Transfer matrices and temporal factorization of the Wilson fermion determinant

Urs Wenger

Albert Einstein Center for Fundamental Physics University of Bern

in collaboration with Patrick Bühlmann

LATTICE 22, 11 August 2022, Bonn, Germany

Introduction and motivation

• Consider the grand-canonical partition function at finite μ ,

$$\begin{split} Z_{\mathsf{GC}}(\mu) &= \int \, \mathcal{D}\mathcal{U} \, \mathrm{e}^{-S_b[\mathcal{U}]} \, \int \, \mathcal{D}\psi^\dagger \mathcal{D}\psi \, \mathrm{e}^{-\psi^\dagger M[\mathcal{U};\mu]\psi} \\ &= \int \, \mathcal{D}\mathcal{U} \, \mathrm{e}^{-S_b[\mathcal{U}]} \, \mathrm{det} \, M[\mathcal{U};\mu] \end{split}$$

where $\det M[\mathcal{U}; \mu]$ is highly non-local in \mathcal{U} , difficult to calculate...

In the Hamiltonian formulation one has

$$Z_{GC}(\mu) = \text{Tr}\left[e^{-\mathcal{H}(\mu)/T}\right] = \text{Tr}\prod_{t} \mathcal{T}_{t}(\mu)$$
$$= \sum_{N} e^{-N\mu/T} \cdot Z_{C}(N)$$

where
$$Z_C(N) = \operatorname{Tr} \prod_t \mathcal{T}_t^{(N)}$$
.

Fermion matrix and dimensional reduction

▶ The fermion matrix $M[\mathcal{U}; \mu]$ has generic (temporal) structure

$$M = \begin{pmatrix} B_0 & e^{+\mu}C_0' & 0 & \dots & \pm e^{-\mu}C_{L_t-1} \\ e^{-\mu}C_0 & B_1 & e^{+\mu}C_1' & 0 \\ 0 & e^{-\mu}C_1 & B_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \\ & & B_{L_t-2} & e^{+\mu}C_{L_t-2}' \\ \pm e^{+\mu}C_{L_t-1}' & 0 & e^{-\mu}C_{L_t-2} & B_{L_t-1} \end{pmatrix}$$

for which the determinant can be reduced to

$$\det M[\mathcal{U};\mu] = \prod_t \det \tilde{B}_t \cdot \det \left(1 \mp e^{\mu L_t} \cdot \mathcal{T}\right)$$
 where $\mathcal{T} = \mathcal{T}_0 \cdot \ldots \cdot \mathcal{T}_{L_t-1}$ and $\mathcal{T}_t = \mathcal{T}_t[B_t,C_t,C_t']$.

▶ $M[\mathcal{U}; \mu]$ is $(L \cdot L_t) \times (L \cdot L_t)$, while \mathcal{T} is $L \times L$.

Fugacity expansion and canonical determinants

Fugacity expansion

$$\det M[\mathcal{U};\mu] = \sum_{N} e^{-N \cdot \mu/T} \cdot \det {}_{N}M[\mathcal{U}]$$

yields the canonical determinants

$$\det{}_{N}M[\mathcal{U}] = \sum_{J} \det{}_{T}\mathcal{T}_{t}^{(N)} \left[\mathcal{U}\right] = \operatorname{Tr}\left[\prod_{t} \mathcal{T}_{t}^{(N)}\right],$$

where $\det \mathcal{T}^{\chi\chi}$ is the principal minor of order N.

- ▶ States are labeled by index sets $J \subset \{1, ..., L\}, |J| = N$
 - ▶ number of states grows exponentially with *L* at half-filling

$$N_{\text{states}} = \begin{pmatrix} L \\ N \end{pmatrix} = N_{\text{principal minors}}$$

sum can be evaluated stochastically with MC

Transfer matrices and factorization

Use Cauchy-Binet formula

$$\det(A \cdot B)^{N/N} = \sum_{J} \det A^{N/N} \cdot \det B^{N/N/N}$$

to factorize into product of transfer matrices

► Transfer matrices in sector N are hence given by $\det \mathcal{T}^{XX} = \sum_{J} \det (\mathcal{T}_0 \cdot \ldots \cdot \mathcal{T}_{L_t-1})^{XX} = (\mathcal{T}_0)_{JJ} \cdot (\mathcal{T}_1)_{JK} \cdot \ldots \cdot (\mathcal{T}_{L_t-1})_{LJ}$ with $(\mathcal{T}_t)_{JK} = \det \tilde{\mathcal{B}}_t \cdot \det \mathcal{T}_t^{XK}$.

Finally, we have

$$\det{}_{N}M[\mathcal{U}] = \prod_{t} \det \tilde{B}_{t} \cdot \sum_{\{J_{t}\}} \prod_{t} \det \mathcal{T}_{t}^{\lambda_{t-1}\lambda_{t}}$$
 where $|J_{t}| = N$ and $J_{L_{t}} = J_{0}$.

Dimensional reduction of QCD

▶ Consider the Wilson fermion matrix for a single quark with chemical potential μ :

$$M_{\pm}(\mu) = \begin{pmatrix} B_0 & P_+ A_0^+ & & \pm P_- A_{L_t-1}^- \\ P_- A_0^- & B_1 & P_+ A_1^+ & & \\ & P_- A_1^- & B_2 & \ddots & \\ & & \ddots & \ddots & \\ & & & P_+ A_{L_t-1}^+ & & P_- & B_{L_t-1} \end{pmatrix}$$

temporal hoppings are

$$A_t^+ = e^{+\mu} \cdot \mathbb{I}_{4\times 4} \otimes \mathcal{U}_t = \left(A_t^-\right)^{-1}$$

- ▶ Dirac projectors $P_{\pm} = \frac{1}{2} (\mathbb{I} \mp \Gamma_4)$
- $ightharpoonup B_t$ are (spatial) Wilson Dirac operators on time-slice t
- ▶ all blocks are $(4 \cdot N_c \cdot L_s^3 \times 4 \cdot N_c \cdot L_s^3)$ -matrices

Dimensional reduction of QCD

Reduced Wilson fermion determinant is given by

$$\det M_{p,a}(\mu) \propto \prod_t \det Q_t^+ \cdot \det \left[\mathbb{I} \pm \frac{\mathrm{e}^{+\mu L_t}}{} \mathcal{T} \right]$$

where ${\mathcal T}$ is the product of spatial matrices given by

$$\mathcal{T} = \prod_{t} Q_{t}^{+} \cdot \mathcal{U}_{t} \cdot \left(Q_{t+1}^{-}\right)^{-1} \equiv \prod_{t} \mathcal{T}_{t}$$

$$Q_t^{\pm} = B_t P_{\mp} + P_{\pm}, \qquad B_t = \begin{pmatrix} D_t & C_t \\ -C_t & D_t \end{pmatrix}$$

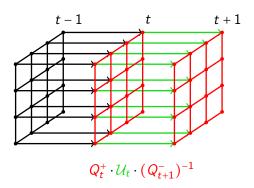
and

$$Q_t^+ = \left(\begin{array}{cc} 1 & C_t \\ 0 & D_t \end{array}\right), \quad \left(Q_t^-\right)^{-1} = \left(\begin{array}{cc} D_t^{-1} & 0 \\ C_t \cdot D_t^{-1} & 1 \end{array}\right).$$

Structure of building blocks

Product of spatial matrices:

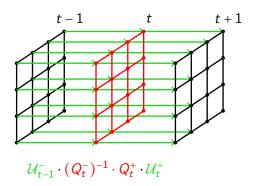
$$\mathcal{T} = \prod_{t} \frac{Q_t^+ \cdot \mathcal{U}_t \cdot (Q_{t+1}^-)^{-1}}{\mathbf{v}_t} \quad \text{or} \quad \mathcal{T} = \prod_{t} \mathcal{U}_{t-1}^- \cdot (Q_t^-)^{-1} \cdot Q_t^+ \cdot U_t^+$$



Structure of building blocks

Product of spatial matrices:

$$\mathcal{T} = \prod_t Q_t^+ \cdot \mathcal{U}_t \cdot (Q_{t+1}^-)^{-1} \qquad \text{or} \qquad \mathcal{T} = \prod_t \mathcal{U}_{t-1}^- \cdot (Q_t^-)^{-1} \cdot Q_t^+ \cdot \mathcal{U}_t^+$$



Canonical projection and factorization

Canonical projection of QCD

$$\det M_{N_q} = \prod_t \det Q_t^+ \cdot \sum_A \det \mathcal{T}^{\lambda \lambda}$$

• sum is over all index sets $A \in \{1, 2, \dots, 2N_q^{\text{max}}\}$ of size

$$|A| = N_q^{\text{max}} + N_q, \qquad N_q^{\text{max}} = 2 \cdot N_c \cdot L_s^3$$

lacktriangleright i.e., the trace over the minor matrix of rank N_q of ${\mathcal T}$

Factorization of QCD determinant

$$\det M_{N_q} = \prod_t \det Q_t^+ \cdot \prod_t M\left(\left(Q_t^-\right)^{-1}\right)_{A_t B_t} M(Q_t^+)_{B_t C_t} M(\mathcal{U}_t)_{C_t A_{t+1}}$$

Relation between quark and baryon number in QCD

► Consider $\mathbb{Z}(N_c)$ -transformation by $z_k = e^{2\pi i \cdot k/N_c} \in \mathbb{Z}(N_c)$:

$$\mathcal{U}_t \to \mathcal{U}_t' = \mathbf{z}_k \cdot \mathcal{U}_t$$
 at one fixed t .

As a consequence we have

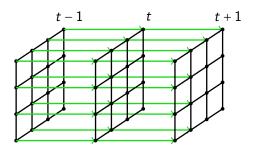
$$\det M_{N_q} \to \det M'_{N_q} = \prod_t \det Q_t^+ \cdot \sum_A \det (z_k \cdot \mathcal{T})^{\lambda_{N_q}}$$
$$= z_k^{-N_q} \cdot \det M_{N_q}$$

and summing over z_k therefore yields

$$\det M_{N_q} = 0 \qquad \text{for } N_q \neq 0 \bmod N_c$$

Multi-level integration schemes

▶ Temporal gauge links in U_t are completely decoupled:



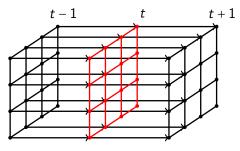
$$M(\mathcal{U}_{t-1})_{\mathcal{C}_{t-1} A_{t}} \cdot M\left((Q_t^-)^{-1}\right)_{A_{t} B_{t}} \cdot M(Q_t^+)_{B_{t} C_{t}} \cdot M(\mathcal{U}_{t})_{C_{t} A_{t+1}}$$

• spatial matrix \mathcal{U}_t is block diagonal:

 $\Rightarrow M(\mathcal{U}_t)$ trivial to calculate!

Multi-level integration schemes

• Spatial gauge links in Q_t^{\pm} coupled through temporal plaquettes only:



$$M(\mathcal{U}_{t-1})_{\mathcal{C}_{t-1} A_{k}} \cdot M\left(\left(\frac{Q_{t}^{-}}{Q_{t}^{-}}\right)^{-1}\right)_{A_{k} B_{t}} \cdot M\left(\frac{Q_{t}^{+}}{Q_{t}^{+}}\right)_{B_{t} C_{t}} \cdot M(\mathcal{U}_{t})_{\mathcal{C}_{t} A_{k+1}}$$

▶ spatial matrices Q_t^{\pm} can be treated together:

$$M\left(\left(Q_{t}^{-}\right)^{-1}\right)_{\lambda_{t} \succcurlyeq_{t}} \cdot M(Q_{t}^{+})_{\succcurlyeq_{t} \succsim_{t}} = M\left(\left(Q_{t}^{-}\right)^{-1} \cdot Q_{t}^{+}\right)_{\lambda_{t} \succsim_{t}}$$

Correlation functions

- ▶ Source and sink operators S and \overline{S} :
 - remove or re-add indices from/to the available index set,
 - potentially change quark number N_q , e.g.,

$$\dots \cdot \mathcal{T}_{t-1}^{(N_q)} \cdot \mathcal{S}_{N_q \to N_q+3} \cdot \mathcal{T}_t^{(N_q+3)} \cdot \dots \cdot \mathcal{T}_{t'}^{(N_q+3)} \cdot \overline{\mathcal{S}}_{N_q+3 \to N_q} \cdot \mathcal{T}_{t'+1}^{(N_q)} \cdot \dots$$

- vacuum sector corresponds to $N_q = 0$
- Natural to contruct improved estimators:
 - simulate directly the correlation function at C(t'-t),
 - measure C(t'+1-t) relative to C(t'-t)

$$\langle C(t'+1-t)\rangle_{C(t'-t)}\sim e^{-aE}$$

from additional insertion $\mathcal{T}_{t'+1}^{(N_q)} \to \mathcal{T}_{t'+1}^{(N_q+3)}$

▶ All spectral information is contained in $(\mathcal{T}^{(N_q)})$.

Summary and outlook

 Complete temporal factorization of the Wilson fermion determinant:

$$\det M_{N_q} = \prod_t \det Q_t^+ \cdot \prod_t M\left(\left(Q_t^-\right)^{-1}\right)_{X_t \nmid R_t} M(Q_t^+)_{R_t \setminus \zeta_t} M(\mathcal{U}_t)_{\zeta_t \mid X_{t+1}}$$

- works for fixed quark numbers N_q
- ▶ allows for very flexible multi-level integration schemes
- cf. [Gattringer et al, Giusti et al, Chandrasekharan et al]

Caveats: positivity? potential sign problem?

 Q^{\pm} are strictly positive, $(\mathcal{T}_t)_{\mathcal{BC}}$ not necessarily...