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Background - The Model

• We study the linear sigma model in Euclidean spacetime with four scalar fields
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• The SO(4) symmetry is both explicitly and spontaneously broken.
• We can use this model as an effective theory for two-flavor QCD.

Background - HMC Simulations

• Following the Hybrid Monte Carlo algorithm, we use the Hamiltonian

H =
1

2m
Π2 + S(ϕ),

where S(ϕ) is the action of our linear sigma model.
• To generate an ensemble, we choose a random momentum field Π(x) ∼ e−

1
2mΠ
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and evolve the system with H for one unit of time.
• We then repeat, using a different random momentum for each "trajectory."
• Optimally, we want little correlation between the initial and final fields.

Background - Fourier Acceleration

• Suppose that each mode ϕi(p) undergoes approximately harmonic oscillation
about its equilibrium point.

• If this is the case, we can take advantage of this by introducing a momentum-
dependent mass term m(p).

• The kinetic term in the HMC Hamiltonian becomes
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where the form of G(x− y) depends on the specific form of m(p).
• We can choose each m(p) so that the frequency of every mode is ωp =

π
2 .

• Assuming harmonic evolution, ϕi(p) = Re
[
Aeiωt

]
, and Pi(p) = Re

[
iωmAeiωt

]
.

• We can show, over one unit of molecular dynamics time, that

Pi,initial(p) = ωm cos(ω − π/2)ϕi,final(p)− sin(ω − π/2)Pi,final(p).

• If ω = π/2, then the final field after one unit of time depends only on the initial
momentum.

• Since Pi,initial is randomly chosen, this would mean that ϕi,final is also random
and has no correlation with ϕi,initial.

Autocorrelation Length

• We find that Fourier acceleration can be effective at reducing the
autocorrelation length.

83 × 16 lattice, µ2 = 0.4, λ = 1.0, α = 0.1

mπ ≈ 0.28± 0.03, mσ ≈ 0.46± 0.07, Fπ ≈ 1.67± 0.25

Choosing the Mass Terms

• We choose masses using mi(p) = 1
ω2

⟨|Π̇i(p)|⟩
⟨|ϕi(p)−σvevδi,0δp,0|⟩, where the averages are

taken over the course of the trajectory, and σvev is the vacuum expectation value
of ϕ0(p = 0) (all other modes have zero v.e.v).

• We run a set of trajectories, all with the same masses, and then update the
masses with the average estimated masses over the previous trajectories.

Evolution of Modes

• We find that the assumption of harmonic evolution is approximately valid for
high momentum modes when λ is not too large.

Pion Field at End of Trajectory versus Momentum at Start

83 × 16 lattice, µ2 = 0.4, λ = 1.0, α = 0.1

mπ ≈ 0.28± 0.03, mσ ≈ 0.46± 0.07, Fπ ≈ 1.67± 0.25

83 × 16 lattice, µ2 = 2.0, λ = 5.0, α = 0.1

mπ ≈ 0.34± 0.04, mσ ≈ 0.86± 0.22, Fπ ≈ 1.22± 0.27

Error Reduction Method

• If we assume perfect harmonic evolution, for a given trajectory, we can predict
final field values given only the initial momentum.

• On each trajectory, we can measure the difference between the actual final
field values and the predicted ones. This difference may be less noisy than the
field values themselves.

• Then, we can quickly generate many additional "predicted" fields by sampling
additional "initial" momenta.

• We can take measurements on these new "predicted" fields and correct them
using the calculated difference between predicted and actual fields.

• e.g. On a 83 × 16 lattice with µ2 = 0.4, λ = 1.0, and α = 0.1, we get

mπ ≈ 0.30± 0.04

measuring on 20 samples, and

mπ ≈ 0.29± 0.02

measuring on 20 samples with 1000 additional "predicted" measurements.
• e.g. On a 83 × 16 lattice with µ2 = 2.0, λ = 5.0, and α = 0.1, we get

mπ ≈ 0.32± 0.07

measuring on 20 samples, and

mπ ≈ 0.31± 0.05

measuring on 20 samples with 1000 additional "predicted" measurements.
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