Spectroscopy of *Sp*(4) gauge theory with n_f=3 antisymmetric fermions

> Jong-Wan Lee (Pusan National University)

In collaboration with E. Bennett, D. K. Hong, H. Hsiao, C.-J. D. Lin, B. Lucini, M. Piai and D. Vadacchino

Lattice 2022 @ Bonn, Germany August 10, 2022

Global symmetry and pNGBs

- Consider Sp(4) gauge group + 3 two-index antisymmetric Dirac flavors
- Assumed that the global symmetry is broken explicitly by fermion mass and/ or spontaneously by the fermions condensate

 $SU(6) \longrightarrow SO(6)$

- A large coset: 20 pseudo Nambu Goldstone Bosons (pNGBs)
- A natural subgroup of SU(6) is $SU(3)_L \times SU(3)_R$, where the diagonal component can be embedded in the unbroken subgroup, $SU(3)_D \subset SO(6)$

Motivation

- Relevant to pheno. model buildings for BSM based on SU(6)/SO(6) coset
- Composite Higgs (CH) & top partial compositeness

G. Ferretti & T. Karataev, arXiv:1312:5330; J. Bernard, T. Gherghetta & T. S. Ray, arXiv:1311.6562

Coset	HC	ψ	χ	$-q_{\chi}/q_{\psi}$	Baryon	Name	Lattice
$\boxed{\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}}$	$\begin{array}{c} \operatorname{Sp}(4) \\ \operatorname{SO}(11) \end{array}$	$4 \times \mathbf{F}$ $4 \times \mathbf{Sp}$	$6 imes \mathbf{A}_2$ $6 imes \mathbf{F}$	$\frac{1/3}{8/3}$	$\psi\psi\chi$	M8 M9	\checkmark

- CH & Dark matter - an extension of the minimal SU(5)/SO(5) CH

	$SU(2)_L \times U(1)_Y$	$SU(2)_L \times SU(2)_R$	\mathbb{Z}_2
H_1	$(2,\pm 1/2)$	(2,2)	+
H_2	$(2,\pm 1/2)$	(2,2)	_
Λ	$(3, \pm 1)$	(3,3)	T
φ	(3,0)	(0 , 0)	
η_1	(1,0)	(1, 1)	+
η_2	(1, 0)	(1, 1)	
η_3	(1, 0)	(1,1)	+

G. Cacciapaglia, H. Cai, A. Deandrea, A. Kushwaha, arXiv:1904:09301; H. Cai, G. Cacciapaglia, arXiv:2007.04338

Lattice action and simulation details

• Lattice formulation with the standard Wilson gauge & fermion actions

$$S \equiv \beta \sum_{x} \sum_{\mu < \nu} \left(1 - \frac{1}{4} \operatorname{Re} \operatorname{Tr} U_{\mu}(x) U_{\nu}(x + \hat{\mu}) U_{\mu}^{\dagger}(x + \hat{\nu}) U_{\nu}^{\dagger}(x) \right) + a^{4} \sum_{x} \overline{\Psi}_{k}(x) D^{AS} \Psi_{k}(x)$$

with $\beta = 4N/g^2$

• The Wilson-Dirac operator is given by

 $D^{AS}\Psi_k(x) \equiv (4/a + m_0^{as})\Psi_k(x) - \frac{1}{2a}\sum_{\mu} \left\{ (1 - \gamma_{\mu})U_{\mu}^{AS}(x)\Psi_k(x + \hat{\mu}) + (1 + \gamma_{\mu})U_{\mu}^{AS}(x - \hat{\mu})\Psi_k(x - \hat{\mu}) \right\}$

where $(U_{\mu}^{AS})_{(ab)(cd)}(x) \equiv \text{Tr}\left[(e_{AS}^{(ab)})^{\dagger}U_{\mu}(x)e_{AS}^{(cd)}U_{\mu}^{T}(x)\right]$, with a < b, c < d. $U_{\mu}(x) = U_{\mu}^{F}(x) \in Sp(4)$

• Simulations using (R)HMC algorithms implemented in the HiRep code Del Debbio, Patella & Pica (2008)

Lattice setup

• *Sp*(4) theory with fermions: Weak and strong coupling regimes are separated by 1st order phase transition.

 $n_f=3ASSp(4): \beta \gtrsim 6.5$

J.-W. Lee et al, Lattice (2018) 192

Finite volume corrections are statistically negligible if $m_{\rm PS}L\gtrsim 7.5$.

E. Bennett et al, Lattice (2021) 274

- negative FV contribution can be understood from the NLO corrections in the low-energy chPT.
 Bijnens & Lu (2009)
- Scale setting: Gradient flow method

 $\hat{a} \equiv a/w_0$ $\hat{m} \equiv m^{\text{lat}}w_0^{\text{lat}} = mw_0$

Borsarnyi et al (2012), arXiv: 1203.4469

Interpolating operators and measurements

• Flavor non-singlet spin 0 and 1 mesons, i.e. $i \neq j$

Label M	Interpolating operator \mathcal{O}_{M}	Mesons in QCD	J^P	SO(6)
PS	$\overline{\Psi^i}\gamma_5\Psi^j$	π	0-	20
S	$\overline{\Psi^i}\Psi^j$	a_0	0+	20
V	$\overline{\Psi^i}\gamma_\mu\Psi^j$	ρ	1-	15
Т	$rac{\overline{\Psi^i}\gamma_\mu\Psi^j}{\overline{\Psi^i}\gamma_0\gamma_\mu\Psi^j}$	ρ	1-	15
AV	$\Psi^i \gamma_5 \gamma_\mu \Psi^j$	a_1	1+	20
AT	$\overline{\Psi^i}\gamma_5\gamma_0\gamma_\mu\Psi^j$	b_1	1+	15

- We use the Z₂xZ₂ single time slice stochastic wall sources with hit number 3
- We extract the mass of the first excited state of vector meson by solving the generalized eigenvalue problem (GEVP) for correlation functions built from two independent interpolating operators.

Ensemble	Volume	β	am_0	$N_{\rm configs}$	$\langle P \rangle$	w_0/a
ASB1M1	48×18^3	6.65	-1.05	128	0.579862(30)	1.6268(42)
ASB1M2	48×18^3	6.65	-1.063	135	0.585145(32)	2.142(8)
ASB1M3	48×24^3	6.65	-1.07	137	0.587787(17)	2.603(8)
ASB1M4	48×28^3	6.65	-1.075	170	0.589623(11)	3.074(11)
ASB1M5	48×32^3	6.65	-1.08	120	0.591450(13)	3.636(24)
ASB2M1	54×16^3	6.7	-1.0	90	0.570927(46)	1.1366(17)
ASB2M2	48×16^3	6.7	-1.02	200	0.578740(25)	1.4274(21)
ASB2M3	48×16^3	6.7	-1.03	120	0.582272(30)	1.6251(40)
ASB2M4	48×18^3	6.7	-1.04	100	0.585693(30)	1.924(8)
ASB2M5	48×24^3	6.7	-1.045	120	0.587367(22)	2.122(5)
ASB2M6	48×24^3	6.7	-1.05	110	0.588953(21)	2.342(8)
ASB2M7	48×24^3	6.7	-1.055	180	0.590599(15)	2.650(9)
ASB2M8	48×24^3	6.7	-1.06	180	0.592155(13)	2.928(12)
ASB2M9	54×28^3	6.7	-1.063	110	0.593154(13)	3.435(17)
ASB2M10	54×32^3	6.7	-1.065	150	0.593758(9)	3.626(14)
ASB2M11	54×32^3	6.7	-1.067	180	0.594392(8)	3.704(8)
ASB2M12	54×36^3	6.7	-1.069	120	0.595060(9)	4.320(12)
ASB3M1	54×18^3	6.75	-1.03	180	0.590431(21)	2.205(7)
ASB3M2	54×24^3	6.75	-1.041	120	0.593531(15)	2.642(9)
ASB3M3	54×24^3	6.75	-1.046	180	0.595008(12)	3.100(12)
ASB3M4	54×28^3	6.75	-1.051	196	0.596339(10)	3.607(15)
ASB3M5	54×32^3	6.75	-1.055	225	0.597567(8)	4.066(13)
ASB4M1	48×16^3	6.8	-1.0	170	0.589860(24)	1.889(6)
ASB4M2	54×16^3	6.8	-1.02	165	0.597306(19)	2.456(14)
ASB4M3	54×24^3	6.8	-1.03	180	0.597270(13)	2.947(10)
ASB4M4	56×24^3	6.8	-1.035	275	0.598552(10)	3.367(11)
ASB4M5	54×32^3	6.8	-1.04	100	0.599829(10)	3.711(13)
ASB4M7	54×36^3	6.8	-1.046	72	0.601397(10)	4.520(20)

How far from the massless limit?

Conformal or chirally broken?

• A sign of conformality?

Conformal or chirally broken?

- A sign of conformality? No!
- indicates that our theory is indeed in the broken phase (as expected)

List of ensembles

Ensemble	Volume	β	am_0	$N_{\rm configs}$	$\langle P \rangle$	w_0/a
ASB1M3	48×24^3	6.65	-1.07	137	0.587787(17)	2.603(8)
ASB1M4	48×28^3	6.65	-1.075	170	0.589623(11)	3.074(11)
ASB1M5	48×32^3	6.65	-1.08	120	0.591450(13)	3.636(24)
ASB2M7	48×24^3	6.7	-1.055	180	0.590599(15)	2.650(9)
ASB2M8	48×24^3	6.7	-1.06	180	0.592155(13)	2.928(12)
ASB2M9	54×28^3	6.7	-1.063	110	0.593154(13)	3.435(17)
ASB2M10	54×32^3	6.7	-1.065	150	0.593758(9)	3.626(14)
ASB2M11	54×32^3	6.7	-1.067	180	0.594392(8)	3.704(8)
ASB2M12	54×36^3	6.7	-1.069	120	0.595060(9)	4.320(12)
ASB3M2	54×24^3	6.75	-1.041	120	0.593531(15)	2.642(9)
ASB3M3	54×24^3	6.75	-1.046	180	0.595008(12)	3.100(12)
ASB3M4	54×28^3	6.75	-1.051	196	0.596339(10)	3.607(15)
ASB3M5	54×32^3	6.75	-1.055	225	0.597567(8)	4.066(13)
ASB4M3	54×24^3	6.8	-1.03	180	0.597270(13)	2.947(10)
ASB4M4	56×24^3	6.8	-1.035	275	0.598552(10)	3.367(11)
ASB4M5	54×32^3	6.8	-1.04	100	0.599829(10)	3.711(13)
ASB4M7	54×36^3	6.8	-1.046	72	0.601397(10)	4.520(20)

Vector meson mass in units of PS decay constant

- related to the coupling g_{VPP} through KSRF relation: $g_{VPP} = \frac{m_V}{\sqrt{2}f_{PS}}$ Kowarabayashi & Suzuki (1966) Riazuddin & Fayyazuddin (1966)
- In the massless limit, it is approaching the value smaller than the one in N_f=2 (F) *Sp*(4) theory

Results: first excited state of vector meson

3

Massless and continuum extrapolation

• Despite of a long massless extrapolation, we use the following ansatzs linear in \hat{m}_{PS}^2 and \hat{a} to fit the data for ensembles in the linear regime.

$$\hat{m}_M^{2,\text{NLO}} = \hat{m}_M^{2,\chi} \left(1 + L_{m,M}^0 \hat{m}_{\text{PS}}^2 \right) + W_{m,M}^0 \hat{a}$$

 $\hat{f}_M^{2,\text{NLO}} = \hat{f}_M^{2,\chi} \left(1 + L_{f,M}^0 \hat{m}_{\text{PS}}^2 \right) + W_{f,M}^0 \hat{a}$

- Restrict to the continuum extrapolated results over the mass range of data available as our final results
- Still useful for the phenomenological model buildings for comp. Higgs, top partial compositeness and dark matter *massless limit may not be required*

Results: masses in the continuum limit

XXXXXXXX

Results: decay constants in the continuum limit

Meson spectrum of $n_f=3$ AS Sp(4)

Conclusion

- Sp(4) theory with nf=3 antisymmetric fermions is relevant to top-partial compositeness, composite Higgs and dark matter
- We have studied the spectrum of mesons in spin-0 and 1 channels including the first excited state of the vector meson no sign of (near) conformality
- Gradient flow scale shows a large mass dependence, which challenges to getting close to the massless limit
- Continuum extrapolation has been carried out only in the large mass regime using a simple linear ansatz for the PS mass squared and the lattice spacing

Could still be phenomenologically interesting for BSM physics based on new strong dynamics!

Thank you for your attention!