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Background - The Model

* We study the linear sigma model in Euclidean spacetime with four scalar fields

£@) = 5 3 (@i ——Zgbz Q(Zmy) +agy(z).
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* The SO(4) symmetry is both explicitly and spontaneously broken.
* We can use this model as an effective theory for two-flavor QCD.

Background - HMC Simulations

* Following the Hybrid Monte Carlo algorithm, we use the Hamiltonian
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H_ZmH + S(¢),

where S(¢) is the action of our linear sigma model.

- To generate an ensemble, we choose a random momentum field I1(z) ~ e~ z!"
and evolve the system with H for one unit of time.

* We then repeat, using a different random momentum for each "trajectory."
« Optimally, we want little correlation between the initial and final fields.

Background - Fourier Acceleration

« Suppose that each mode ¢;(p) undergoes approximately harmonic oscillation
about its equilibrium point.

« If this is the case, we can take advantage of this by introducing a momentum-
dependent mass term m(p).

* The kinetic term in the HMC Hamiltonian becomes

%Z : 1L (p)|* = Z Gi(z — y)L;(x)i(y),
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where the form of G(z — y) depends on the specific form of m(p).
- We can choose each m(p) so that the frequency of every mode is w, = 7.
» Assuming harmonic evolution, ¢;(p) = Re [Ae™'| | and P;(p) = Re |iwmAe™"| .
* We can show, over one unit of molecular dynamics time, that
P initial (Z?) — wm COS(W — T / 2)@, final (p) — Sm(w — T / 2) i, final (p)

If w = 7/2, then the final field after one unit of time depends only on the initial
momentum.

*Since P, it 1S randomly chosen, this would mean that ¢; finq IS also random
and has no correlation with ¢; ;;tia1-

Autocorrelation Length

* We find that Fourier acceleration can be effective at reducing the
autocorrelation length.
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Choosing the Mass Terms

+We choose masses using mi(p) = Z— )<|HO£63|305PO|> where the averages are
taken over the course of the trajectory, and o,., Is the vacuum expectation value

of ¢y(p = 0) (all other modes have zero v.e.v).

* We run a set of trajectories, all with the same masses, and then update the
masses with the average estimated masses over the previous trajectories.

Evolution of Modes

* We find that the assumption of harmonic evolution is approximately valid for
high momentum modes when X is not too large.

Pion Field at End of Trajectory versus Momentum at Start
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Error Reduction Method

* If we assume perfect harmonic evolution, for a given trajectory, we can predict
final field values given only the initial momentum.

* On each trajectory, we can measure the difference between the actual final
field values and the predicted ones. This difference may be less noisy than the
field values themselves.

* Then, we can quickly generate many additional "predicted" fields by sampling
additional "initial" momenta.

« We can take measurements on these new "predicted" fields and correct them
using the calculated difference between predicted and actual fields.

«e.g. On a 8’ x 16 lattice with u> =04, A = 1.0, and o = 0.1, we get
m, ~ 0.30 = 0.04
measuring on 20 samples, and
m. ~ 0.29 = 0.02
measuring on 20 samples with 1000 additional "predicted" measurements.
«e.g. On a &’ x 16 lattice with ©> = 2.0, A = 5.0, and o = 0.1, we get
m, ~ 0.32 £ 0.07
measuring on 20 samples, and
m, ~ 0.31 == 0.05
measuring on 20 samples with 1000 additional "predicted” measurements.
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