Applying the
Worldvolume HMC (WV-HMC) method
to lattice field theories

Masafumi Fukuma (Dept Phys, Kyoto Univ)

Lattice 2022
Aug 8, 2022 @Univ of Bonn

Based on work with

Naoya Umeda (PwC)
Nobuyuki Matsumoto (RIKEN/BNL)
Yusuke Namekawa (Hiroshima Univ)

Issaku Kanamori (RIKEN R-CCS)
[0/15]



1. Introduction



Overview

The numerical sign problem is one of the major obstacles
when performing first-principles calculations in various fields of physics

Typical examples:
@ Finite density QCD
@ Quantum Monte Carlo simulations of quantum statistical systems

® 6 vacuum with finite 6
@ Real-time dynamics of quantum fields

Various approaches:

¥ complex Langevin method [Parisi 1983, Klauder 1983, Aarts et al. 2009, ...]

V¥ Lefschetz thimble method [Witten 2010
[Cristoforetti et al. 2012, Fujii et al. 2013, ...]

generalized thimble method [Alexandru et al. 2015]
Tempered Lefschetz thimble method [MF-Umeda 2017, Alexandru et al. 2017]

Worldvolume HMC method [MF-Matsumoto 2020]
(= Worldvolume TLTM)

V¥ path optimization method [Mori-Kashiwa-Ohnishi 2017, Alexandru et al. 2018]

V¥ tensor network [Levin-Nave 2007, Shimizu-Kuramshi 2014, Kadoh et al. 2020, ...]
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Overview

The aim of my talk is

- to review the basics of the Worldvolume HMC (WV-HMC) method
(WV-TLTM)

- to argue that

when applied to local field theories,
the computational cost for generating a configuration is O(V)

The argument will be made for scalar field theory at finite density
[MF-Matsumoto-Namekawa, work in progress]

The application to Yang-Mills theory is on-going

[MF-Kanamori-Namekawa, work in progress]
based on the WV-HMC for group manifolds [MF, in preparation]
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1. Introduction (done)
Basics of WV-HMC method
Application to scalar field theory at finite density

> W N

Summary and outlook



2. Basics of WV-HMC method



Basic idea of the thimble method (1/2)

m Complexification of dyn variable: x=(x')eR" = z=(z' =x' +iy')eC"

assumption (satisfied for most cases) (S(x) : action, O(x) : observable)

e 5@ 3@ O(z) : entire fcns over CN (can have zeros) \

Cauchy’s theorem /y}

- —-——

‘—
’f

Integrals do not change under continuous deformation
of integration surface : =, =R" — X (<= C")
(boundary at | x|— « kept fixed)

oy A XETOW [ aze o
(O = j dxeS® jdz e5(2)
% >

severe sign problem |sign problem will be significantly reduced
if ImS(z) is almost constant on X
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Basic idea of the thimble method (2/2)

JC (anti-thimble)

\\ j(Lefschetz thimble)

ImS(z) : constant

W prescription for deformation ~—~

anti-holomorphic gradient flow

2, =0S(z,) with z,_, =X

| . __ mN
property X 20 — R

[S(z)] =05(z,)-2 =[6S(z,) >0

{ [ReS(z;)] =0 : always increases except at crit pt ¢ (4“ . crit pt j

[ImS(z)] =0 : always constant < 05(4)=0

Z o J (Lefschetz thimble) = set of orbits starting from ¢
ImS(z) : constant on 7 (=ImS(¢))

Oscillatory integralis expected to be tamed on %,
if we take a sufficiently large t [4/15]




Sign problem resolved?

Ergodicity problem

NO!

[MF-Umeda 1703.00861]

Actually, there comes out another problem at large t : Ergodicity problem

1y,

zero of e ()
(ReS(z) =+

— — %2 .
e S(x) _e B X /Z(X_I)y (8>>1)

s signproblem: reduced
T | ergodicity problem : NG

> X

A

hard to cor

hmunicate

with each ¢

ther

=, =R" [signproblem:NG]
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Ergodicity problem

. MF-Umeda 1703.00861
Sign problem resolved? NO! [ ]

Actually, there comes out another problem at large t : Ergodicity problem

1y,

signproblem: reduced

easy trangition X, = RN [signproblem:NG]
thourh detour
Solution

Tempered Lefschetz thimble method (TLTM) [MF-Umeda 2017]
tempering the system with the flow time [Alexandru et al. 2017]

prompts the equilibration on X;
This solves the sign and ergodicity problems simultaneously
Numerical cost : O(N3) (computation of Jacobian J = (7' /8xa)) [5/15]




Ergodicity problem

. MF-Umeda 1703.00861
Sign problem resolved? NO! [ ]

Actually, there comes out another problem at large t : Ergodicity problem

signproblem: reduced

N

%, = R" [sign problem: NG]
Solution

Tempered Lefschetz thimble method (TLTM) [MF-Umeda 2017]
tempering the system with the flow time [Alexandru et al. 2017]

Worldvolume-TLTM (or WV-HMC) [MF-Matsumoto 2019]
HMC on a continuous accumulation of integ surfaces, R = | J %
No need to compute the Jacobian 0<t<T  [5/15]




Worldvolume TLTM (WV-HMCQ)

[MF-Matsumoto 2012.08468]

W Basic Idea
.[20 dx e 0(x) jzt dz 6 0(2,) t-independent
(O(x)) = J- e S0 = 47 g 5@ (Cauchy's theorem)
20 5ot t-independent

T . .
) _[0 dte W(t)jzt dz; e 0(z,) (W (t) : arbitrary function)

- IT dte‘W(t)I dz. e S() chosen s.t. the appearance prob
0 > at different t are almost the same

dtdz, eV Ve @ O(z .
_ J-R ¢ (z) < Path integrals over the worldvolume R

- _[ dtdz, e W e=S(z)
» atdz

R : orbit of integration surface
inthe "target space" C" = R*"

orbit of particle — worldline
orbitof string — worldsheet

orbit of surface — worldvolume
(membrane)

Statistical analysis method

for the WV-TLTM is established in

. X N [MF-Matsumoto-Namekawa 2107.06858]
2, =R [6/15]




Two pictures in WV-HMC (1/2)

[MF-Matsumoto 2012.08468]

A t=T IQN

(1) Target-space picture
[MF-Matsumoto 2012.08468]

sample: {z,2',z",.. }

(2) Parameter-space picture
[MF-Matsumoto 2012.08468]

[Fujisawa et al. 2112.10519]

sample: {(t,x), (¢, x"), (", x"), ...}

At first sight, (2) may seem simpler,
but actually (1) is faster and more solid as an algorithm

We employ (1) target-space picture
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Computational cost for WV-HMC

7 — (Zi) eC" (N ocV : DOF) [MF-Matsumoto 2012.08468]

_ . MF-Matsumoto-Namekawa, on-goin
Configuration flow 7 =(8;S(z))" = O(N) [ " w going]

Vector flow V; =[0,0;S(2)v;]" = O(N?) [when 6;0;S(z) is dense] 7V
= O(N) [When 0,0;S(z) is sparse}
) _ (local field case) flow
RATTLE | Z/=z+Asz—As*oV(z)-A R
u

7y, = (2 =2) 1 As (V(z) =ReS(2) +W (t(2))) X
7'=m,,—AsSoV(Z')

7 =t N
\\\\ /1 , ZT

cf) RATTLE on a single thimble 7 =X, [Fujii et al. 2013] N
RATTLE on X; [Alexandru@Lattice2019, MF-Matsumoto-Umeda 2019]

N\

AeN,R is determined st. 2’ e R .
t+h

For given z = z,(x) and ,
findheR, ueR", 1¢ N, R
st. z,(X)+Asz —As* OV (z) - A =17, (X +U)

This can be solved by Newton's method

with BiCGStab for linear inversion
(which requires only config/vector flows) = O(N)

Comput cost at each MD step is expected to be O(N) 8/15]




Appendix: Details on WV-HMC (1/2)

- Prepa ration [MF-Matsumoto 2012.08468]

_[ dtdz, e Ve 3@ (7)) . " H/t
— t+dt %
(Ox)) = [ dtdz, & "0 S /mst )
. " dt
natural measure to appear in HMC on R APM decomposition  Gopy
= vol element Dz of the induced metric O z®
2 2 2 a a b b . /f--_;f”) Exa+dxa)
ds® = a’dt? + y,, (dx* + B2dt)(dx" + B°dt) (o : lapse) | dz,(X)|
(base area)
0z, (X
Dz = crdlt | dz, (X) |= & | det J | dtdlx [J-%}

dtdz,(x) = p, 4920 _p, dtdxdetd _ o (z)e' 7P| e = det)
Dz dtdxa | det J | |detJ |

j dtdz e WheS@0(7) I Dz (2)e' 7@ gV g-ReS(@)-1IMS(2) 1y )
_[ dtdz, e Ve () I Dz o~ (z)e'¢(z)e W (t)q-ReS(2)-i1ImS(2)

..............................................................

(OK)) =

--------------------------------------------------------------

--------------------------------------------------------------

) [ Dz e V(z)A(Z) O(z) _(A@)O@2)g (@) =
IR Dz eV (DA(2) (A(2)) _[R DzeV® o1




Appendix: Details on WV-HMC (2/2)

. [MF-Matsumoto 2012.08468]
W Algorithm

Dz eV f
(A(2)O(2)) <f(z)>RJR ze _VZ(Z)
<A(Z)>7z IRDZG (2)

(Ox)) =

V(z) =ReS(z) +W(t(z)) : potential
A(Z) = aY(z)e'?Pe ™S - reweighting factor

HMC on a constrained space [Andersen 1983, Leimkuhler-Skeel 1994]

(f(2)), is estimated with RATTLE \IQ

7y, =7 —AsOV (z) - A
2'=7+Asr,,
r'=x—AsV () - A’

Zi.—l—h

A and A' are determined s.t.

2’eR and (E,(2),4)=0
7'eT,R and (E,(z"),A)=0

cf) RATTLE on J =%, [Fujii et al. 2013]
RATTLE on X; [Alexandru@Lattice2019, MF-Matsumoto-Umeda 2019]
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3. Application of WV-HMC method
to scalar field theory at finite density



Model

[0, (X) +1¢,(X)] : complex scalar field

@(X) = ﬁ

Continuum action

(X, : Euclidean time)
S(p) = [d°X[8,0'0,0+M*p'p+ Ap"p) + (" Oop— 000" p) |
= [d*X[ (0,9 + 16, 0" )8, — 15, 4p) + M* |9 +2| 0"

L attice action

d-1
S(p) = Z{(Zd +m*) @, [ +A 1o, ' =D (" glo,., + “5V'°¢n¢§+v)}
n v=0

Introducing (&,,n,) with o. =— (&, +in,), we have

V2
8(5’77) = Z (5 77[1) + (5 + nn) o Z (§n+|§ + 77n+|77n)

! __COSh :u (§n+0§n + 77n+077n) - ISInh :u (§n+077n o 77n+0§n)

2d+m

We complexify (£,17) e R? to (z,w) e C* with the flow equation

z,=[6S(z,w)/oz,]', W, =[65(z,w)/ow,]"  (V : lattice volume)
[12/15]



Computational cost scaling in 2D

[MF-Matsumoto-Namekawa, on-going]

103

Complex <])4

=~ |m=0.10, 2=1.0 |
S 'Nstep * As = 0.1 /. | computed on Yukawa21
o (@YITP, Kyoto Univ)
S 10° to be run on Fugaku
©
E
L
he u=1.20
| | | p=0.90—e-
I

V=L

The figure clearly shows that the comput cost scales as O(V)

NB: The scaling will become O(V1?)

if we reduce the MD stepsize as As ocV /*

to keep the same amount of acceptance for increasing volume
[13/15]



Towards Yang-Mills theories

[MF, in preparation]

WV-HMC also works for group manifolds
[MF, in preparation]

[MF-Kanamori-Namekawa,
on-going]

[Example]
1-site model with a pure imaginary coupling:

_ _ P -
S(U)=,Be(U)=Ntr(2—U Y 1)
(UeG=5U(2); BeiR)

analytic result: (&) =1-1,(8)/1,(5)

numerical result (WV-HMOQ):
Re (e) Im{e)

2.0

1.5

HH

1.0

bt
4

HH

0.5

0.5 1.0 1.5 2.0 2.5 ﬂ /I

The algorithm can be directly applied to Yang-Mills case
[MF-Kanamori-Namekawa, on-going] [14/15]



5. Summary and outlook



Summary and outlook

B Summary

V¥ WV-HMC seems to be a powerful tool for local field theories
- Comutational cost is expected to scale as O(V)
- No wrong convergence problem (such as those for complex Langevin)
- Can give more accurate values by increasing the sample size

(no need to introduce D_ . as in TRG) “Power of Monte Carlo”

B Outlook

V¥ Application to QCD
- WV-HMC for a path integration on a group manifold [MF, in preparation]

- WV-HMC for pure Yang—l\/li”s [MF-Kanamori-Namekawa, on-going]
- WV-HMC for QCD [MF-Kanamori-Namekawa-..., on-going]

cut

V¥ Further improvements of algorithm  (MF-matsumoto-Namekawa-..., on-going]

¥ Combining various algorithms
. . cf) TRG for 2D YM:
(e.g.) TRG (non-MC) : good at calculating free energy [MF-Kadoh-Matsumoto 2107.14149]

V¥ Particularly important: MC calc for time-dependent systems

first-principles calc of nonequilibrium processes
such as those in early universe, heavy ion collision experiments, ... [15/15]



Thank you.
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