Topology changing update algorithms for SU(3) gauge theory

Timo Eichhorn
Christian Hölbling Philip Rouenhoff Lukas Varnhorst

Bergische Universität Wuppertal

Introduction

Continuation of [2112.05188]
2D U(1) $\rightarrow 4 \mathrm{D} \mathrm{SU}(3)$

Related talks:

- Parallel tempering: [talk by Ruben Kara]
- Tempered boundaries: [talk by Claudio Bonanno]
- Multicanonical: [talk by Francesco D'Angelo]
- Many more in this session:
[Algorithms I] [Algorithms II] [Algorithms III] [Algorithms IV]

Also see [poster by Philip Rouenhoff]

Motivation

Topological freezing in 2-dimensional U(1)

Not exclusive to QCD/SU(3) gauge theory

Topological freezing - Consequences

Slow topological modes couple to other observables!

Topological freezing in 4-dimensional SU(3)

Not yet completely frozen for the lattice spacings considered here

Topological freezing - Consequences

Weak but non-vanishing correlation between action and topological charge!

Topological freezing - Consequences

Topological freezing - Consequences

$$
V=10^{4}, \beta=5.8980
$$

The same can be seen for Wilson loops $(L=4)$

Topological freezing - Consequences

$$
V=10^{4}, \beta=5.8980
$$

$$
V=22^{4}, \beta=6.4035
$$

The same can be seen for Wilson loops $(L=8)$

UPDATE ALGORITHMS

Two approaches

Metadynamics

[Laio et al '16]
Add history-dependent bias potential to action

Instanton updates

[Fucito et al '84]
Multiply configurations with instantons

Metadynamics

Metadynamics
[Laio et al '16]
Add history-dependent bias potential to action

- Requires non-integer definition of Q :

$$
Q_{c}=\frac{1}{32 \pi^{2}} \sum_{n} \operatorname{tr}\left[\epsilon_{\mu \nu \rho \sigma} C_{\mu \nu}(n) C_{\rho \sigma}(n)\right]
$$

Here: Clover-definition with under-smeared fields

- After every accepted update, also update $V_{\text {meta }}$
- Add bias potential to action

$$
S_{\text {meta }}=S_{g}+V_{\text {meta }}
$$

- Reweight observables back to desired distribution

Metadynamics

Metadynamics
[Laio et al '16]
Add history-dependent bias potential to action

- Local update algorithms not feasible:
- Heatbath + Overrelaxation:

No force induced by Metadynamics, doesn't help with tunneling

- Metropolis:

Either compute $\Delta Q_{\text {meta }}$ for every link update (too expensive) or after one sweep (low acceptance rate)

- Use global updates (Hybriid Monte Carlo):
\Rightarrow Force given by sum of normal thin-link force and (fat-link) metadynamics-force:

$$
\frac{\partial V_{\text {meta }}}{\partial Q_{\text {meta }}} \frac{\partial Q_{\text {meta }}}{U^{(n)}} \star \underbrace{\frac{\partial U^{(n)}}{\partial U^{(n-1)}} \ldots \frac{\partial U^{(1)}}{\partial U}}
$$

Instanton updates

Instanton updates

[Fucito et al '84]
Multiply configurations with instantons

- Link-wise multiplication of initial configuration with $Q_{i}=1$ or $Q_{i}=-1$ instanton
- Add Metropolis accept-reject step
- Works well in Schwinger model \Rightarrow Advantage: No need to pass through phase space regions with high action

Results
CONVENTIONAL UPDATES

Conventional update algorithms

- HB: Heatbath over 3 SU(2) subgroups
- OR: Overrelaxation over 3 SU(2) subgroups
- HMC: Unit length Hybrid Monte Carlo with 4th order minimum norm integrator

Topological charge

$$
\begin{gathered}
\tau_{\text {int }}\left(Q_{c}^{2}\right) \propto a^{-z} \\
z \approx 5-6 ?
\end{gathered}
$$

Conventional update algorithms

- HB: Heatbath over 3 SU(2) subgroups
- OR: Overrelaxation over 3 SU(2) subgroups
- HMC: Unit length Hybrid Monte Carlo with 4th order minimum norm integrator

Topological charge

$$
\begin{aligned}
& \tau_{\mathrm{int}}\left(Q_{c}^{2}\right) \propto e^{\frac{z}{a}} \\
& z \approx 0.2-0.4 ?
\end{aligned}
$$

Conventional update algorithms

- HB: Heatbath over 3 SU(2) subgroups
- OR: Overrelaxation over 3 SU(2) subgroups
- HMC: Unit length Hybrid Monte Carlo with 4th order minimum norm integrator

Smeared Wilson loops

$$
\begin{gathered}
\tau_{\mathrm{int}}\left(\mathcal{W}_{2}\right) \propto a^{-z} \\
z \approx 1-2 ?
\end{gathered}
$$

Conventional update algorithms

- HB: Heatbath over 3 SU(2) subgroups
- OR: Overrelaxation over 3 SU(2) subgroups
- HMC: Unit length Hybrid Monte Carlo with 4th order minimum norm integrator

Smeared Wilson loops

$$
\begin{gathered}
\tau_{\mathrm{int}}\left(\mathcal{W}_{4}\right) \propto a^{-z} \\
z \approx 1-2 ?
\end{gathered}
$$

Conventional update algorithms

- HB: Heatbath over 3 SU(2) subgroups
- OR: Overrelaxation over 3 SU(2) subgroups
- HMC: Unit length Hybrid Monte Carlo with 4th order minimum norm integrator

Smeared Wilson loops

$$
\begin{gathered}
\tau_{\mathrm{int}}\left(\mathcal{W}_{8}\right) \propto a^{-z} \\
z \approx 1-2 ?
\end{gathered}
$$

Results Metadynamics

Scaling of metapotential

8 stout

10 stout

\Rightarrow Smoother potentials (well-tempered Metadynamics or filter?)
\Rightarrow Tune smearing steps

Metadynamics timeseries

$V=18^{4}, \beta=6.2602$

$$
V=20^{4}, \beta=6.3344
$$

Metadynamics timeseries

$$
V=22^{4}, \beta=6.4035
$$

- Modest improvement compared to HMC
- Fluctuations between sectors (suboptimal parameters?)
- Lower acceptance rates HMC $99 \% \rightarrow 80 \%$ MetaD-HMC
- Much higher computational cost (~ 20 times slower than HMC!)
\Rightarrow Not that relevant for full QCD

Results
INSTANTON UPDATES

Instanton update - Action difference

Instanton actions - U(1) vs SU(3)

$$
\begin{gathered}
2 \mathrm{D} \mathrm{U}(1) \\
V=32^{2}, \beta=12.8
\end{gathered}
$$

$$
S_{\min , Q}=\beta V\left(1-\cos \left(2 \pi V^{-1}|Q|\right)\right)
$$

$$
S_{\min , Q}=\frac{8 \pi^{2}}{g^{2}}|Q|=\frac{\beta}{6} 8 \pi^{2}|Q|
$$

Instanton updates + gradient flow

Combination of instanton updates and gradient flow?

- Apply gradient flow
- Multiply flowed configuration with instanton
- Flow back to flowtime o
- During accept-reject

$$
p=\exp (-\Delta S+\ln (\operatorname{det}(\mathcal{J})))
$$

\Rightarrow Even lower acceptance probabilities than without flow

OUTLOOK

Outlook \& Future plans

For now focus on Metadynamics

- More statistics and parameter tuning!
- Study metadynamics for improved actions
- Guess/fit potential
- Well-tempered Metadynamics (weight changes adaptively \Rightarrow usually better convergence of potential)
- Choosing a better collective variable:
- Build up variational basis of observables at different scales
- GEVP to extract leading modes of Markov chain
- Collective variable from linear combination?
- Multiple timescale integration?

Thank you for your attention!

timo.eichhorn@protonmail.com

BACKUP SLIDES

Well-tempered Metadynamics

[Barducci' 08]

- Original Metadynamics

$$
V_{t+1}(Q)=V_{t}(Q)+w \exp \left(-\frac{\left(Q_{t}-Q\right)^{2}}{2 \sigma^{2}}\right)
$$

- Well-tempered Metadynamics

$$
V_{t+1}(Q)=V_{t}(Q)+\exp \left(-\frac{V_{t}(Q)}{\Delta T}\right) w \exp \left(-\frac{\left(Q_{t}-Q\right)^{2}}{2 \sigma^{2}}\right)
$$

Tunable parameter ΔT :

- $\Delta T \rightarrow$ 0: No Metadynamics
- $\Delta T \rightarrow \infty$: Original metadynamics

Construction of SU(3) instantons

Based on [Jahn' 19]

- Construction of instanton with radius ρ centered around z
- Embed SU(2) BPST instantons into SU(3)
- In singular gauge the vector potential is given by

$$
A_{\mu}=\eta_{a \mu \nu} \frac{\rho^{2}\left(x_{\nu}-z_{\nu}\right) \tau_{a}}{(x-z)^{2}\left((x-z)^{2}+\rho^{2}\right)}
$$

- Deal with periodicity/boundary effects by applying 150 stout smearing sweeps with $\rho_{\text {stout }}=0.12$
- For an anti-instanton replace the 't Hooft symbol $\eta_{a \mu \nu}$ with an anti 't Hooft symbol $\bar{\eta}_{a \mu \nu}$

