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Problem Description

Application: lattice QCD disconnected diagrams: estimate the trace of
ΓΠpD

−1 for a large, sparse matrix D, where D is the Dirac operator with
local rotations (gamma-matrices, Γ) and permutations of the z direction in
the lattice with products of gauge links (Πp); typical matrix size > 108

Variance reduction methods include probing and multigrid deflation.

Deflation: trD−1 ≈ trD−1Q + t
(
D−1(I − Q)

)
, using an oblique projector

Q = DV (V †DV )−1V † that approximately deflates the smallest singular values of D out.
( Romero et. al. J. Comp. Physics., 2020)

But deflation will become prohibitively expensive at larger lattice volumes

Frequency Splitting (FS) (Giusti et. al. Eur. Phys. J. C., 2019) is a multilevel
Monte Carlo method that splits the low and high frequency modes of the
propagator:

tr(ΓΠpD
−1) =

j−1∑
i=0

(σi+1 − σi) tr(D + σi I )
−1ΓΠp(D + σi+1I )

−1

+ tr ΓΠp(D + σj I )
−1

where each term is computed stochastically with Hutchinson

Scales with the lattice volume better than deflation; good for exascale regime

Challenges:

No way to relate the shifts to the variance, so sampling the variance for
different shifts must be done

In general, the shifts for one combination of Γ and Πp may not be the optimal
for a different combination

Sampling and Interpolation

Sample the variance for a set of initial shifts for a given (Γ,Πp) pair, then
interpolate the variances in logspace using PCHIP/linear interpolation

Along with the solver cost, Cl , the interpolated variances create a much richer
shift space to find shifts that minimize the multilevel cost function:
CML = ϵ−2(

∑L−1
l=0

√
ClVl)

2 (Giles, M. Acta Numerica, 2015)

Figure 1. (Upper left) The sampled variances (red bursts), are interpolated along the boundary of

the region (solid lines). (Upper right) The dashed lines define the points (purple crosses)

resulting from interpolating the sampled interior points. (Lower left) The points populating the

interior (green dashes) are created by interpolating the interior points. (Lower Right) The final

result after multiplying by (σ̃i − σ̃j)
2.

Comparison to MG Deflation + Probing

Figure 2. (Left) Comparing FS with p8k7 probing vectors to MG Deflation with p5k8 probing
vectors to a target variance of ϵ2 = 0.001 at equal solver cost. The shifts used in FS were

selected from an optimization of (Γ,Πp) = (γz ,Π4) on a 323 × 64 lattice at mq = −0.2390.

Solver Time (×107) # of Inversions (×106) Speedup
FS + Probing 0.0754 2.20 49

MG Deflation + Probing 0.3651 8.09 10
Random Noise 3.6619 68.14 1

Table 1. The estimated solver wallclock time, number of inversions and speedup over random
noise to estimate the traces for every (Γ,Πp) combination for each method while achieving a

target variance of ϵ2 = 0.001 for (Γ,Πp) = (γz ,Π4) on 8 KNL nodes. In FS, each l < L− 1

requires 2× the number of inversions, but the inversions are cheaper as D is shifted.

Configuration Number
1 2 3 4 5

Est. Speedup 4.8436 5.4360 4.8494 4.5541 5.0838
Configuration Number

6 7 8 9 10
Est. Speedup 3.4911 4.9955 4.5245 4.5861 5.7280

Table 2. The estimated speedup of FS + probing over MG deflation + probing for 10
configurations. The set of shifts used in FS are the same set of shifts for all configurations and

come from an optimization of (Γ,Πp) = (γz ,Π4) for the first configuration.
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