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Metadynamics Surfing on Topology Barriers

in the Schwinger Model
Philip Rouenhoff, Timo Eichhorn*, Christian Hölbling

Abstract

We present our investigation of metadynamics as a solution for topological

freezing in 2D U(1) gauge theory. The scaling behavior of the collective vari-

able is examined and a demonstrative measurement of 〈Q2〉 using metady-
namics is conducted on finer lattices.

Introduction

Topological freezing describes the increase of the autocorrelation time on

increasingly finer lattices when using the Metropolis algorithm. This phe-

nomenon poses an obstacle when approaching the continuum. One observ-

able in the Schwinger model which is particularly prone to topological freezing

is the topological charge (also discrete topological charge)

Q =
1

2π
Im

[∑

~n∈Λ
logPxt(~n)

]
, (1)

where Pxt(~n) is the plaquette at the lattice site ~n. Due to its relatively large

autocorrelation time it is well suited to visualize topological freezing:

(a) 12× 12-lattice with β = 1.8 (b) 24× 24-lattice with β = 7.2

Figure 1. Histograms of the discrete topological charge of configurations produced by the

Metropolis algorithm on a line of constant physics (LCP) of NxNt/β = 80.

In the Schwinger model instanton updates are a possible cure, as they help

tunneling to neighboring topological sectors. They involve multiplying a con-

figuration link by link with a (±1)-instanton configuration, i.e. a local minimum
of the gauge action with Q = ±1. However, the implementation in 4D SU(3)
theory remains problematic [1].

Metadynamics

The approach of metadynamics requires to characterize the phase space via

collective variables. For this Laio et al. [2] suggest using a modified version of

the topological charge,

Qcont =
1

2π
Im

[∑

~n∈Λ
Pxt(~n)

]
, (2)

which we will call continuous topological charge, as it is not integer-valued

anymore. During a first run one measures Qcont of every configuration x to

build up a metapotential (also bias potential)

V(Qcont(x), t) =
∑

t′<t

g
(
Qcont(x) −Qcont

(
x(t′)

))
, (3)

which is added onto the gauge action at every Monte Carlo time t. Here g(Q) is

a non-negative function that rapidly vanishes for large |Q| (e.g. w·exp(−Q2/2δQ)

with tunable parameters w, δQ or small triangles). Figuratively speaking this

procedure ”fills the local action minima” subsequently until metapotential and

gauge action together form a flat overall potential in the region covered.

(a) 32× 32-lattice with β = 12.8 (b) Measurement of 〈Q2〉 for different β

Figure 2. (a) shows snapshots of the metapotential taken at different times during the build

up. For comparison the maximum value was subtracted. In (b) measurements of 〈Q2〉 using
metadynamics are compared with the analytical prediction [3]. The p-value is p = 97.8% and
χ2/dof = 7.02/6 = 1.17.

Once it is built up the metapotential can be added onto the gauge action to

obtain a flat potential landscape. Using this in a second run one can measure

observables, as the system will not get stuck in topological sectors anymore.

This has been done for the observable 〈Q2〉, see Fig. 2(b). Observables will
now have to be calculated via reweighting:

〈O〉 =
∑

iOi exp(−V(Qcont,i))∑
i exp(−V(Qcont,i))

, (4)

Scaling of Qcont

(Q,Qcont)-pairs were measured on different lattices of the same LCP:

(a) 12× 12-lattice with β = 1.8 (b) 24× 24-lattice with β = 7.2

Figure 3. 2D histograms of (Q,Qcont)-pairs on different lattices of the same LCP.

One can see that the mean values of the Qcont-distributions coincide increas-

ingly better with their respective Q-values for growing lattice sizes. To examine

this behavior further, a linear function was fitted to the centers of the Qcont-

distributions for each lattice. We called the inverse of the slopes Z and plotted

its values against the lattice spacing a, where a is obtained via β = (a2g2)−1.

(a) Qcont-centers fitted for β = 1.8 (b) even polynomial fit of Z over a, p-value = 0.64

Figure 4. (a) shows the linear fit corresponding to 3(b). In (b) we see the Z-values for square

lattices of Nt = Nx = 12 up to Nt = Nx = 60 and the best determined fit function, see Eq. (5).

The fitting function describing Z(a) best was determined to be

Zfit(a) = (1.001± 0.001) + (33.50± 2.78)a2 + (9431± 866)a4 (5)

and can be seen in Fig. 4(b). An expansion of the topological charge reveals

why an even polynomial fit is expected to be the best candidate:

Q = Qcont + c3 a
3 + c5 a

5 + ... (6)

Using Eq. (5) we can compare metapotentials of different lattice sizes:

(a) Without multiplying with Z (b) With multiplying with Z

Figure 5. Due to the scaling of the continuous charge one cannot directly compare

metapotentials of different β’s of the same LCP: one has to multiply the Qcont-values with
their respective Z-factors.

Outlook

To counter the drawback of the building time it looks auspicious to explore

options of guessing the shape of the metapotential rather than measuring it.

For this one might explore the scaling of other quantities such as the barrier

height as well, while a fit of the form F(Q) = AQ2 + B sin2(πQ) as in [2] seems

sensible as well. More generally extracting differentmodes of the Markov chain

would be interesting and could potentially be helpful in constructing better

collective variables.

Furthermore one might also implement more general variations, e.g. by using

more than one collective variable or well-tempered metadynamics [4], where

g(Q) from Eq. (3) has an explicit time dependence.

Last but far from least a comparison to other topology changing algorithms is

much-needed, while also a generalization to 4D SU(3) could be very interesting

for simulations in QCD. For this we strongly recommend a look at [1]!
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Topological freezing in 2-dimensional U(1)
Not exclusive to QCD/SU(3) gauge theory
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Topological freezing - Consequences
Slow topological modes couple to other observables!
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Topological freezing in 4-dimensional SU(3)

−5

0

5

V = 104, β = 5.8980

−5

0

5

Q
c

V = 164, β = 6.1802

0 20000 40000 60000 80000 100000

Monte Carlo time

−5

0

5

V = 222, β = 6.4035

Not yet completely frozen for the lattice spacings considered here
4/24



Topological freezing - Consequences
V = 104, β = 5.8980
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V = 224, β = 6.4035
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Topological freezing - Consequences
V = 104, β = 5.8980
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The same can be seen for Wilson loops (L = 2)
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Topological freezing - Consequences
V = 104, β = 5.8980
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Topological freezing - Consequences
V = 104, β = 5.8980
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Update algorithms



Two approaches
Metadynamics

[Laio et al ’16]
Add history-dependent bias

potential to action

Vmeta

Qmeta

Instanton updates

[Fucito et al ’84]
Multiply configurations with

instantons

Configuration

with charge Q

× Instanton (Qi = ±1)

Configuration

with charge Q± 1
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Metadynamics
Metadynamics

[Laio et al ’16]
Add history-dependent
bias potential to action

Vmeta

Qmeta

• Requires non-integer definition of Q:

Qc =
1

32π2

∑

n

tr[ϵµνρσCµν(n)Cρσ(n)]

Here: Clover-definition with under-smeared
fields

• After every accepted update, also update Vmeta

• Add bias potential to action

Smeta = Sg + Vmeta

• Reweight observables back to desired
distribution
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Metadynamics
Metadynamics

[Laio et al ’16]
Add history-dependent
bias potential to action

Vmeta

Qmeta

• Local update algorithms not feasible:
◦ Heatbath + Overrelaxation:

No force induced by Metadynamics, doesn’t
help with tunneling

◦ Metropolis:
Either compute ∆Qmeta for every link update
(too expensive) or after one sweep (low
acceptance rate)

• Use global updates (Hybrid Monte Carlo):
⇒ Force given by sum of normal thin-link force
and (fat-link) metadynamics-force:

∂Vmeta

∂Qmeta

∂Qmeta

U (n)
⋆

∂U (n)

∂U (n−1)
. . .

∂U (1)

∂U︸ ︷︷ ︸
Stout force recursion
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Instanton updates
Instanton updates

[Fucito et al ’84]
Multiply configurations

with instantons

Configuration

with charge Q

× Instanton (Qi = ±1)

Configuration

with charge Q± 1

• Link-wise multiplication of initial configuration
with Qi = 1 or Qi = −1 instanton

• Add Metropolis accept-reject step
• Works well in Schwinger model

⇒ Advantage: No need to pass through phase
space regions with high action
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Results
Conventional updates



Conventional update algorithms
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Conventional update algorithms
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Conventional update algorithms
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Hybrid Monte
Carlo with 4th
order minimum
norm integrator

Smeared Wilson loops
τint(W2) ∝ a−z

z ≈ 1− 2?
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Conventional update algorithms

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

a[fm]

100

101

102

103

104

τ i
n
t
(W

4
)

5.
89

80

6.
00

00

6.
09

38

6.
18

02

6.
26

02

6.
33

44

6.
40

35

β

1 HB

z = 1.285(99)

5 HB

z = 1.30(50)

1 HB + 4 OR

z = 0.98(76)

1 HMC

z = 1.30(88)

• HB: Heatbath over
3 SU(2) subgroups

• OR: Overrelaxation
over 3 SU(2)
subgroups

• HMC: Unit length
Hybrid Monte
Carlo with 4th
order minimum
norm integrator

Smeared Wilson loops
τint(W4) ∝ a−z

z ≈ 1− 2?
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Conventional update algorithms
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• HB: Heatbath over
3 SU(2) subgroups

• OR: Overrelaxation
over 3 SU(2)
subgroups

• HMC: Unit length
Hybrid Monte
Carlo with 4th
order minimum
norm integrator

Smeared Wilson loops
τint(W8) ∝ a−z

z ≈ 1− 2?
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Scaling of metapotential
8 stout
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10 stout
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⇒ Smoother potentials (well-tempered Metadynamics or filter?)
⇒ Tune smearing steps
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Metadynamics timeseries
V = 184, β = 6.2602
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V = 204, β = 6.3344
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Metadynamics timeseries
V = 224, β = 6.4035
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• Modest improvement compared
to HMC

• Fluctuations between sectors
(suboptimal parameters?)

• Lower acceptance rates
HMC 99% → 80% MetaD-HMC

• Much higher computational cost
(∼ 20 times slower than HMC!)
⇒ Not that relevant for full QCD

20/24



Results
Instanton updates



Instanton update - Action difference

700 800 900 1000 1100
0

200

400

600

800

1000

1200

1400

1600

V = 124, β = 6.0000

3400 3600 3800 4000

V = 224, β = 6.4035

∆Sinstanton
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Instanton actions - U(1) vs SU(3)
2D U(1)

V = 322, β = 12.8
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4D SU(3)
V = 224, β = 6.4035
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Instanton updates + gradient flow
Combination of instanton updates and gradient flow?
• Apply gradient flow
• Multiply flowed configuration with instanton
• Flow back to flowtime 0
• During accept-reject

p = exp(−∆S+ ln(det(J )))

⇒ Even lower acceptance probabilities than without flow
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Outlook & Future plans
For now focus on Metadynamics
• More statistics and parameter tuning!
• Study metadynamics for improved actions
• Guess/fit potential
• Well-tempered Metadynamics (weight changes adaptively ⇒ usually

better convergence of potential)
• Choosing a better collective variable:

◦ Build up variational basis of observables at different scales
◦ GEVP to extract leading modes of Markov chain
◦ Collective variable from linear combination?

• Multiple timescale integration?
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Well-tempered Metadynamics
[Barducci’ 08]
• Original Metadynamics

Vt+1(Q) = Vt(Q) + w exp

(
−(Qt −Q)2

2σ2

)

• Well-tempered Metadynamics

Vt+1(Q) = Vt(Q) + exp

(
−Vt(Q)

∆T

)
w exp

(
−(Qt −Q)2

2σ2

)

Tunable parameter ∆T :
◦ ∆T → 0: No Metadynamics
◦ ∆T → ∞: Original metadynamics

1/2

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.020603


Construction of SU(3) instantons
Based on [Jahn’ 19]
• Construction of instanton with radius ρ centered around z

• Embed SU(2) BPST instantons into SU(3)
• In singular gauge the vector potential is given by

Aµ = ηaµν
ρ2(xν − zν)τa

(x− z)2((x− z)2 + ρ2)

• Deal with periodicity/boundary effects by applying 150 stout smearing
sweeps with ρstout = 0.12

• For an anti-instanton replace the ’t Hooft symbol ηaµν with an anti ’t
Hooft symbol η̄aµν
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https://inspirehep.net/literature/1772043
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