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Inverse Transform Sampling & Normalizing Flows

@ Inverse transform sampling (ITS) as a method to generate a random variable
with a flexible distribution:

yéF7 o Fx(x ‘

o Normalizing flows (NFs) as a generalization of ITS to hlgher dlmen5|ons with
a series of learnable, invertible transformations

gradient descent (<- - - -« 5
.

@ (reverse) Kullback-Leibler divergence measures how similar two distributions are:

Daallp) = [ d6 aié) (logals) - 1oz pl0]) > 0
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Lattice Field Theory & MC Simulations & NFs

@ Monte Carlo simulations:
e Traditional methods typically suffer from critical slowing down, topological

freezing, - - -
[ o(x) switch ]
update

@ Normalizing flows for (2-dim) scalar theories:
explored first @ MIT & collaborators: [arXiv:1904.12072, 2002.02428, 2003.06413]
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1. Networks for Normalizing Flows
2. Poor Scaling at Large Volumes



Designing Networks for Normalizing Flows

@ Checkerboard strategy for normalizing flow is widely used: divide the data to
active & passive, update the active, and....

@ Widely used layers of neural networks

Linear (Dense) Net

o Respect translational symmetry
& fewer parameters

o Great for small-size lattice

2
o Dby o paiamsiey oo M e Many layers needed to correlate a big lattice
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Linear (Dense) Net

o Respect translational symmetry
& fewer parameters

o Great for small-size lattice

2
o Dby o paiamsiey oo M e Many layers needed to correlate a big lattice

@ Other possibilities?

What about constructing layers inspired by symmetries of the action & effective
theories to propagate correlation in more efficient ways? J
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Effective Action & Power Spectral Density

@ A scalar field theory in n spacetime dimensions:
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@ The quantum effective action:

Llg] = % /d”kgg(—k) <k‘2 +m?— H(L2)>¢(k) ..

(Tree-level Feynman diagrams give the complete scattering amplitude)

<k2 +m? — H(kz)) is the inverse of two-point correlator/Green'’s function

<k2 +m? — H(k’g)) is the inverse of power spectral density
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A close look to PSD:

@ The inverse of PSD of a 1-dim double-well potential (from MC simulation)
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@ 1/PSD can be manipulated using a positive, monotonically increasing
function of k2; ML techniques can be employed to construct such a function

@ Manipulating PSD is NOT a local operation; it affects the correlation in data
at largest & shortest scales
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The inverse of PSD for a 2-dim double-well potential (from MC simulation)

8

k=07&m>=—-28&\=0.5

- Scalar field; lattice: 32 x 32;
| II»L"M

2 i ;
%l , M[:ﬁ:’mk M Sle] = /dw2 {g(amzﬁ(ﬂc))2 + %¢(x)2 + Ap(z)? }J
3 | a“p M'
L ¥ © Broken Phase
2 "M L
“tu’.' @ PSD at k* = 0 blows up
1 r","" " @ Mean-field potential turns to a double-well potential
00‘ 1 2 3 4 5 6 7 8

Inspired by mean-field theory

One can build a general function (a neural network) to map the mean
field to a mean field of interest
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For the sake of comparison with [arXiv:2105.12481, Debbio et.al.| we consider this
2-dim action

2

61 = [ e { @0l + T3-0(a)? + 2oto)'}

where k = 3, m? = —43, and A = 0.5, with 3 € [0.5,0.8] in our simulations.

Following suggestions inspired by effective theories, we aim to
construct neural networks that are

@ economic w.r.t. parameters

@ do not require many layers of ConvNet to propagate correlations
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An architecture for 2-dim scalar theories

1 an initial layer to manipulate PSD of white normal noise & general activation

2 followed by two layers of affine coupling implemented with ConvNet &

general activation
Simulation parameters: kK = 0.6 & L = 32

04

100 ]

1024

o=+

Hist of &,

B field

Corr Gy

+m (2-dim colorme:

1.5

5

oG

00

JK (ETH)

10/15



Acceptance rate & critical point & large volume
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Uncertainty in log(q/p) & acceptance rate

@ Optimization for k = 0.5 for L € {8,16, 32, 64}:
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@ The uncertainty in log(g/p) determines acceptance rate
@ It looks like uncertainty in log(g/p) scales with v/volume at large volumes

@ Justification: divide the lattice into n blocks with almost independent fluctuations
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NFs with block updating

@ The uncertainty in log(q/p) determines acceptance rate
@ It looks like uncertainty in log(g/p) scales with v/volume at large volumes

@ Justification: divide the lattice into n blocks with almost independent fluctuations
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@ L = 64 model is sampled block by block

o Mblocks = 27 (square), acceptance rate ~ L = 32
® Mblocks = 4° (star), acceptance rate ~ L = 16

@ Asymptotic scaling & saturated training
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Uncertainty in log(q/p) & block size

@ Toy model: z ~ N(0,0?) and y is the output of the “Metropolis Filter”
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Conclusion & Outlook

o Effective theories to design layers changing the data at long&short scales
@ Still, the acceptance rate drops fast as the lattice volume increases
@ Suggestion: Divide&Conquer

o Divide the current sample into blocks & update block by block
e Optimum block size (about 1/4 or so)
e In progress...
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back-up slides



Magnetization & critical point & (un)broken phase
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Block updating & autocorrelation time
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