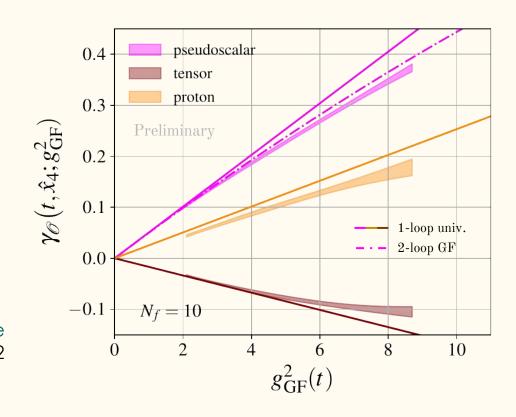
- We have also calculated proton and tensor anomalous dimensions
- Gradient flow anomalous dimension closely follow perturbative curves over our current range of couplings
 - No evidence for non-perturbative enhancement over our current range of couplings



- We have also calculated proton and tensor anomalous dimensions
- Gradient flow anomalous dimension closely follow perturbative curves over our current range of couplings
 - No evidence for non-perturbative enhancement over our current range of couplings
- Plan to gather more statistics on all bare gauge couplings on L/a = 32



- We have also calculated proton and tensor anomalous dimensions
- Gradient flow anomalous dimension closely follow perturbative curves over our current range of couplings
 - No evidence for non-perturbative enhancement over our current range of couplings
- Plan to gather more statistics on all bare gauge couplings on L/a = 32
- We are currently running one more bare gauge coupling at $\beta=4.03$ for L/a = 32



Acknowledgements

U. Colorado: RMACC Summit

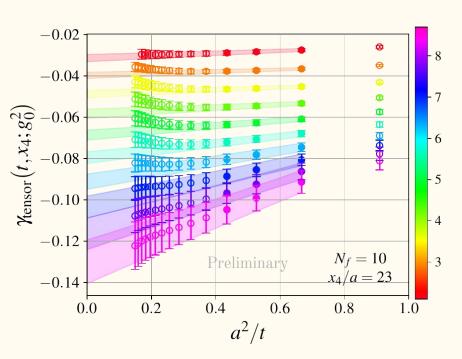
LLNL: Lassen, Boraxo, Quartz

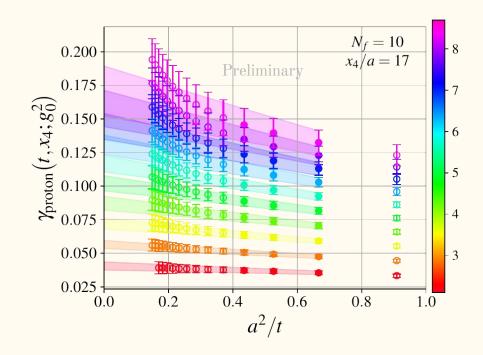
U. Siegen: OMNI

NSF GRFP

LSD Collaboration

Continuum extrapolation of tensor and proton





Tensor and proton anomalous dimension



