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Normalizing flows

M. S. Albergo, G. Kanwar and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019), 1904.12072

f(z) is a network trained to minimize the Kullbach-Leibler divergence:

Once f is trained, build a Markov chain with Metropoils-Hastings reweighting

~ Trivializing map
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Exploding training costs

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

vs HMC: ~a²

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072
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Exploding training costs
Total cost  = configuration production cost + network training cost

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

vs HMC: ~a²

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072
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Exploding training costs

Luigi Del Debbio, Joe Marsh Rossney, and 
Michael Wilson Phys. Rev. D 104, 094507 

Can we benefit from normalizing flows keeping training costs low?

Total cost  = configuration production cost + network training cost

Training costs to achieve equal 
acceptance explode towards 
the continuum as ~a8

For equal acceptance, 
autocorrelation times do not 
scale towards the continuum

vs HMC: ~a²

M. S. Albergo, G. Kanwar and P. E. Shanahan, 
Phys. Rev. D 100, 034515 (2019), 1904.12072
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Learning trivializing flows

Idea: use the normalizing flow f  to help HMC sampling

      might be easier to sample from using HMC
lower autocorrelation times!
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Learning trivializing flows

Idea: use the normalizing flow f  to help HMC sampling

      might be easier to sample from using HMC
lower autocorrelation times!

2. Use HMC to build a Markov chain following 

1. Train the network f  minimizing the KL divergence.

3. Apply f ⁻¹  to the Markov chain to obtain configurations following

The algorithm

The acceptance of HMC with the new action     does not depend on f !
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Learning trivializing flows

2. Use HMC to build a Markov chain following 

1. Train the network f  minimizing the KL divergence.

3. Apply f ⁻¹  to the Markov chain to obtain configurations following

The algorithm

The acceptance of HMC with the new action     does not depend on f !

Lüscher: an exact trivializing flow is not known, but can be constructed via power 
series (Wilson flow)

It was not good enough to improve autocorrelation scaling towards the 
continuum on a CP(N) theory

Can normalizing flows be helpful as trivializing flows for HMC?

Lüscher, M. Trivializing Maps, the Wilson Flow and the HMC Algorithm. Commun. Math. Phys. 293, 899 (2010)

G. P. Engel, S. Schaefer, Testing trivializing maps in the Hybrid 
Monte Carlo algorithm, Comput.Phys.Commun. 182 (2011) 2107-2114

S. Foreman et al., HMC with Normalizing Flows, 
PoS LATTICE2021 (2022) 073

Xiao-Yong Jin, Neural Network Field Transformation and 
Its Application in HMC, PoS LATTICE2021 (2022) 600
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The model

Non-trivial correlation length

No topology freezing

We study a      theory in 2 dimensions

symmetry: action invariant under

Bimodal probability density

HMC scaling:
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Keeping training costs low

Translational symmetry use convolutional networks

Total cost ≈ configuration production cost

configuration
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Information within correlation length control network footprint

Total cost ≈ configuration production cost

configuration 2-point correlation
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Keeping training costs low

Translational symmetry use convolutional networks

Information within correlation length control network footprint

simple affine coupling layer with no hidden layers

footprint can be controlled with the kernel size k of the CNNs s and t

Total cost ≈ configuration production cost

configuration 2-point correlation
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Keeping training costs low

Translational symmetry use convolutional networks

Information within correlation length control network footprint

simple affine coupling layer with no hidden layers

footprint can be controlled with the kernel size k of the CNNs s and t

Total cost ≈ configuration production cost

configuration 2-point correlation

k = 3

37 trainable
parameters

Can this simple network learn something?
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Check 1: minimal network

2. Compare magnetization history with HMC

Learned trivializing flow reduces autocorrelations 
even with simple architectures

 Minimal architecture 

1. Train network minimizing KL

KL divergence saturates fast

Results from both algorithms are consistent with each other

1 affine coupling layer
k = 3
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Check 2: reusability on bigger volumes

The network acceptance decreases (the action is extensive)

Convolutional networks can be reused for bigger volumes
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Check 2: reusability on bigger volumes

The network acceptance decreases (the action is extensive)

Convolutional networks can be reused for bigger volumes

Autocorrelation times remain the same on bigger volumes 

Training should be done at the correlation length
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Scaling of the computational cost

The acceptance of HMC with the new action     does not depend on f !

Simple network architectures: 1 affine layer

Networks trained until saturation

Metropolis acceptance of the networks 
decreases rapidly towards the continuum

Co
nt
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But remember: we’ll just use the network to change variables!

Lattice with fixed physical size

Training cost negligible w.r.t. production cost

Total cost ≈ configuration production cost
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Scaling with fixed architecture

Should we scale the kernel size going to the continuum?

For a fixed architecture the scaling does not improve

Autocorrelation times are decreased compared to HMC

Magnetization: 
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Scaling increasing the kernel size

Scaling the kernel size leads to slight 
improvement in the autocorrelation scaling

Magnetization: 

Fit autocorrelation to
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Smeared susceptibility

smeared with radius ~ 

Smeared one-point susceptibility:

Scaling the kernel size leads to slight 
improvement in the autocorrelation scaling

Fit autocorrelation to
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Summary & Outlook

This works with simple network architectures

The algorithm improves the autocorrelation times of HMC, 
but the scaling is the same with fixed architecture

The networks can be trained at a small lattice size and
reused at a larger volume (with no further training)

Scaling the kernel size of the convolutions slightly improves the 
scaling of autocorrelations

Can this algorithm help with topology freezing?

In QCD: can we train at large values of quark masses?
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Backup
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Automatic differentiation

Scaling the kernel size also increases the number of operations to compute the HMC force

We need to compute the force of the new variables:

automatic differentiation


