Transfer matrices and temporal factorization of the Wilson fermion determinant

\author{
Urs Wenger
 Albert Einstein Center for Fundamental Physics University of Bern
 $$
\boldsymbol{u}^{b}
$$
 ```
UNIVERSITÄT

``` \\ BERN \\ in collaboration with Patrick Bühlmann
}

\section*{Introduction and motivation}
- Consider the grand-canonical partition function at finite \(\mu\),
\[
\begin{aligned}
Z_{\mathbf{G C}}(\mu) & =\int \mathcal{D} \mathcal{U} e^{-S_{b}[\mathcal{U}]} \int \mathcal{D} \psi^{\dagger} \mathcal{D} \psi e^{-\psi^{\dagger} \mathcal{M}[\mathcal{U} ; \mu] \psi} \\
& =\int \mathcal{D} \mathcal{U} e^{-\boldsymbol{S}_{b}[\mathcal{U}]} \operatorname{det} M[\mathcal{U} ; \mu]
\end{aligned}
\]
where \(\operatorname{det} M[\mathcal{U} ; \mu]\) is highly non-local in \(\mathcal{U}\), difficult to calculate...
- In the Hamiltonian formulation one has
\[
\begin{aligned}
Z_{\mathrm{GC}}(\mu) & =\operatorname{Tr}\left[e^{-\mathcal{H}(\mu) / T}\right]=\operatorname{Tr} \prod_{t} \mathcal{T}_{t}(\mu) \\
& =\sum_{N} e^{-N \mu / T} \cdot Z_{C}(N)
\end{aligned}
\]
where \(Z_{C}(N)=\operatorname{Tr} \Pi_{t} \mathcal{T}_{t}^{(N)}\).

\section*{Fermion matrix and dimensional reduction}
- The fermion matrix \(M[\mathcal{U} ; \mu]\) has generic (temporal) structure
\[
M=\left(\begin{array}{ccccc}
B_{0} & e^{+\mu} C_{0}^{\prime} & 0 & \cdots & \pm e^{-\mu} C_{L_{t}-1} \\
e^{-\mu} C_{0} & B_{1} & e^{+\mu} C_{1}^{\prime} & & 0 \\
0 & e^{-\mu} C_{1} & B_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & & \\
\pm e^{+\mu} C_{L_{t}-1}^{\prime} & 0 & & B_{L_{L^{-}-2}} & e^{+\mu} C_{L_{L_{t}-2}}^{\prime} \\
B_{L_{t}-1}
\end{array}\right)
\]
for which the determinant can be reduced to
\[
\operatorname{det} M[\mathcal{U} ; \mu]=\prod_{t} \operatorname{det} \tilde{B}_{t} \cdot \operatorname{det}\left(1 \mp e^{\mu L_{t}} \cdot \mathcal{T}\right)
\]
where \(\mathcal{T}=\mathcal{T}_{0} \ldots \ldots \cdot \mathcal{T}_{L_{t}-1}\) and \(\mathcal{T}_{t}=\mathcal{T}_{t}\left[B_{t}, C_{t}, C_{t}^{\prime}\right]\).
- \(M[\mathcal{U} ; \mu]\) is \(\left(L \cdot L_{t}\right) \times\left(L \cdot L_{t}\right)\), while \(\mathcal{T}\) is \(L \times L\).

\section*{Fugacity expansion and canonical determinants}
- Fugacity expansion
\[
\operatorname{det} M[\mathcal{U} ; \mu]=\sum_{N} e^{-N \cdot \mu / T} \cdot \operatorname{det}_{N} M[\mathcal{U}]
\]
yields the canonical determinants
\[
\operatorname{det}_{N} M[\mathcal{U}]=\sum_{J} \operatorname{det} \mathcal{T}^{Y Y}[\mathcal{U}]=\operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{(N)}\right],
\]
where \(\operatorname{det} \mathcal{T}^{X Y}\) is the principal minor of order \(N\).
- States are labeled by index sets \(J \subset\{1, \ldots, L\},|J|=N\)
- number of states grows exponentially with \(L\) at half-filling
\[
N_{\text {states }}=\binom{L}{N}=N_{\text {principal minors }}
\]
- sum can be evaluated stochastically with MC

\section*{Transfer matrices and factorization}
- Use Cauchy-Binet formula
\[
\operatorname{det}(A \cdot B)^{\wedge K}=\sum_{J} \operatorname{det} A^{\wedge \chi} \cdot \operatorname{det} B^{\not \backslash K}
\]
to factorize into product of transfer matrices
- Transfer matrices in sector \(N\) are hence given by
\[
\operatorname{det} \mathcal{T}^{\Downarrow X}=\sum_{J} \operatorname{det}\left(\mathcal{T}_{0} \cdot \ldots \cdot \mathcal{T}_{L_{t}-1}\right)^{Y X}=\left(\mathcal{T}_{0}\right)_{J l} \cdot\left(\mathcal{T}_{1}\right)_{I K} \cdot \ldots \cdot\left(\mathcal{T}_{L_{t}-1}\right)_{L J}
\]
with \(\left(\mathcal{T}_{t}\right)_{I K}=\operatorname{det} \tilde{B}_{t} \cdot \operatorname{det} \mathcal{T}_{t}{ }^{\wedge \mathcal{K}}\).
- Finally, we have
\[
\operatorname{det}{ }_{N} M[\mathcal{U}]=\prod_{t} \operatorname{det} \tilde{B}_{t} \cdot \sum_{\left\{J_{t}\right\}} \prod_{t} \operatorname{det} \mathcal{T}_{t}^{X_{t-1} X_{t}}
\]
where \(\left|J_{t}\right|=N\) and \(J_{L_{t}}=J_{0}\).

\section*{Dimensional reduction of QCD}
- Consider the Wilson fermion matrix for a single quark with chemical potential \(\mu\) :
\[
M_{ \pm}(\mu)=\left(\begin{array}{ccccc}
B_{0} & P_{+} A_{0}^{+} & & & \pm P_{-} A_{L_{t}-1}^{-} \\
P_{-} A_{0}^{-} & B_{1} & P_{+} A_{1}^{+} & & \\
& P_{-} A_{1}^{-} & B_{2} & \ddots & \\
& & \ddots & \ddots & \\
& & & & P_{+} A_{L_{t}-2}^{+} \\
\pm P_{+} A_{L_{t}-1}^{+} & & & P_{-} & B_{L_{t}-1}
\end{array}\right)
\]
- temporal hoppings are
\[
A_{t}^{+}=e^{+\mu} \cdot \mathbb{I}_{4 \times 4} \otimes \mathcal{U}_{t}=\left(A_{t}^{-}\right)^{-1}
\]
- Dirac projectors \(P_{ \pm}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{4}\right)\)
- \(B_{t}\) are (spatial) Wilson Dirac operators on time-slice \(t\)
- all blocks are ( \(4 \cdot N_{c} \cdot L_{s}^{3} \times 4 \cdot N_{c} \cdot L_{s}^{3}\) )-matrices

\section*{Dimensional reduction of QCD}
- Reduced Wilson fermion determinant is given by
\[
\operatorname{det} M_{p, a}(\mu) \propto \prod_{t} \operatorname{det} Q_{t}^{+} \cdot \operatorname{det}\left[\mathbb{I} \pm e^{+\mu L_{t}} \mathcal{T}\right]
\]
where \(\mathcal{T}\) is the product of spatial matrices given by
\[
\begin{gathered}
\mathcal{T}=\prod_{t} Q_{t}^{+} \cdot \mathcal{U}_{t} \cdot\left(Q_{t+1}^{-}\right)^{-1} \equiv \prod_{t} \mathcal{T}_{t} \\
Q_{t}^{ \pm}=B_{t} P_{\mp}+P_{ \pm}, \quad B_{t}=\left(\begin{array}{cc}
D_{t} & C_{t} \\
-C_{t} & D_{t}
\end{array}\right)
\end{gathered}
\]
and
\[
Q_{t}^{+}=\left(\begin{array}{cc}
1 & C_{t} \\
0 & D_{t}
\end{array}\right), \quad\left(Q_{t}^{-}\right)^{-1}=\left(\begin{array}{cc}
D_{t}^{-1} & 0 \\
C_{t} \cdot D_{t}^{-1} & 1
\end{array}\right)
\]

\section*{Structure of building blocks}
- Product of spatial matrices:
\[
\mathcal{T}=\prod_{t} Q_{t}^{+} \cdot \mathcal{U}_{t} \cdot\left(Q_{t+1}^{-}\right)^{-1} \quad \text { or } \quad \mathcal{T}=\prod_{t} \mathcal{U}_{t-1}^{-} \cdot\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+} \cdot U_{t}^{+}
\]

\[
Q_{t}^{+} \cdot \mathcal{U}_{t} \cdot\left(Q_{t+1}^{-}\right)^{-1}
\]

\section*{Structure of building blocks}
- Product of spatial matrices:
\[
\mathcal{T}=\prod_{t} Q_{t}^{+} \cdot \mathcal{U}_{t} \cdot\left(Q_{t+1}^{-}\right)^{-1} \quad \text { or } \quad \mathcal{T}=\prod_{t} \mathcal{U}_{t-1}^{-} \cdot\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+} \cdot \mathcal{U}_{t}^{+}
\]

\[
\mathcal{U}_{t-1}^{-} \cdot\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+} \cdot \mathcal{U}_{t}^{+}
\]

\section*{Canonical projection and factorization}

\section*{Canonical projection of QCD}
\[
\operatorname{det} M_{N_{q}}=\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det} \mathcal{T}^{\not \lambda \lambda}
\]
- sum is over all index sets \(A \in\left\{1,2, \ldots, 2 N_{q}^{\max }\right\}\) of size
\[
|A|=N_{q}^{\max }+N_{q}, \quad N_{q}^{\max }=2 \cdot N_{c} \cdot L_{s}^{3}
\]
- i.e., the trace over the minor matrix of rank \(N_{q}\) of \(\mathcal{T}\)

Factorization of QCD determinant

\section*{Relation between quark and baryon number in QCD}
- Consider \(\mathbb{Z}\left(N_{c}\right)\)-transformation by \(z_{k}=e^{2 \pi i \cdot k / N_{c}} \in \mathbb{Z}\left(N_{c}\right)\) :
\[
\mathcal{U}_{t} \rightarrow \mathcal{U}_{t}^{\prime}=z_{k} \cdot \mathcal{U}_{t} \quad \text { at one fixed } t
\]
- As a consequence we have
\[
\begin{aligned}
\operatorname{det} M_{N_{q}} \rightarrow \operatorname{det} M_{N_{q}}^{\prime} & =\prod_{t} \operatorname{det} Q_{t}^{+} \cdot \sum_{A} \operatorname{det}\left(z_{k} \cdot \mathcal{T}\right)^{A \lambda A} \\
& =z_{k}^{-N_{q}} \cdot \operatorname{det} M_{N_{q}}
\end{aligned}
\]
and summing over \(z_{k}\) therefore yields
\[
\operatorname{det} M_{N_{q}}=0 \quad \text { for } N_{q} \neq 0 \bmod N_{c}
\]

\section*{Multi-level integration schemes}
- Temporal gauge links in \(\mathcal{U}_{t}\) are completely decoupled:

\(M\left(\mathcal{U}_{t-1}\right)_{\mathcal{C}_{t-1} \mathcal{A}_{t}} \cdot M\left(\left(Q_{t}^{-}\right)^{-1}\right)_{\mathcal{A}_{t} Q_{t}} \cdot M\left(Q_{t}^{+}\right)_{\mathcal{B}_{t}{C_{t}}} \cdot M\left(\mathcal{U}_{t}\right)_{\mathcal{C}_{t} A_{k+1}}\)
- spatial matrix \(\mathcal{U}_{t}\) is block diagonal:
\(\Rightarrow M\left(\mathcal{U}_{t}\right)\) trivial to calculate!

\section*{Multi-level integration schemes}
- Spatial gauge links in \(Q_{t}^{ \pm}\)coupled through temporal plaquettes only:

\(M\left(\mathcal{U}_{t-1}\right)_{C_{t-1} A_{t}} \cdot M\left(\left(Q_{t}^{-}\right)^{-1}\right)_{A_{t} B_{t}} \cdot M\left(Q_{t}^{+}\right)_{B_{t} C_{t}} \cdot M\left(\mathcal{U}_{t}\right)_{C_{t} A_{k+1}}\)
- spatial matrices \(Q_{t}^{ \pm}\)can be treated together:
\[
M\left(\left(Q_{t}^{-}\right)^{-1}\right)_{\chi_{t} \dot{\beta}_{t}} \cdot M\left(Q_{t}^{+}\right)_{\mathcal{k}_{t} \chi_{t}}=M\left(\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+}\right)_{\chi_{t} \chi_{t}}
\]

\section*{Correlation functions}
- Source and sink operators \(\mathcal{S}\) and \(\overline{\mathcal{S}}\) :
- remove or re-add indices from/to the available index set,
- potentially change quark number \(N_{q}\), e.g.,
\[
\ldots \cdot \mathcal{T}_{t-1}^{\left(N_{q}\right)} \cdot \mathcal{S}_{N_{q} \rightarrow N_{q}+3} \cdot \mathcal{T}_{t}^{\left(N_{q}+3\right)} \cdot \ldots \cdot \mathcal{T}_{t^{\prime}}^{\left(N_{q}+3\right)} \cdot \overline{\mathcal{S}}_{N_{q}+3 \rightarrow N_{q}} \cdot \mathcal{T}_{t^{\prime}+1}^{\left(N_{q}\right)} \cdot \ldots
\]
- vacuum sector corresponds to \(N_{q}=0\)
- Natural to contruct improved estimators:
- simulate directly the correlation function at \(C\left(t^{\prime}-t\right)\),
- measure \(C\left(t^{\prime}+1-t\right)\) relative to \(C\left(t^{\prime}-t\right)\)
\[
\left\langle C\left(t^{\prime}+1-t\right)\right\rangle_{C\left(t^{\prime}-t\right)} \sim e^{-a E}
\]
from additional insertion \(\mathcal{T}_{t^{\prime}+1}^{\left(N_{q}\right)} \rightarrow \mathcal{T}_{t^{\prime}+1}^{\left(N_{q}+3\right)}\)
- All spectral information is contained in \(\left\langle\mathcal{T}_{t}^{\left(N_{q}\right)}\right\rangle\).

\section*{Summary and outlook}
- Complete temporal factorization of the Wilson fermion determinant:
- works for fixed quark numbers \(N_{q}\)
- allows for very flexible multi-level integration schemes
- cf. [Gattringer et al, Giusti et al, Chandrasekharan et al]

Caveats: positivity? potential sign problem?
\(Q^{ \pm}\)are strictly positive, \(\left(\mathcal{T}_{t}\right)_{B C}\) not necessarily...```

