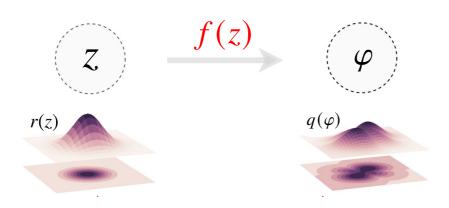

Flow models: Machine-learned maps between probability distributions [Rezende & Mohamed 1505.05770]

Fields via flow models

Example application: Embarrassingly parallel direct sampling

Flow model as an approximate trivialising map

"Base" distribution: Efficient to sample e.g., Haar-uniform


"Model" distribution
$$q(\phi) \approx \frac{1}{Z} e^{-S(\phi)}$$

 Independent samples of the base distribution map to independent samples of the model distribution

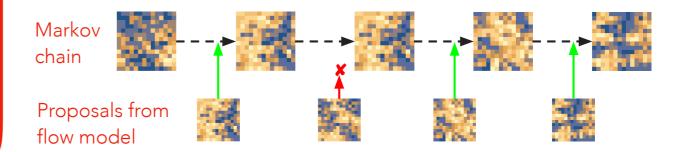
Fields via flow models

Example application: Embarrassingly parallel direct sampling

Flow model as an approximate trivialising map

"Base" distribution: Efficient to sample e.g., Haar-uniform "Model" distribution $q(\phi) \approx \frac{1}{Z} e^{-S(\phi)}$

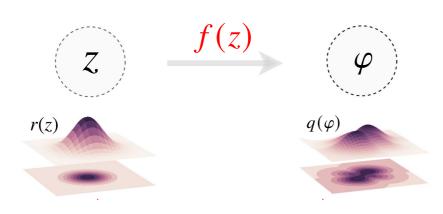
 Independent samples of the base distribution map to independent samples of the model distribution • Train the model:


Gradient descent to minimise "loss function" with minimum at $q(\phi) = \frac{1}{Z} e^{-S(\phi)}$

$$L(q) = \int \underline{d\phi \, q(\phi)} [\log q(\phi) + S(\phi)]$$

Estimate stochastically by sampling from the model, i.e., "self training"

Guarantee exactness:


Reweight or form a Markov chain with Metropolis-Hastings accept/reject step

Fields via flow models

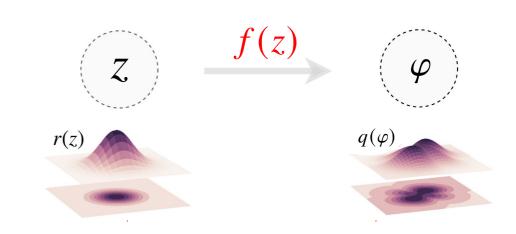
Example application: Embarrassingly parallel direct sampling

Flow model as an approximate trivialising map

"Base" distribution: Efficient to sample e.g., Haar-uniform "Model" distribution $q(\phi) \approx \frac{1}{Z} e^{-S(\phi)}$

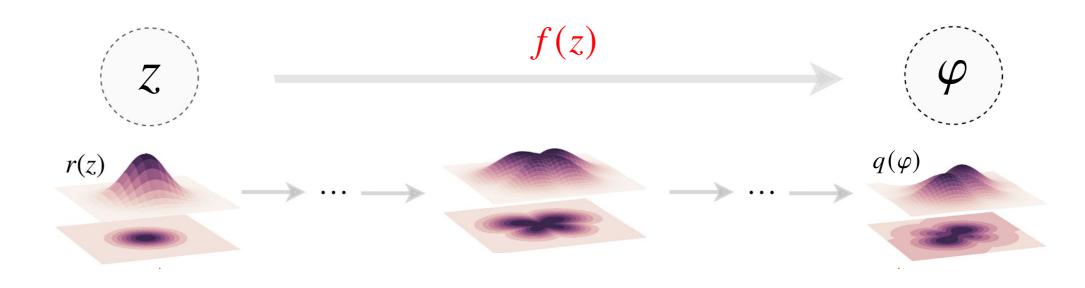
 Independent samples of the base distribution map to independent samples of the model distribution Proof-of-principle applications to simple lattice field theories reveal many potential advantages c.f. HMC

- Mitigation of critical slowing-down and topological freezing
- Efficient parameter-space exploration (by re-tuning trained models)
- Direct access to the partition function


Direct sampling is only one of many approaches to using flow models for lattice QCD!

Flow models: Machine-learned maps between probability distributions

[Rezende & Mohamed 1505.05770]


Many possible applications of flow models in lattice QCD

- Direct sampling i.e., r(z) is a trivial distribution and $q(\phi) \approx \frac{1}{Z} e^{-S(\phi)}$ Generalisation of [Lüscher 0907.5491]
- Hybrid sampling approaches
 e.g.,generalize the proposal distribution in HMC [Foreman et al., 2112.01582]; flows in lattice subdomains [Finkenrath 2201.02216]
- Map from one action/set of parameters to another
- Contour deformation and density-of-states approaches to sign problem
 [Detmold et al., 2101.12668, Pawlowski+Urban 2203.01243, Lawrence et al., 2205.12303, etc]

Flow architectures designed for QCD gauge fields can be trained and applied in many different ways!


Flow models: Machine-learned maps between probability distributions [Rezende & Mohamed 1505.05770]

Goal: engineer flow architectures that effectively parameterise transformations of lattice gauge fields

- Diffeomorphisms on lattice field degrees of freedom
- Encode symmetries, e.g., gauge symmetry
- Flexible/expressive/can encode correlations at physically-relevant scale etc

- MIT-led program to develop flow model architectures for applications across lattice QCD
- Ongoing industry collaboration w/ Google DeepMind

- MIT-led program to develop flow model architectures for applications across lattice QCD
- First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072]
- Gauge field theories
 - Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428]
 - Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176]
 - Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456]
- Theories with fermions
 - Architectures for theories with fermions [Albergo et al., 2106.05934]
 - Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712]
 - Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]
- Initial application to QCD in 4D
 [This talk+upcoming manuscripts on scaling and 4D]
- Architectures for QCD at scale [ongoing; Aurora Early Science Project]

MIT-led program to develop flow model architectures for applications across lattice QCD

First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072]

Gauge field theories

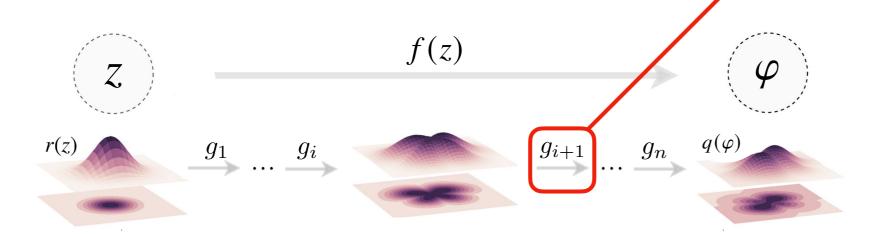
- Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428]
- Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176]
- Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456]

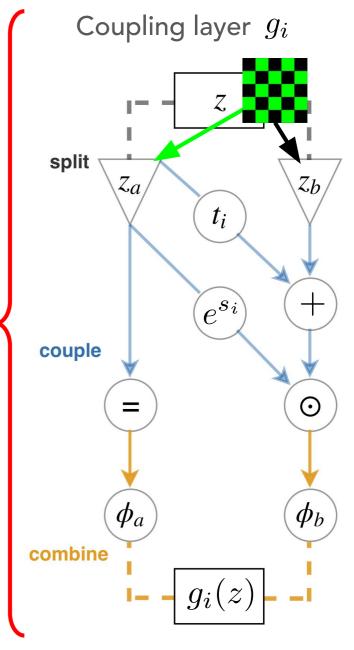
Theories with fermions

- Architectures for theories with fermions [Albergo et al., 2106.05934]
- Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712]
- Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]

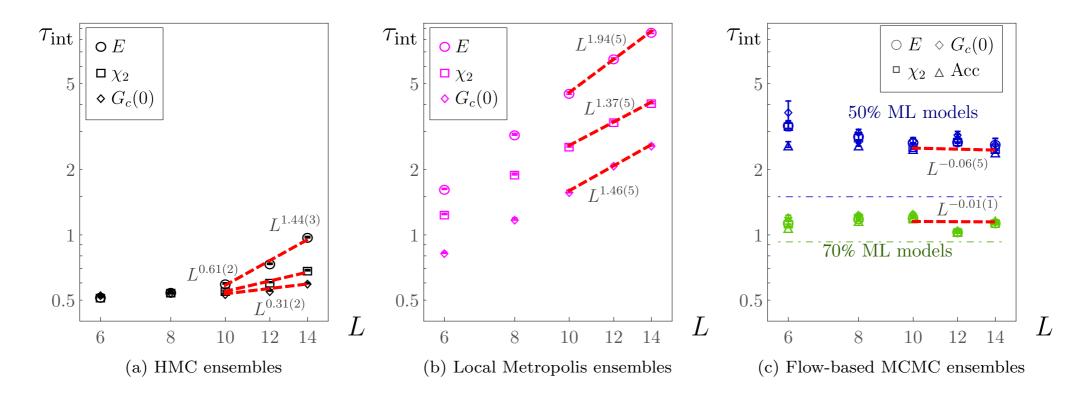
Initial application to QCD in 4D

[This talk+upcoming manuscripts on scaling and 4D]



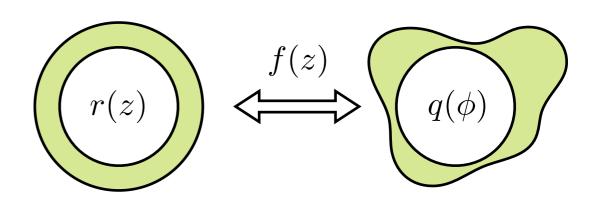

Architectures for QCD at scale [ongoing; Aurora Early Science Project]

Flow models for scalar fields

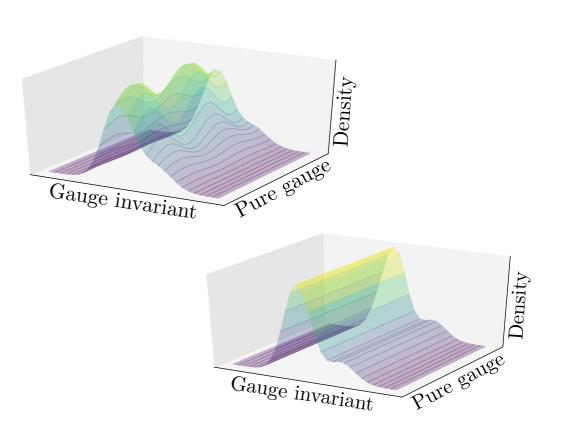

- First demonstration of flows as non-sequential samplers for lattice field theory [Albergo et al., 1904.12072]
- Variation of "real non-volume-preserving flows" developed for image generation [Dinh et al., 1605.08803]
 - ullet Update field via sequential "coupling layers" g_i
 - Each layer transforms half of the degrees of freedom conditioned on the other half $z_a \rightarrow \phi_a = z_a \qquad z_b \rightarrow \phi_b = z_b e^{s(z_a)} + t(z_a)$
 - ullet Transformations parameterised by arbitrary neural networks s_i,t_i

Flow models for scalar fields

Demonstration of accelerated sampling at the cost of model engineering and training (φ⁴ theory, 2D, parameters tuned for constant m_pL) [Albergo et al., 1904.12072]

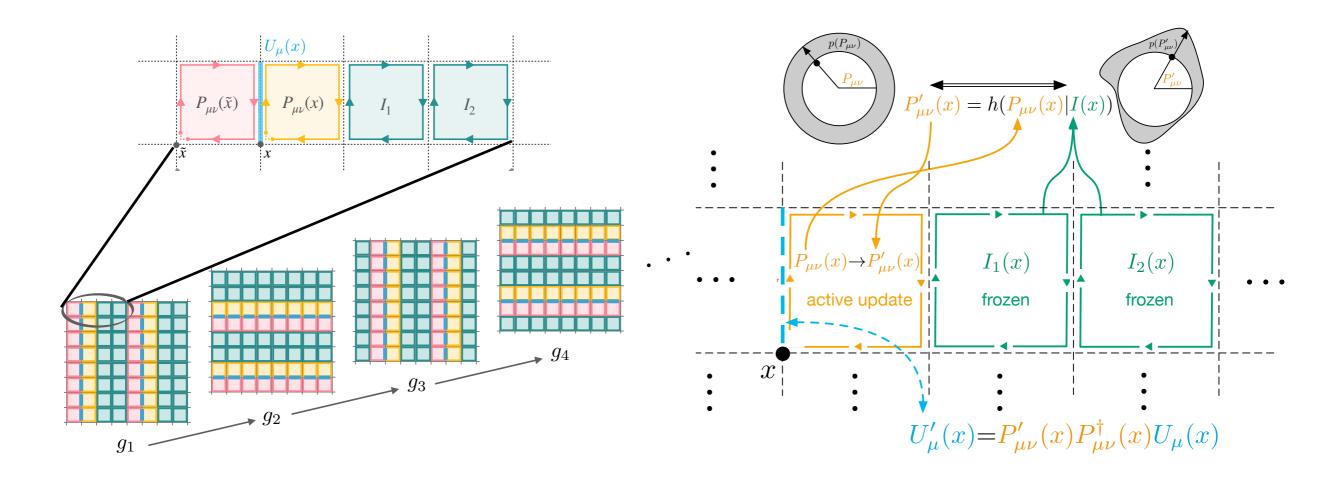

- Many choices in architecture design
 (e.g., prior distribution, variable splitting, neural network structure); further work by our
 group and others [e.g., Nicoli et al., 2007.07115, 2111.11303; Del Debbio et al., 2105.12481; Singha et al., 2207.00980; +...]
- Current best implementations by our group orders of magnitude more efficient than
 2019 approach! Architecture development matters

- MIT-led program to develop flow model architectures for applications across lattice QCD
- First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072]
- Gauge field theories
 - Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428]
 - Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176]
 - Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456]
- Theories with fermions
 - Architectures for theories with fermions [Albergo et al., 2106.05934]
 - Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712]
 - Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]
- Initial application to QCD in 4D
 [This talk+upcoming manuscripts on scaling and 4D]
- Architectures for QCD at scale [ongoing; Aurora Early Science Project]

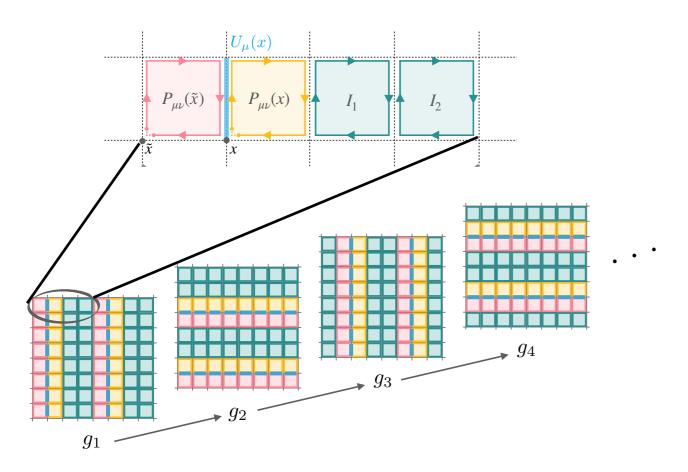


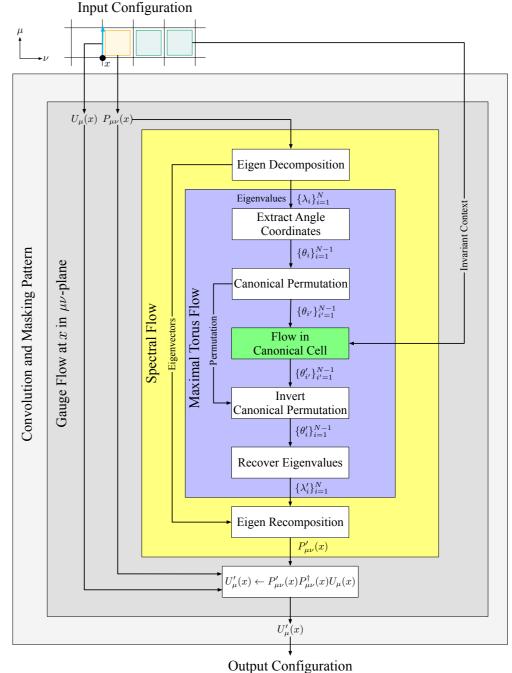
Flow models for gauge field theories require additional developments:

 Definition of flow transformations on compact connected manifolds (unlike real transformations relevant for images, scalar field theory) [Rezende et al., 2002.02428]



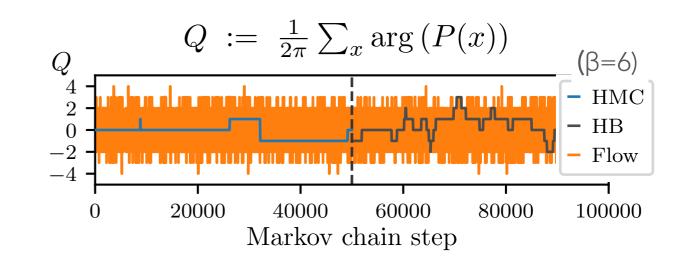
- Encoding complex symmetries of probability distribution (spatial, gauge, ...)
 [Kanwar et al., 2003.06413, Boyda et al., 2008.05456; Related ideas in Favoni et al., 2012.12901,2111.04389; Luo et al., 2012.05232]
 - Not essential for correctness
 - Crucial for practical training of highdimensional models with highdimensional symmetries

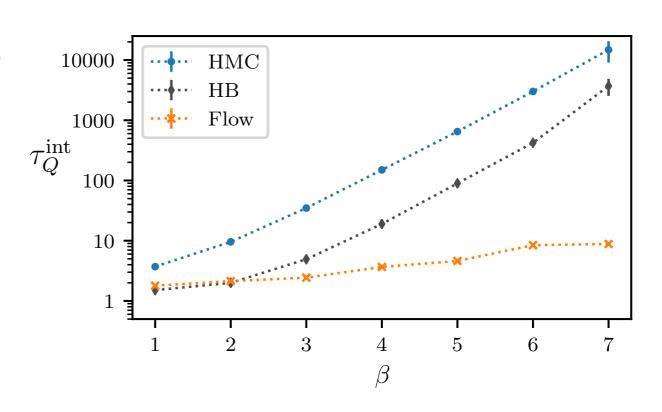

Development of gauge-equivariant flow models for Abelian and non-Abelian theories [Kanwar et al., 2003.06413, Boyda et al., 2008.05456; Favoni et al., 2012.12901,2111.04389; Luo et al., 2012.05232]


- Transform subset of links conditioned on the remaining subset
- Create gauge-equivariant layers by acting via transformations of (untraced) loops

Development of gauge-equivariant flow models for Abelian and non-Abelian theories [Kanwar et al., 2003.06413, Boyda et al., 2008.05456; Favoni et al., 2012.12901,2111.04389; Luo et al., 2012.05232]

 Gauge-equivariant layers for Non-Abelian theories by stepping via eigendecomposition of (untraced) loops




Demonstration of accelerated sampling in U(1) field theory

(2D, L=16) [Kanwar et al., 2003.06413]

$$S(U) := -\beta \sum_{x} \operatorname{Re} P(x)$$

- Efficient sampling of different topological sectors
- Cost of sample from flow model
 ~ cost of HMC trajectory
 i.e., flow model orders of magnitude
 more efficient at large coupling
- Increase in autocorrelation time in flow samples at large coupling resulting from lower model quality
 - illustrates trade-off between sampling cost and model development/training

- MIT-led program to develop flow model architectures for applications across lattice QCD
- First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072]
- Gauge field theories
 - Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428]
 - Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176]
 - Gauge-equivariant architecture

Theories with fermions

- Architectures for theories with fermions [Albergo et al., 2106.05934]
- Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712]
- Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]

Initial application to QCD in 4D

[This talk+upcoming manuscripts on scaling and 4D]

Architectures for QCD at scale [ongoing; Aurora Early Science Project]

2-slide recap of Fernando Romero-López's talk in this session

Flows for fermonic gauge theories

Straightforward approach consists on integrating out fermions:

Full action can be expressed only in terms of gauge variables:

$$S_E(U) = -eta \sum \operatorname{Re} P(x) - \log \det D[U]^\dagger D[U]$$
 "exact determinant"

One can use gauge-equivariant architectures from pure gauge models:

[Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413] [Boyda, Kanwar, Racanière, Rezende, Albergo, Cranmer, Hackett, Shanahan 2008.05456]

6 /15

Fernando Romero-López, MIT

2-slide recap of Fernando Romero-López's talk in this session

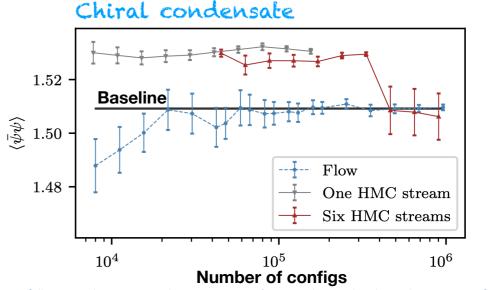
Flows for formonic onno Phonics

 $(2D, N_f=2, β=2, L=16, κ=0.276)$

Straightfor

$$\int {\cal D}[U] {\cal D}[\psi,$$

Full action


$$S_E(U)=-$$

One can us

[Kanwar, Alber [Boyda, Kanwa

Critical parameters:

- Vanishing fermion mass
- Diverging correlation length
- Hardest to simulate in HMC
- X HMC shows biased results with underestimated errors
- √ Flow-based sampling provides correct results

[Albergo, Boyda, Cranmer, Hackett, Kanwar, Racanière, Rezende, FRL, Shanahan, Urban 2202.11712]

! Evaluation of the fermion determinant is expensive.

$$S_E(U) = -\beta \sum_x \operatorname{Re} P(x) - \log \det D[U]^\dagger D[U]$$
 Not feasible for QCD-scale calculations!

The Schwinger model at criticality

Scalable approach: use stochastic determinant estimators!

7 /15

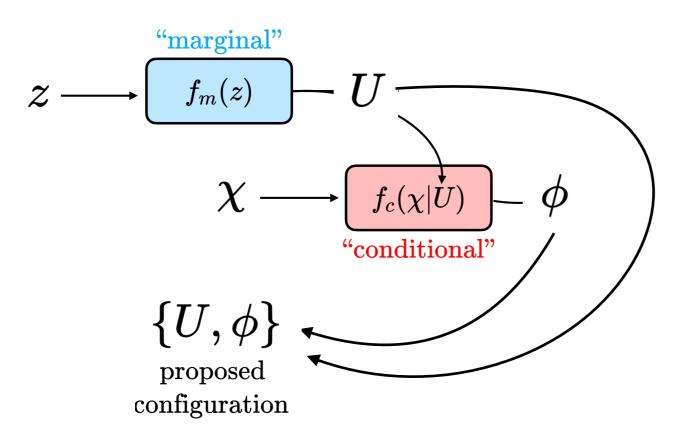
Pseudofermions!

Pseudofermion architectures defined in the rest of Fernando's talk

- MIT-led program to develop flow model architectures for applications across lattice QCD
- First flow architectures for lattice field theory (scalar field theory) [Albergo et al., 1904.12072]
- Gauge field theories
 - Flow transformations on compact, connected manifolds [Rezende et al., 2002.02428]
 - Gauge-equivariant architectures: Abelian field theories [Kanwar et al., 2003.06413, 2101.08176]
 - Gauge-equivariant architectures: non-Abelian field theories [Boyda et al., 2008.05456]
- Theories with fermions
 - Architectures for theories with fermions [Albergo et al., 2106.05934]
 - Combining architectures for gauge fields and fermions [Albergo et al., 2202.11712]
 - Techniques to incorporate pseudofermions [Abbott et al., 2207.08945]
- Initial appl

Initial application to QCD in 4D

[This talk+upcoming manuscripts on scaling and 4D]


Architectures for QCD at scale [ongoing; Aurora Early Science Project]

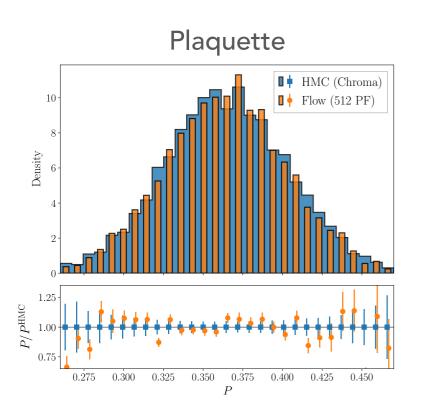
Flow models for QCD in 4D

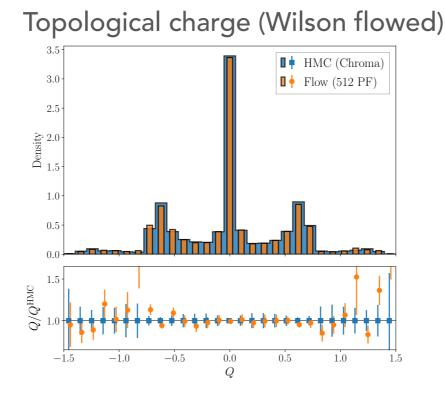
Initial QCD demonstration [this talk +upcoming manuscripts on scaling and 4D]

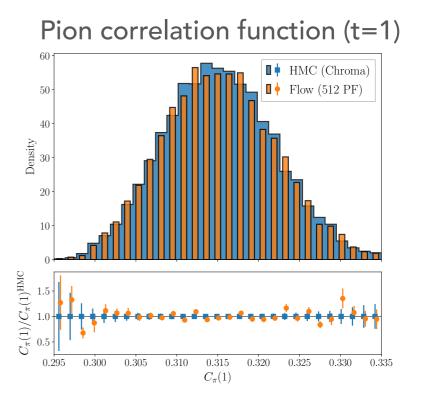
- Direct combination of published results on gauge-equivariant flows and pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945]
- Illustration at straightforward parameters V= 4^4 , N_f=2, β =1, κ =0.1
- Observables from flow ensemble in precise agreement with HMC at high statistics (65k samples)
- Development and scaling of QCD-specific architectures in full swing stay tuned!

Marginal:

- Haar-uniform base distribution
- 48 gaugeequivariant spline coupling layers
- Spatially separated convolutions in spectral flow to define spline parameters

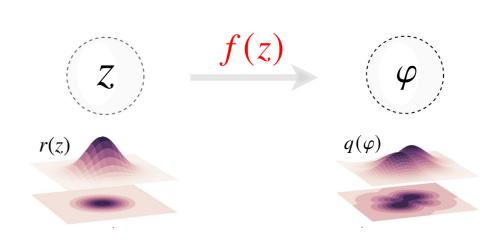

Conditional:


- Gaussian base distribution
- 36 pseudofermion coupling layers built from parallel transport convolutional networks
- Alternating spin and spatial masking pattern


Flow models for QCD in 4D

Initial QCD demonstration [this talk +upcoming manuscripts on scaling and 4D]

- Direct combination of published results on gauge-equivariant flows and pseudofermions [Boyda et al., 2008.05456, Abbott et al., 2207.08945]
- Illustration at straightforward parameters V= 4^4 , N_f=2, β =1, κ =0.1
- Observables from flow ensemble in precise agreement with HMC at high statistics (65k samples)
- Development and scaling of QCD-specific architectures in full swing stay tuned!

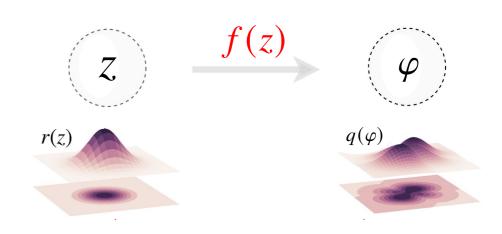


Outlook: Flow models for lattice QCD

All fundamental components in place to begin exploration of flow models for lattice QCD!

Significant efforts still required to exploit potential of flow models for lattice QCD

- QCD-specific engineering and development only just beginning
- Scaling to state-of-the-art requires engineering custom ML architectures to similar scale as largest industrial ML models



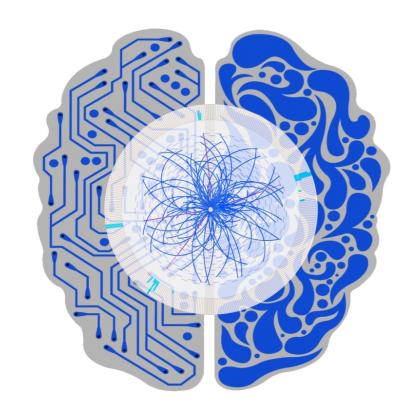
Outlook: Flow models for lattice QCD

All fundamental components in place to begin exploration of flow models for lattice QCD!

Many possible applications of flow models in lattice QCD

- Direct sampling i.e., r(z) is a trivial distribution and $q(\phi) \approx \frac{1}{Z} e^{-S(\phi)}$ Generalisation of [Lüscher 0907.5491]
- Hybrid sampling approaches
 e.g.,generalize the proposal distribution in HMC [Foreman et al., 2112.01582]; flows in lattice subdomains [Finkenrath 2201.02216]
- Direct access to the partition function [Nicoli et al., 2007.07115, 2111.11303]
- Contour deformation and density-of-states approaches to sign problem
 [Detmold et al., 2101.12668, Pawlowski+Urban 2203.01243, Lawrence et al., 2205.12303, etc]

Flow architectures designed for QCD gauge fields can be trained and applied in many different ways!



The NSF Al Institute for Artificial Intelligence and Fundamental Interactions (IAIFL /aI-faI/ iaifi.org)

Develop artificial intelligence based on physics principles "Ab-Initio AI"

Symmetries, conservation laws, scaling relations, limiting behaviors, locality, causality, unitarity, gauge invariance, entropy, least action, factorization, unit tests, exactness, systematic uncertainties, reproducibility, verifiability, ...

Advance physics knowledge — from the smallest building blocks of nature to the largest structures in the universe — and galvanize AI research innovation

26

26

The NSF Al Institute for Artificial Intelligence and Fundamental Interactions (IAIFL /aI-faI/ iaifi.org)

Advance physics knowledge — from the smallest building blocks of nature to the largest structures in the universe — and galvanize AI research innovation

2