Renormalization Group beta function for SU(3) gauge-fermion systems

Oliver Witzel

August 10, 2022

▶ Study properties of strongly coupled gauge-fermion systems

- Characterize nature of such systems
 - \rightarrow Where is the onset of the conformal window?

▶ Determine properties such as anomalous dimensions

→ Important for BSM model building Talk by Curtis T. Peterson Wed. 16:30 BSM Talk by Chris Monahan Wed. 16:50 SM Parameters

Renormalization Group β function

$$\beta(g^2) = \mu^2 \frac{dg^2}{d\mu^2}$$

- \blacktriangleright Encodes dependence of coupling g^2 on the energy scale μ^2
- ▶ β has no explicit dependence on μ^2 , only implicit through $g^2(\mu)$
- ► Known perturbatively up to 5-loop order in the MS scheme (1- and 2-loop are universal) [Baikov et al. PRL118(2017)082002] [Ryttov and Shrock PRD94(2016)105015]
- Perturbative predictions reliable at weak coupling, nonperturbative methods needed for strong coupling

Step-Scaling β function

- \blacktriangleright Discretized β function determined using numerical lattice field theory calculations <code>[Lüscher et al. NPB359(1991)221]</code>
 - \rightarrow Choose symmetric L^4 setup where the size L of the lattice is the only scale
 - $_{\rightarrow}$ Determine β function by changing the scale $L \rightarrow s \cdot L$

Į

- ▶ Gradient flow [Narayanan and Neuberger JHEP 0603 (2006) 064] [Lüscher CMP 293 (2010) 899][JHEP 1008 (2010) 071]
 - \rightarrow Continuous smearing transformation which can be used to define a renormalized coupling

$$g_c^2(L) = rac{128\pi^2}{3(N_c^2-1)} \; rac{1}{C(c,L)} t^2 \langle E(t)
angle$$

 \rightarrow Relate flow time t to scale L: $\sqrt{8t} = c \cdot L$ [Fodor et al. JHEP11(2012)007][JHEP09(2014)018]

 $\rightarrow \textbf{Calculate difference}$

$$eta_{s}^{c}(g_{c}^{2};L) = rac{g_{c}^{2}(sL) - g_{c}^{2}(L)}{\log(s^{2})}$$

 $_{\rightarrow}$ Extrapolate L $\rightarrow\infty$ to remove discretization effects and take the continuum limit

Setup

- Symanzik gauge action
- \blacktriangleright Möbius domain-wall fermions with three levels of stout smearing (arrho=0.1)
- **•** Input quark mass $am_q = 0$, $L_s = 12$ or 16 such that $am_{res} < 10^{-5}$
- Fermions with anti-periodic boundary conditions in space and time

$N_f = 4$	$N_f = 6$	$N_f = 8$
6–9 bare couplings	8–12 bare couplings	11–18 bare couplings
eta = 8.50 - 4.50(4.20)	eta = 7.00 - 4.30(4.02)	eta= 7.00 - 4.10(4.00)
▶ 5 volume pairs with $s = 2$		
40 ⁴ , 32 ⁴ , 12 ⁴ , 24 ⁴ , 20 ⁴ , 16 ⁴ , 10 ⁴ , 8 ⁴		48 ⁴ , 32 ⁴ , 12 ⁴ , 24 ⁴ , 20 ⁴ , 16 ⁴ , 10 ⁴ ,

- ▶ Simulations performed using Grid [Boyle et al. PoS Lattice2015 023]
- ▶ Measuring Zeuthen flow, Symanzik flow, and Wilson flow in Qlua [Pochinsky PoS Lattice2008 040]
- ▶ Apply tree-level normalization to reduce cutoff effects [Fodor et al. JHEP09(2014)018]

 \rightarrow Poster Christian Schneider [A13], Talk Alberto Ramos Wed 17:30 Theo. Developments

84

Analysis SU(3) with $N_f = 8$ fundamental flavors [Hasenfratz, Rebbi, OW in preparation]

Systematic effects SU(3) with $N_f = 8$ fundamental flavors

[Hasenfratz, Rebbi, OW in preparation]

Comparison SU(3) with $N_f = 8$ fundamental flavors [Hasenfratz, Rebbi, OW in preparation]

[Hasenfratz, Schaich, Veernala JHEP06(2015)143] [Fodor, Holland, Kuti, Mondal, Nogradi, Wong JHEP06(2015)019]

SU(3) with N_f fundamental flavors

[Hasenfratz, Rebbi, OW in preparation]

SU(3) with N_f fundamental flavors

Beyond Step-Scaling: real-space Renormalization Group (RG) flow

Beyond Step-Scaling: real-space Renormalization Group (RG) flow

- ▶ RG flow: change of action parameters under RG transformation
- ▶ Gradient flow is a continuous transformation
 - \rightarrow Defines real-space RG blocked quantities
 - \rightarrow By incorporating coarse graining as part of calculating expectation values, it is turned into an RG transformation [Carosso, Hasenfratz, Neil PRL 121 (2018) 201601]
- \blacktriangleright Relate GF time t/a^2 to RG scale change $b \propto \sqrt{t/a^2}$
 - $_{\rightarrow}$ Quantities at flow time t/a^2 describe physical quantities at energy scale $\mu \propto 1/\sqrt{t}$
 - \rightarrow Local operator with vanishing anomalous dimension can be used to define running coupling
 - \rightsquigarrow Simplest choice: $t^2 \langle E(t) \rangle$ [Lüscher JHEP 1008 (2010) 071]
- \blacktriangleright Continuous RG β function

$$eta(g_{GF}^2)=\mu^2rac{dg_{GF}^2}{d\mu^2}=-trac{dg_{GF}^2}{dt}$$

[Fodor et al., EPJ Web Conf. 175(2018)08027] [Hasenfratz, OW PRD101(2020)034514]

Example: SU(3) with $N_f = 6$ [Hasenfratz, OW in preparation]

- "Raw" data overlayed on continuum result
- ► Fast "running" coupling → Confinement
- Plot: Comparison of non-perturbative and perturbative determinations

► 3-loop GF

[Harlander, Neumann JHEP06(2016)161]

Analysis steps continuous β function [Hasenfratz, OW PRD101(2020)034514][in preparation]

► Calculate $g_{GF}^2(t; L, \beta_0)$ and derivative $\beta_{GF}(t; L, \beta_0)$ for all flow times t, volumes L, bare coupling β_0

- ► Interpolate for fixed flow time and L in g²_{GF}
- ► Take infinite volume limit keeping t and g²_{GF} fixed
 → Vary extrapolation to test stability
- ▶ Take continuum limit $t/a^2 \to \infty$ for fixed g^2_{GF}
 - → Check for systematic effects varying range of flow times, operators, gradient flows, ...

Continuous β function for SU(3) with $N_f = 6$ [Hasenfratz, OW in preparation]

▶ Analysis for $N_f = 4$ and 8 in progress

SU(3) with N_f fundamental flavors (step-scaling)

extra

SU(3) with $N_f = 6$ fundamental flavors: analysis

SU(3) with $N_f = 6$ fundamental flavors: systematic effects

SU(3) with $N_f = 10$, 12 fundamental flavors

 $N_{f} = 10$

[Hasenfratz, Rebbi, OW PRD 101(2020)114508]

020)114508] [Hasenfratz, Rebbi, OW PRD 100(2019)114508] [Hasenfratz, Rebbi, OW PLB 798(2019)134937]

 $N_{f} = 12$