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Inverse Transform Sampling & Normalizing Flows

Inverse transform sampling (ITS) as a method to generate a random variable
with a flexible distribution:

y , F−1
Y ◦ FX(x)

Normalizing flows (NFs) as a generalization of ITS to higher dimensions with
a series of learnable, invertible transformations
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(reverse) Kullback-Leibler divergence measures how similar two distributions are:

DKL(q||p) ≡
∫
dφ q[φ]

(
log q[φ]− log p[φ]

)
≥ 0
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Lattice Field Theory & MC Simulations & NFs

Monte Carlo simulations:

Traditional methods typically suffer from critical slowing down, topological
freezing, · · ·
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Normalizing flows for (2-dim) scalar theories:
explored first @ MIT & collaborators: [arXiv:1904.12072, 2002.02428, 2003.06413]
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1. Networks for Normalizing Flows

2. Poor Scaling at Large Volumes
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Designing Networks for Normalizing Flows

Checkerboard strategy for normalizing flow is widely used: divide the data to
active & passive, update the active, and....

Widely used layers of neural networks

Linear (Dense) Net

Great for small-size lattice

Number of parameter ∝ N2

Conv Net

Respect translational symmetry
& fewer parameters

Many layers needed to correlate a big lattice

Other possibilities?

What about constructing layers inspired by symmetries of the action & effective

theories to propagate correlation in more efficient ways?
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Effective Action & Power Spectral Density

A scalar field theory in n spacetime dimensions:

S[φ] =

∫
dnx

1

2
∂µφ∂µφ+

1

2
m2φ2 +

J∑
j=3

gjφ
j


The quantum effective action:

Γ[φ] =
1

2

∫
dnk φ̃(−k)

(
k2 +m2 −Π(k2)

)
φ̃(k) + · · ·

(Tree-level Feynman diagrams give the complete scattering amplitude)(
k2 +m2 −Π(k2)

)
is the inverse of two-point correlator/Green’s function(

k2 +m2 −Π(k2)
)

is the inverse of power spectral density
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A close look to PSD:

The inverse of PSD of a 1-dim double-well potential (from MC simulation)
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1/PSD can be manipulated using a positive, monotonically increasing

function of k̂2; ML techniques can be employed to construct such a function

Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales
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The inverse of PSD for a 2-dim double-well potential (from MC simulation)

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))

2 +
m2

2
φ(x)2 + λφ(x)4

}

@ Broken Phase

PSD at k2 = 0 blows up

Mean-field potential turns to a double-well potential

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean

field to a mean field of interest
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For the sake of comparison with [arXiv:2105.12481, Debbio et.al.] we consider this
2-dim action

S[φ] =

∫
dx2

{
κ

2
(∂µφ(x))2 +

m2

2
φ(x)2 + λφ(x)4

}
where κ = β, m2 = −4β, and λ = 0.5, with β ∈ [0.5, 0.8] in our simulations.

Goal:

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

economic w.r.t. parameters

do not require many layers of ConvNet to propagate correlations
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An architecture for 2-dim scalar theories
1 an initial layer to manipulate PSD of white normal noise & general activation
2 followed by two layers of affine coupling implemented with ConvNet &

general activation
Simulation parameters: κ = 0.6 & L = 32
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Acceptance rate & critical point & large volume
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Compare with
[arXiv:2105.12481, Debbio et.al.]

L ∈ [8, 64]

# parameters ≈ 3.4K for all cases

trained with transfer learning

poor scaling @ critical point
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Uncertainty in log(q/p) & acceptance rate

Optimization for κ = 0.5 for L ∈ {8, 16, 32, 64}:

0 2000 4000 6000 8000 10000

epoch

0.0

0.2

0.4

0.6

0.8

1.0

ac
ce

p
t

ra
te

0 2000 4000 6000 8000

epoch

−0.5

0.0

0.5

1.0

1.5

2.0

lo
g
(q
/
p
)

8

16

32

64

The uncertainty in log(q/p) determines acceptance rate

It looks like uncertainty in log(q/p) scales with
√

volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations
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NFs with block updating

The uncertainty in log(q/p) determines acceptance rate

It looks like uncertainty in log(q/p) scales with
√

volume at large volumes

Justification: divide the lattice into n blocks with almost independent fluctuations
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κ = 0.66

κ = 0.67

κ = 0.68

L = 64 model is sampled block by block

nblocks = 22 (square), acceptance rate ∼ L = 32
nblocks = 42 (star), acceptance rate ∼ L = 16

Asymptotic scaling & saturated training
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Uncertainty in log(q/p) & block size

Toy model: x ∼ N(0, σ2) and y is the output of the “Metropolis Filter”
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Conclusion & Outlook

Effective theories to design layers changing the data at long&short scales

Still, the acceptance rate drops fast as the lattice volume increases

Suggestion: Divide&Conquer

Divide the current sample into blocks & update block by block
Optimum block size (about 1/4 or so)
In progress...
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Outlook: SU(n) gauge theories
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back-up slides
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Magnetization & critical point & (un)broken phase
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Block updating & autocorrelation time
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