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Motivating Open Quantum Systems

Situations where only part of physical system is
accessible/ is of interest
Well described/ approxed. by EFTs (sometimes
with NH Hamiltonians)
e.g: FTs at complex couplings (µ, topological
terms)
Have rich phase structure: Lee-Yang edges,
Fisher Zeros
Classical simulation hard because of Sign prob-
lem

This work
Construct NISQ-era algorithms for Open quantum systems and apply it to
the 1-D quantum Ising Model with an imaginary longitudinal magnetic field
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Quantum Operations

E ∶ ρÐ→ ρ′

Closed system Open system

ρ U E(ρ) ρ
U

E(ρ)
ρenv

Trace out environment Ð→ system evolves via E
QOs can be written in an operator-sum representation:

E(ρ) =∑
k

⟨ek ∣ Û[ρ⊗ ∣e0⟩ ⟨e0∣ ]Û† ∣ek⟩

=∑
k

ÊkρÊ
†
k , where

Êk = ⟨ek ∣ Û ∣e0⟩ , (Kraus Operators)
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Measurement and Probabilities

QOs make system-environment entanglement transparent

Measurement {∣ek⟩} of ρenv ≡ ρÐ→
ÊkρÊ

†
k

pk
, k ∈ 0,⋯,N with

pk = Tr (ÊkρÊ
†
k)

ρenv needs log2(N + 1) ancillary qubits
Measuring ancillas Ð→ which Kraus operator has acted on system

Trace preserving condition ∑k Ê
†
k Êk = 1 guarantees

1. ∑k pk = 1
2. Unitarity of System + Environment evolution

General idea

The Êk ’s need not be Unitary! Make one of them align with desired evolution
of Open system, while leaving environment unchanged
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Example: K0 − K̄0 system1

K0 Ð→ K̄0; K̄0 Ð→ K0; K0/ K̄0 Ð→ light states ≡ ∣1⟩ (weak)

Ĥ = Ĝ − i Γ̂
2

initial: ρ = ρK0K̄0
⊗ ∣0⟩ ⟨0∣ + (1 −Tr (ρK0K̄0

))⊗ ∣1⟩ ⟨1∣
Evolution using a trace preserving Quantum Operation

Ê0 =
⎛
⎝
e
(−i Ĝ− Γ̂

2)t 0⃗
0⃗† 1

⎞
⎠
, Ê1 =

⎛
⎜
⎝

0 0 0
0 0 0√

1 − e−Γ1t 0 0

⎞
⎟
⎠
, Ê2 =

⎛
⎜
⎝

0 0 0
0 0 0
0
√

1 − e−Γ2t 0

⎞
⎟
⎠

Ê1, Ê2 ≡ K0, K̄0 decaying

1H. Feshbach, Annals of Physics 19, 287 (1962)
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General Mapping

Claim

Any NH Hamiltonian (Ĥ = Ĝ + i K̂ ) can be mapped onto a trace-preserving
quantum operation.

Required evolution of system: e−iδtĤρe iδtH
† ≈ e−iδtĜeδtK̂ρeδtK̂e iδtĜ

Add one state ≡ “decayed states”≡ ∣1⟩

Expanded Initial state: ρtot(0) = (
ρ 0⃗
0⃗† 1 −Tr(ρ))

w.l.o.g, −K̂ > 0 Ô⇒ K̂ = −diag (Γ1,⋯,ΓN)

Ê0 = (e
−i δt Ĝeδt K̂ 0

0 1
) , Êi =

⎛
⎜
⎝

0N×N 0⃗N
[
√

1 − e2 δtK̂]
i

0

⎞
⎟
⎠

∑k Ê
†
k Êk = 1; Ê0 ≡ desired evolution Êi ’s ≡ System modes decaying

p0 = Tr(Ê0ρÊ
†
0) = Tr(e2δt K̂ρ) < 1. Exponentially small for large t
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Quantum Channels- General idea

1. Construct Ê0 that effectively does N e−iδtĤρ e iδtĤ
†

2. Construct trace completing operators Êk s.t.: ∑k Ê
†
k Êk = 1

3. Understand nature of quantum jumps:
a. Recoverable
b. Non-recoverable

4. Expand system using ancillary qubits
5. Construct unitary (not-unique) on expanded system to mock-up quan-

tum operation
6. Use post-selection on measurements on ancillas to minimize quantum

jumps

ρ
U

E(ρ)
ρenv
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Single qubit anti-hermiticity

Claim
Trotterized evolution according to any multi-qubit anti-Hermitian piece can
be decomposed into a σ̂z piece and a Unitary entangler

Only need to consider i k̂ = iΘ(σ̂z − s 1)
The relevant Evolution is

exp{δtk̂} = (e
(1−s)δtΘ 0

0 e−(1+s)δtΘ
)

Several ways to construct a quantum operation around this
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Damping Channels (non-recoverable)

Simple quantum operation:

ÊDC
0 = (1 0

0
√

1 − γ) , ÊDC
1 = (0

√
γ

0 0
) ,

where γ = 1 − e−4Θ δt

A controlled y-rotation, with ancilla as the target can implement this:

∣0⟩ ∣ψ⟩Ð→ ∣0⟩ ÊDC
0 ∣ψ⟩ − ∣1⟩ ÊDC

1 ∣ψ⟩

The probability of success (measuring ‘0’ on the ancilla) is maximal

ps = Tr(Ê0ρÊ
†
0) = 1 − γ

2
(1 − r cos θ)

ps becomes exponentially small for large evolution times
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Application to a simple Lattice FT

Apply to the 1-dimensional quantum Ising model with an imaginary
longitudinal magnetic field:

Ĥ = − ∑
<i ,j>

σ̂zi σ̂
z
j − hx∑

i

σ̂xi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĝ

+i θ∑
i

σ̂zi

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
K̂

.

This is a well studied model, and is a good benchmark
Non-Hermitian part is simple and acts on individual sites
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Phase structure and Exceptional points
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Lee-Yang edge
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Rényi entropy plots

Plot of S2 measured after 350 time-steps, with Ns = 4, δt = 0.01
Simulation Exact Fidelity

0 0.2 0.4 0.6 0.8 1.

Rényi entropy is measurable using Parity measurements2

2S. Johri, D. S. Steiger, and M. Troyer, Phys. Rev. B 96, 195136 (2017)
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1-qubit plot (IBM Yorktown)

Ĥ = −hx σ̂x
´¹¹¹¹¸¹¹¹¹¹¶

Ĝ

+i θσ̂z°̂
K
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Θ
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Coutresy: Erik Gustafson
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2-qubit example (IBM Lima)

Ĥ = − (σ̂z1 ⊗ σ̂z2) − hx (σ̂x1 ⊗ 1 + 1⊗ σ̂x2) + iΘ (σ̂z1 ⊗ 1 + 1⊗ σ̂z2)

4 trotter steps, δt = 0.5

Coutresy: Michael Hite
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1 qubit State Tomography and QITE

Ongoing work
Use tomography to create save points in evolution to minimize effects of
quantum jumps, to enable simulation for longer time

Coutresy: Michael Hite
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2 qubit State Tomography

Coutresy: Michael Hite
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Conclusion

NH Hamiltonians describe some effective theories, many have sign prob-
lems. Quantum computers could solve this, but we are in the NISQ era
Constructed quantum operations for NH Hamiltonians and tested it on
a 1-D quantum Ising chain with an imaginary longitudinal magnetic field
Errors are O(1) at long times, but quantum phase structure can be
probed for small system sizes, at small circuit depth
Ongoing work: Scaling up further
Also considering ZN models with N > 2
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Thank you ,

Contact: bsambasi@syr.edu

Jay Hubisz, Bharath Sambasivam, Judah Unmuth-Yockey (2021), “Quantum
algorithms for open lattice field theory ”. Physical Review A, 104(5), 052420.

Erik Gustafson, Michael Hite, Jay Hubisz, Bharath Sambasivam, Judah
Unmuth-Yockey Work in Progress
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Initial state plot
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State Tomorgraphy and QITE3

Minimize ∆ = ∣∣ ∣ψ′⟩ − e−iδtÂ ∣ψ⟩ ∣∣2, with ∣ψ′⟩ = e−δtK̂
√

⟨ψ∣e−2δtK̂ ∣ψ⟩
∣ψ⟩

Expand to O(δt):

∆ ≈ ∣∣ (K̂ − ⟨K̂ ⟩ − i Â) ∣ψ⟩ ∣∣2

Pauli expand Â

∆ = ⟨ψ∣ (K̂ − ⟨K̂ ⟩)2 ∣ψ⟩ + 2R(i ⟨ψ∣∑
I

aIσI (K̂ − ⟨K̂ ⟩) ∣ψ⟩)

Solve for coefficients aI , and evolve by Â

3Motta, M., Sun, C., Tan, A.T.K. et al. Determining eigenstates and thermal states on
a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210
(2020). https://doi.org/10.1038/s41567-019-0704-4
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