A road to a beyond-the-Standard-Model model without Higgs

G. C. Rossi

Università di Roma *Tor Vergata*, Roma - Italy INFN - Sezione di Roma *Tor Vergata*, Roma - Italy Centro Fermi, Roma - Italy

TOR VERGATA

MUSEO STORICO DELLA FISICA E CENTRO STUDI E RICERCHE ENRICO FERMI

8-13 August, 2022

Bibliography

The talk is based on the papers

- R. Frezzotti and G. C. Rossi
- Phys. Rev. D **92** (2015) no.5, 054505
- LFC19: Frascati Physics Series Vol. 70 (2019)
- S. Capitani, P. Dimopoulos, R. Frezzotti, M. Garofalo,
- B. Kostrzewa, F. Pittler, G. C. Rossi and C. Urbach
- PRL **123** (2019) 061802
- Preliminary simulation results can be found in
 - S. Capitani, plus the same Authors as above
 - EPJ Web Conf. 175 (2018) 08008 & 08009
- Theoretical considerations can be found in
 - G. C. Rossi
 - EPJ Web Conf. **258** (2022), 06003
- See also
 - R. Frezzotti, M. Garofalo and G. C. Rossi
 - Phys. Rev. D 93 (2016) no.10, 105030

Outline of the talk (take home message)

- 1'll jump [Introduction & Motivation: SM and its limitations] and discuss
- 2 milestones of an unfinished road towards a bSMm with no Higgs
 - the simplest model yielding NP "naturally" light quark masses

$$m_q^{NP} \sim c_q(\alpha_s) \Lambda_{RGI}, \quad c_q(\alpha_s) = O(\alpha_s^2)$$

extension to weak interactions (skip hypercharge and leptons), leading to

$$M_W^{NP} \sim g_w c_w(\alpha) \Lambda_{RGI}, \quad c_w(\alpha) = O(\alpha),$$

- A few phenomenological implications
 - top and W mass formulae require $\Lambda_{RGI} \gg \Lambda_{QCD}$
 - need for super-strongly interacting (Tera) particles
 - \rightarrow to have a full theory with $\Lambda_{RGI} \equiv \Lambda_T = O(\#TeV)$
- A few conceptual achievements
 - "Mass tuning" problem bypassed no Higgs to care about!
 - Coupling ranking $\alpha_y \ll \alpha_s \ll \alpha_T \rightarrow$ fermion mass ranking $m_\ell \ll m_q \ll m_{Q_T}$
 - A bonus: SM + Tera-sector → gauge coupling unification (no SUSY!)
- Onjecture: 125 GeV boson a WW/ZZ state bound by Tera-exchanges
- **1** LEEL_{d=4} ($E \ll \Lambda_T$) after integrating out Tera-dof's very similar to \mathcal{L}_{SM}
 - Conclusions

The simplest model endowed with NP mass generation

A recap of previous results

A (toy) model with NP mass generation

Consider a model – where an SU(2) fermion doublet, subjected to non-abelian gauge interactions (of the QCD type), is coupled to a complex scalar doublet via d=4 Yukawa and "irrelevant" d=6 Wilson-like chiral breaking terms – described by the Lagrangian

$$\mathcal{L}_{toy}(\textbf{\textit{q}},\textbf{\textit{A}},\Phi) = \mathcal{L}_{\textit{kin}}(\textbf{\textit{q}},\textbf{\textit{A}},\Phi) + \mathcal{V}(\Phi) + \textcolor{red}{\mathcal{L}_\textit{Yuk}}(\textbf{\textit{q}},\Phi) + \textcolor{red}{\mathcal{L}_\textit{Wil}}(\textbf{\textit{q}},\textbf{\textit{A}},\Phi)$$

$$\bullet \, \mathcal{L}_{\textit{kin}}(q,\textit{A},\Phi) = \frac{1}{4}(\textit{F}^\textit{A} \cdot \textit{F}^\textit{A}) + \bar{q}_\textit{L} \mathcal{D}^\textit{A} q_\textit{L} + \bar{q}_\textit{R} \mathcal{D}^\textit{A} q_\textit{R} + \frac{1}{2} \text{Tr} \left[\partial_\mu \Phi^\dagger \partial_\mu \Phi \right]$$

$$\bullet\,\mathcal{V}(\Phi) = \frac{\mu_0^2}{2} \text{Tr}\left[\Phi^\dagger\Phi\right] + \frac{\lambda_0}{4} \big(\text{Tr}\left[\Phi^\dagger\Phi\right]\big)^2$$

$$ullet \mathcal{L}_{\mathit{Yuk}}(q,\Phi) = \eta \left(ar{q}_{\mathit{L}} \Phi q_{\mathit{R}} + ar{q}_{\mathit{R}} \Phi^{\dagger} q_{\mathit{L}}
ight)$$

$$\bullet \, \mathcal{L}_{\textit{Wil}}(q,\textit{A},\Phi) = \frac{\textit{b}^2}{2} \rho \left(\bar{q}_{\textit{L}} \overleftarrow{\mathcal{D}}^{\textit{A}}_{\textit{\mu}} \Phi \mathcal{D}^{\textit{A}}_{\textit{\mu}} q_{\textit{R}} + \bar{q}_{\textit{R}} \overleftarrow{\mathcal{D}}^{\textit{A}}_{\textit{\mu}} \Phi^{\dagger} \mathcal{D}^{\textit{A}}_{\textit{\mu}} q_{\textit{L}} \right)$$

- \mathcal{L}_{toy} key features (at variance with the SM)
 - presence of the "irrelevant" chiral breaking d=6 Wilson-like term
 - ullet Φ , despite appearances, not the Higgs, but UV completion of \mathcal{L}_{toy}
- \mathcal{L}_{toy} notations
 - $b^{-1} \sim \Lambda_{UV} = UV$ cutoff, $\eta = Yukawa$ coupling, ρ to keep track of \mathcal{L}_{Wil}

Theoretical background

- ① \mathcal{L}_{toy} is formally power-counting renormalizable (like Wilson LQCD despite the presence of d = 5 Wilson term)
- and exactly invariant under the (global) transformations

$$\begin{split} \chi_{L} \times \chi_{R} &= \left[\tilde{\chi}_{L} \times (\Phi \to \Omega_{L} \Phi) \right] \times \left[\tilde{\chi}_{R} \times (\Phi \to \Phi \Omega_{R}^{\dagger}) \right] \\ \tilde{\chi}_{L/R} &: \left\{ \begin{array}{c} q_{L/R} \to \Omega_{L/R} q_{L/R} \\ \\ \bar{q}_{L/R} \to \bar{q}_{L/R} \Omega_{L/R}^{\dagger} \end{array} \right. & \Omega_{L/R} \in \text{SU(2)} \end{split}$$

- $\chi_L \times \chi_R$ exact, can be realized
 - á la Wigner
 - á la Nambu-Goldstone
- $\tilde{\chi}_L \times \tilde{\chi}_R$ (chiral transformations) broken for generic η and ρ
- Standard fermion masses are forbidden because the operator $\bar{q}_L q_R + \bar{q}_R q_L$ is not invariant under the exact $\chi_L \times \chi_R$ symmetry
- No quantum linear mass divergencies allowed (unlike Wilson LQCD)

The road to NP mass generation - I

- Yukawa and Wilson-like terms break $\tilde{\chi}_L \times \tilde{\chi}_R$ and mix
- As we showed, chiral $\tilde{\chi}_L \times \tilde{\chi}_R$ symmetry can be restored at $\eta = \eta_{cr}$ (like what happens in Wilson LQCD at m_{cr}). Here it implies
 - **1** in Wigner phase $\langle |\Phi|^2 \rangle = 0 \rightarrow$ effective $\bar{q}_R \Phi q_L +$ hc vertex absent

② in NG phase $\langle |\Phi|^2 \rangle = v^2 \rightarrow \underline{\text{Higgs mechanism is made ineffective}}$

- Observation
 - b^2 factor introduced by the Wilson-like vertex compensated by the quadratic loop divergency b^{-2} , yielding finite (1-loop) diagrams
- Q: after Higgs-like mass cancellation, is any fermion mass term left?
 A: YES, a non-perturbative one is generated in the NG phase!

The road to NP mass generation - II

A "heuristic" argument for NP mass generation in critical model NG phase

- As in QCD (recovered) chiral $\tilde{\chi}_L \times \tilde{\chi}_R$ symmetry is spontaneously broken
- At O(b²) in the Symanzik expansion also NP operators occur
 - they are found to be

$$O_{6,\mathit{FF}} \propto \textcolor{red}{b^2} \textcolor{black}{\Lambda_s \alpha_s} |\Phi| \Big[F^A \cdot F^A \Big] \qquad O_{6,\bar{q}q} \propto \textcolor{black}{b^2} \textcolor{black}{\Lambda_s \alpha_s} |\Phi| \Big[\bar{q} \, \mathcal{D}^A q \Big]$$

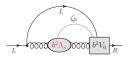
- $O_{6,FF}$ & $O_{6,\bar{q}q}$ expression fixed by symmetries $(\chi_L \times \chi_R)$ & dimension
- The effect of these operators is standardly described by taking into account all diagrams derived from the extended Symanzik Lagrangian

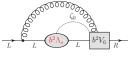
$$\mathcal{L}_{\text{toy}} \to \mathcal{L}_{\text{toy}} + \Delta \mathcal{L}_{NP}^{Sym} + \dots$$
$$\Delta \mathcal{L}_{NP}^{Sym} = \frac{b^{2}}{b^{2}} \Lambda_{s} \alpha_{s} |\Phi| \left[c_{FF} F^{A} \cdot F^{A} + c_{\bar{q}q} \bar{q} \mathcal{D}^{A} q \right] + O(\frac{b^{4}}{b^{4}})$$

• $\Delta \mathcal{L}_{NP}^{Sym}$ matters in the limit $b \to 0$, as formally $O(b^2)$ effects can be promoted to finite contributions by UV power divergencies in loops

A diagrammatic understanding of NP masses - III

• New NP self-energy diagrams emerge from $\mathcal{L}_{tov} + \Delta \mathcal{L}_{ND}^{Sym}$





- masses are 1PI diagrams at vanishingly small external momenta
- blobs = NP vertices from the Symanzik term,

$$\Delta \mathcal{L}_{NP}^{\mathit{Sym}} = {\color{red}b^2} {\color{black} \Lambda_s lpha_s} |\Phi| \Big[c_{\mathit{FF}} F^A {\cdot} F^A {+} c_{ar{q}q} ar{q} \, {\color{black} \mathcal{D}}^A q \Big]$$

• box = Wilson-like vertex from the fundamental \mathcal{L}_{tov}

$$\underline{\underline{m_q^{NP}}} \propto \underline{\underline{\alpha_s^2}} \operatorname{Tr} \int_{-\frac{1}{b}}^{\frac{1}{b}} \frac{d^4k}{k^2} \frac{\gamma_{\mu}k_{\mu}}{k^2} \int_{-\frac{1}{b}}^{\frac{1}{b}} \frac{d^4\ell}{\ell^2 + m_{\zeta_0}^2} \frac{\gamma_{\nu}(k+\ell)_{\nu}}{(k+\ell)^2} \cdot \frac{b^2\gamma_{\rho}(k+\ell)_{\rho}}{b^2} \frac{b^2\Lambda_s\gamma_{\lambda}(2k+\ell)_{\lambda} \sim \alpha_s^2\Lambda_s}$$

- Self-energy diagrams are finite
 - b⁴ SỹSB IR effects compensate 2-loop UV quartic divergency
 - Thus masses are a kind of NP anomalies that appear as obstructions to a full recovery of the $\tilde{\chi}_L \times \tilde{\chi}_R$ chiral symmetry

Quantum Effective Lagrangian (QEL) in NG phase

- We saw that
 - in the NG phase at η_{cr} the "Higgs" fermion mass get cancelled, but (lattice simulations confirm that) the fermion acquires a NP mass

$$m_q^{NP} = c_q(g_s^2) \Lambda_s$$
, $c_q(g_s^2) = O(\alpha_s^2)$

- ② QEL, describing physics of the critical model in NG phase, Γ^{NG} , is determined by including all terms compatible with
 - symmetries: $\chi_L \times \chi_R$ (exact) and $\tilde{\chi}_L \times \tilde{\chi}_R$ (recovered)
 - dimensional arguments
 - $m_a^{NP} \neq 0$
- **3** For $\Gamma_{d=4}^{NG}$ one then finds $\left[\Phi = (v + \zeta_0)U, U = \exp[i\vec{\tau}\vec{\zeta}/v]\right]$

$$\Gamma_{d=4}^{NG} = \Gamma_{d=4}^{0} + \underline{c_q(g_s^2)} \Lambda_s [\bar{q}_L U q_R + \bar{q}_R U^{\dagger} q_L] + \frac{c^2 \Lambda_s^2}{2} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial_{\mu} U \right]$$

$$\Gamma^0_{d=4} = \frac{1}{4} (F^A \cdot F^A) + \bar{q}_L \mathcal{D}^A q_L + \bar{q}_R \mathcal{D}^A q_R + \frac{1}{2} \text{Tr} \left[\partial_\mu \Phi^\dagger \partial_\mu \Phi \right] + \mathcal{V}(\Phi) = \Gamma^{Wig}_{d=4} \Big|_{\hat{\mu}^2_\Phi < 0}$$

- **1** From $U = 11 + i\vec{\tau}\vec{\zeta}/v + \dots$ we get a fermion mass plus NGBs interactions
- The mass emerges from a more complicated structure than usual

A step forward

Introducing weak interactions Why Tera-interactions?

Why Tera-interactions?

Obviously we want weak interactions. But why Tera-interactions?

- In the previous mass formulae $\Lambda_s = \Lambda_{RGI}$ is the RGI scale of the theory
- Let us focus on the top quark. Can we make the NP formula

$$m_q^{NP} = c_q(g_s^2) \Lambda_{\rm RGI} \,, \qquad \qquad c_q(g_s^2) = {\sf O}(\alpha_s^2)$$

compatible with the phenomenological value of the top mass?

As an order of magnitude, we clearly need to have for Λ_{RGI}

$$\Lambda_{\rm QCD} \ll \Lambda_{\rm RGI} = {\rm O(a~few~TeV's)}$$

so as to get a top mass in the 10^2 GeV range \rightarrow

Super-strongly interacting particles must exist, yielding a full theory with

$$\Lambda_{RGI} \equiv \Lambda_T = O(a \text{ few TeV's})$$

- We refer to them as Tera-particles Glashow (to avoid confusion with Techni-particles)
- ullet Revealing Tera-hadrons o an unmistakable sign of New Physics

Towards a BSMm: including weak- & Tera-interactions

- ullet It is trivial to extend \mathcal{L}_{toy} to include weak and Tera-interactions
 - Tera-particles → we duplicate what we did for quarks
 - Weak bosons \rightarrow we gauge the exact χ_L symmetry

$$\begin{split} \mathcal{L}(q, \, \textcolor{red}{Q}; \, \textcolor{blue}{\Phi}; \, \textcolor{blue}{A}, \, \textcolor{red}{G}, \, \textcolor{red}{W}) &= \mathcal{L}_{\textit{kin}}(q, \, \textcolor{red}{Q}; \, \textcolor{blue}{\Phi}; \, \textcolor{blue}{A}, \, \textcolor{red}{G}, \, \textcolor{red}{W}) \, + \\ &+ \mathcal{V}(\textcolor{blue}{\Phi}) + \mathcal{L}_{\textit{Yuk}}(q, \, \textcolor{red}{Q}; \, \textcolor{blue}{\Phi}) + \mathcal{L}_{\textit{Wil}}(q, \, \textcolor{red}{Q}; \, \textcolor{blue}{\Phi}; \, \textcolor{blue}{A}, \, \textcolor{red}{G}, \, \textcolor{red}{W}) \end{split}$$

•
$$\mathcal{L}_{kin}(q, Q; \Phi; A, W) = \frac{1}{4} \Big(F^A \cdot F^A + F^G \cdot F^G + F^W \cdot F^W \Big) +$$

 $+ \Big[\bar{q}_L \mathcal{D}^{AW} q_L + \bar{q}_R \mathcal{D}^A q_R \Big] + \Big[\bar{Q}_L \mathcal{D}^{AGW} Q_L + \bar{Q}_R \mathcal{D}^{AG} Q_R \Big] + \frac{k_b}{2} \underline{\text{Tr}} \left[(\mathcal{D}_{\mu}^W \Phi)^{\dagger} \mathcal{D}_{\mu}^W \Phi \right]$

- $\bullet \ \mathcal{V}(\Phi) = \frac{\mu_0^2}{2} \textit{k}_b \text{Tr} \left[\Phi^\dagger \Phi \right] + \frac{\lambda_0}{4} \left(\textit{k}_b \text{Tr} \left[\Phi^\dagger \Phi \right] \right)^2$
- $\bullet \ \ \underline{\mathcal{L}_{\mathit{YUK}}(q,Q;\Phi)} = \eta_q \left(\bar{q}_{\mathit{L}} \Phi \ q_{\mathit{R}} + \bar{q}_{\mathit{R}} \Phi^\dagger q_{\mathit{L}} \right) + \eta_{\mathit{Q}} \left(\bar{Q}_{\mathit{L}} \Phi \ Q_{\mathit{R}} + \bar{Q}_{\mathit{R}} \Phi^\dagger Q_{\mathit{L}} \right)$
- $$\begin{split} & \bullet \ \underline{\mathcal{L}_{\textit{Wil}}(q,Q;\Phi;A,G,W)} = \frac{b^2}{2} \rho_q \left(\bar{q}_L \overleftarrow{\mathcal{D}}_{\mu}^{\textit{AW}} \Phi \mathcal{D}_{\mu}^{\textit{A}} q_R + \bar{q}_R \overleftarrow{\mathcal{D}}_{\mu}^{\textit{A}} \Phi^{\dagger} \mathcal{D}_{\mu}^{\textit{AW}} q_L \right) + \\ & + \frac{b^2}{2} \rho_Q \left(\bar{Q}_L \overleftarrow{\mathcal{D}}_{\mu}^{\textit{AGW}} \Phi \mathcal{D}_{\mu}^{\textit{AG}} Q_R + \bar{Q}_R \overleftarrow{\mathcal{D}}_{\mu}^{\textit{AG}} \Phi^{\dagger} \mathcal{D}_{\mu}^{\textit{AGW}} Q_L \right) \end{split}$$

Symmetries and criticality

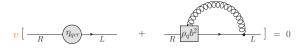
$$\begin{array}{lll} \bullet_{\mbox{χ}\mbox{L}} : & \tilde{\chi}_{\mbox{L}} \times (\Phi \to \Omega_L \Phi) & \mbox{exact} \\ & \begin{cases} q_L \to \Omega_L q_L \\ \bar{q}_L \to \bar{q}_L \Omega_L^\dagger \\ W_\mu \to \Omega_L W_\mu \Omega_L^\dagger \\ Q_L \to \Omega_L Q_L \\ \bar{Q}_L \to \bar{Q}_L \Omega_L^\dagger \\ \end{cases} & \Omega_L \in \text{SU}_L(2) \\ \\ \bullet_{\mbox{χ}\mbox{R}} : & \tilde{\chi}_R \times (\Phi \to \Phi \Omega_R^\dagger) & \mbox{exact} \\ & \begin{cases} q_R \to \Omega_R q_R \\ \bar{q}_R \to \bar{q}_R \Omega_R^\dagger \\ \bar{q}_R \to \bar{Q}_R Q_R \\ \bar{Q}_R \to \bar{Q}_R Q_R^\dagger \\ \bar{Q}_R \to \bar{Q}_R Q_R^\dagger \\ \end{cases} & \Omega_R \in \text{SU}_R(2)$$

- $\tilde{\chi}_L \times \tilde{\chi}_B$ breaking terms are \mathcal{L}_{Yuk} , \mathcal{L}_{Wil} & scalar kinetic term
- We need to tune η_q , η_Q & k_b to enforce invariance under $\tilde{\chi}_L \times \tilde{\chi}_R$

Critical tuning in the NG phase $\langle |\Phi|^2 \rangle = v^2$ (at 1-loop)

Again, in NG phase criticality implies Higgs-like masses cancellation

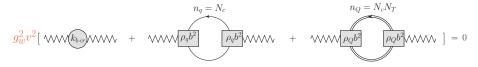
The cancellation mechanism of the "Higgs-like" quark mass term



The cancellation mechanism of the "Higgs-like" Tera-quark mass term



• The cancellation mechanism of the "Higgs-like" W mass term



NP elementary particle masses: fermions & W-bosons

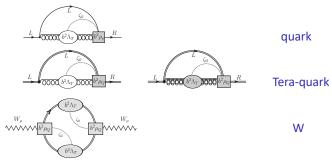
 $O(b^2)$ NP Symanzik operators (white & gray ovals) come to rescue masses

•
$$O_{6,\bar{Q}Q}^{T} = \frac{b^{2}}{\alpha_{T}\rho_{Q}}\Lambda_{T}|\Phi|\Big[\bar{Q}_{L}\mathcal{D}^{AGW}Q_{L} + \bar{Q}_{R}\mathcal{D}^{AG}Q_{R}\Big]$$

$$\bullet \ {\cal O}_{6,\bar{Q}Q}^s = {\color{red} b^2 \alpha_s \rho_Q \Lambda_T |\Phi| \Big[\bar{Q}_L {\color{blue} \mathcal{D}}^{AGW} Q_L + \bar{Q}_R {\color{blue} \mathcal{D}}^{AG} Q_R \Big]}$$

$$\bullet \ O_{6,GG} = \frac{b^2 \alpha_T \rho_Q \Lambda_T |\Phi| F^G \cdot F^G}{\bullet \ O_{6,AA}} = \frac{b^2 \alpha_S \rho_Q \Lambda_T |\Phi| F^A \cdot F^A}{\bullet \ O_{6,AA}}$$

combine with Wilson-like vertices (boxes) leading to 1PI self-energy graphs



give finite results, owing to UV-IR compensation, yielding $O(\Lambda_T)$ masses

The critical QEL in the NG phase

Following the same line of arguments as in the case of the previous toy-model, one gets for the d=4 piece of the critical QEL in the NG phase

$$\begin{split} \Gamma^{NG}_{4\,cr}(q,Q;\Phi;A,G,W) &= \frac{1}{4} \Big(F^A \cdot F^A + F^G \cdot F^G + F^W \cdot F^W \Big) + \\ &+ \Big[\bar{q}_L \, \mathcal{D}^{WA} q_L + \bar{q}_R \, \mathcal{D}^A q_R \Big] + C_q \Lambda_T \, \Big(\bar{q}_L U q_R + \bar{q}_R U^\dagger q_L \Big) + \\ &+ \Big[\bar{Q}_L \, \mathcal{D}^{WAG} Q_L + \bar{Q}_R \, \mathcal{D}^{AG} Q_R \Big] + C_Q \Lambda_T \, \Big(\bar{Q}_L U Q_R + \bar{Q}_R U^\dagger Q_L \Big) + \\ &+ \frac{1}{2} c_W^2 \Lambda_T^2 \text{Tr} \, \Big[(\mathcal{D}_\mu^W U)^\dagger \mathcal{D}_\mu^W U \Big] \\ U &= \frac{\Phi}{\sqrt{\Phi^\dagger \Phi}} = \exp \Big(i \frac{\vec{\tau} \cdot \vec{\zeta}}{c_W \Lambda_T} \Big) = 11 + i \frac{\vec{\tau} \cdot \vec{\zeta}}{c_W \Lambda_T} + \dots \end{split}$$

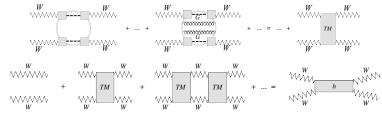
incorporating non-vanishing q, Q & W masses with parametric expression

$$m_q^{NP} = C_q \Lambda_T,$$
 $C_q = O(\alpha_s^2)$ $m_Q^{NP} = C_Q \Lambda_T,$ $C_Q = O(\alpha_T^2, ...)$ $M_W^{NP} = C_W \Lambda_T,$ $C_W = g_W c_W, c_W = k_W O(\alpha_T, ...)$

The 125 GeV resonance & comparison with the SM

125 GeV resonance & comparison with the SM

- No need for a Higgs → how do we interpret the 125 GeV resonance?
 - At $p^2/\Lambda_T^2 \ll 1$ Tera-dof's can be integrated out
 - Tera-forces bind a $|W^+W^- + ZZ\rangle = |h\rangle$ state Bethe–Salpeter



- $|h\rangle$ resonance with $m_h \sim 125 \ll \Lambda_T$ is left behind
- We must include this "light" $\chi_L \times \chi_R$ singlet in the LEEL of the model
 - If we do so, perhaps not surprisingly, one finds that, up to small corrections, $LEEL_{d=4}$ resembles very much the SM with $v_H \sim \Lambda_T$
 - possibly with the exception of tri- and four-linear h couplings

d = 4 LEEL of the critical NG model vs. \mathcal{L}^{SM}

• LEEL_{d=4} of the critical NG model for $p^2/\Lambda_T^2 \ll 1$, including h reads [we ignore weak isospin, leptons & $U_Y(1)$]

$$\begin{split} \mathcal{L}_{4\,cr}^{NG}(q;A,W;U,h) &= \frac{1}{4}F^{A} \cdot F^{A} + \frac{1}{4}F^{W} \cdot F^{W} + \left[\bar{q}_{L}\,\mathcal{D}^{AW}\,q_{L} + \bar{q}_{R}^{u}\,\mathcal{D}^{A}\,q_{R}^{u} + \bar{q}_{R}^{d}\,\mathcal{D}^{A}\,q_{R}^{d}\right] + \\ &+ \frac{1}{2}\,\partial_{\mu}h\partial_{\mu}h + \frac{1}{2}(k_{v}^{2} + 2k_{v}k_{1}h + k_{2}h^{2})\text{Tr}\left[(\mathcal{D}_{\mu}^{W}\,U)^{\dagger}\,\mathcal{D}_{\mu}^{W}\,U\right] + \widetilde{\mathcal{V}}(h) + \\ &+ (y_{q}h + k_{q}k_{v})\left(\bar{q}_{L}Uq_{R} + \bar{q}_{R}\,U^{\dagger}\,q_{L}\right) \end{split}$$

• $\mathcal{L}_{4\ cr}^{NG}$ is neither renormalizable nor unitary (unlike our fundamental Lagrangian) for generic k_V , k_1 , k_2 , y_q , k_q . Unitarity and renormalizability require to set in $\mathcal{L}_{4\ cr}^{NG}$

$$k_q/y_q = 1$$
, $k_1 = k_2 = 1$

So exactly the combination $\Phi \equiv (k_v + h)U$ appears (except in $\widetilde{\mathcal{V}}(h)$) and we get

$$\mathcal{L}_{4\ cr}^{NG}(q;A,W;\Phi) \rightarrow \frac{1}{4}F^{A}\cdot F^{A} + \frac{1}{4}F^{W}\cdot F^{W} + \left[\bar{q}_{L}\mathcal{D}^{AW}q_{L} + \bar{q}_{R}^{u}\mathcal{D}^{A}q_{R}^{u} + \bar{q}_{R}^{d}\mathcal{D}^{A}q_{R}^{d}\right] +$$

$$+ \frac{1}{2}\text{Tr}\left[\left(\mathcal{D}_{\mu}^{W}\Phi\right)^{\dagger}\mathcal{D}_{\mu}^{W}\Phi\right] + \widetilde{\mathcal{V}}(h) + y_{q}\left(\bar{q}_{L}\Phi q_{R} + \bar{q}_{R}\Phi^{\dagger}q_{L}\right) \sim \mathcal{L}^{SM}$$

$$m_{q} = y_{q}k_{y} = C_{q}\Lambda_{T}, \quad M_{W} = q_{w}k_{y} = q_{w}C_{w}\Lambda_{T}$$

An expression amazingly similar to the SM Lagrangian!

Conclusions

Conclusions

- We have identified a NP mechanism for elementary particle mass generation successfully confirmed by lattice simulations
- yielding $m_f^{NP} \propto \alpha_f^2 \Lambda_{RGI} \& M_W \propto g_w \alpha \Lambda_{RGI}$ (to the lowest loop order)
 - $m_{top}, M_W \sim 10^2$ GeV call for a Tera-strong interaction
 - necessary to have the full theory with $\Lambda_{RGI} \equiv \Lambda_T = O(a \text{ few TeV's})$
- The approach provides an understanding of the
 - EW scale magnitude (as a fraction of Λ_T)
 - fermion mass ranking $(\alpha_{\it y} \ll \alpha_{\it s} \ll \alpha_{\it T} \rightarrow m_{\it \ell} \ll m_{\it q} \ll m_{\it Q_{\it T}})$
 - mass tuning problem (as there is no (fundamental) Higgs)
- NP masses are "naturally" light ['t Hooft] owing to
 - symmetry enhancement (\sim recovery of $\tilde{\chi}$) in the massless theory
- We get gauge coupling unification in SM+Tera-sector (no SUSY)
- Phenomenology largely to be still worked out
- To move towards a realistic model
 - need to introduce families
 - need to split quarks & leptons within SU(2)_L doublets
 - need to give mass to neutrinos that are (naturally) massless
 - None of these is a trivial task

Thanks for your attention

24 / 26

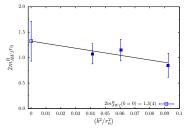
Back-up Slides

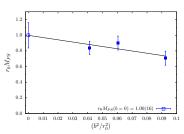
NP mass in NG phase: a lattice confirmation

• At $\eta = \eta_{cr}$, where invariance under $\tilde{\chi}_L \times \tilde{\chi}_R$ is recovered and the quark Higgs mass is killed, we compute in the NG phase the "PCAC mass"

$$m_q^{NP} = m_{PCAC}(\eta_{cr}) = rac{\sum_{ec{x}} \partial_\mu \langle ilde{A}_\mu^i(ec{x},x_0) P^i(0)
angle}{\sum_{ec{x}} \langle P^i(ec{x},x_0) P^i(0)
angle} \Big|_{\eta_{cr}}^{NG}, \qquad P^i = ar{q} \gamma_5 rac{ au^i}{2} q^i$$

- Surprisingly we find that neither m_{PCAC} nor M_{PS} vanish
 - \rightarrow a NP fermion mass is getting dynamically generated
 - → together with a non-vanishing PS-meson mass





- $2m_{AWI}^R r_0 \equiv 2r_0 m_{PCAC} Z_{\tilde{A}} Z_P^{-1}$ (left) and $r_0 M_{PS}$ (right) vs. $(b/r_0)^2$
- straight lines are linear extrapolations to the $b \rightarrow 0$ limit