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Introduction

Motivation
Quantum computers offer the following possibilities:

The storage of the state vectors scales polynomially rather than exponentially
To use the Hamiltonian formulation:

Access to the real-time dynamics
No sign problem
Study with non-zero baryon density

✓ The first goal is to use a quantum computer to study the real-time dynamics of an SU(2) pure gauge
theory in its Hamiltonian formulation.

Challenges in the use of quantum computers:
Few qubits
Errors in reading the qubits
Noisy gates due to imperfect realization
Low computation resources

✓ The second goal is to explore the available error mitigation techniques to reduce the hardware error.
2 / 14



Introduction

SU(2) pure gauge lattice theory

Ĥ = g2

2

 ∑
i=links

Ê 2
i − 2x

∑
i=plaquettes

□̂i



We have considered a single-row lattice made of plaquettes:

2 and 5 plaquettes with closed boundary conditions
g is the gauge coupling and x ≡ 2/g4.

Ê 2
i is the chromoelectric field for the ith lattice link.

(Returns the electric energy stored on the lattice)

□̂i is the plaquette operator trace of the product of four gauge link operators of the ith plaquette.
(Adds or subtracts energy flux on the ith plaquette)
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Introduction

States of the theory on 2 plaquettes
The states are obtained applying the plaquette operators on the vacuum state (1). Fixing the
maximum energy flux to jmax = 1/2, there are 4 states:

The states can be represented using two qubits, one for each plaquette:
1) −→ |0⟩|0⟩, 2) −→ |0⟩|1⟩, 3) −→ |1⟩|0⟩, 4) −→ |1⟩|1⟩

The Hamiltonian representation can be obtained from the operators, and rewritten in gates as:

2
g2 H =


0 −2x −2x 0

−2x 3 0 −x
−2x 0 3 −x

0 −x −x 9
2

 = 3
8 (7 − 3Z0 − Z0Z1 − 3Z1) − x

2(3 + Z1)X0 − x
2(3 + Z0)X1
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Introduction

Time evolution circuit 2 plaquettes case
The time evolution operator exp(−iHt) can be approximated for small time-step dt using the second order
Suzuki-Trotter expansion*:

e−iHt = e−i
∑m

j=1 Hj t =
 m∏

j=1
e−iHj dt/2

1∏
j=m

e−iHj dt/2

Nt

+ O
(
m2t dt

)

The corresponding circuit of a single Suzuki-Trotter step for the 2-plaquettes lattice is:
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The code makes some optimization:
The edge CNOTs cancel out, leaving 4
CNOTs per Trotter step.

The edge rotation gates are combined
in one gate.

*[ Naomichi Hatano and Masuo Suzuki, Lect. Notes Phys. 679, 37 (2005), 2005, pp. 37–68., doi:10.1007/11526216-2]
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Introduction

Results time evolution 2 plaquettes case
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Upper panel ”raw data”
after measurement error
mitigation and randomized
compiling (Pauli-twirling)

Lower panel: final data,
using our approach called
”Self-mitigation”

x = 2.0; dt=0.08;
red solid (blue dashed) curve exact probability left (right) plaquette is on j = 1/2,(on j = 1/2)
red and blue triangles (without symbols) are physics data (mitigation data) from the ibmq lagos
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Error mitigation techniques

Self-mitigation [1/2]

The idea of using a circuit with a known result for estimating the hardware errors was already presented
in *[ M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer and W. A. de Jong, Phys. Rev. Lett. 127, no.27, 270502 (2021), doi: 10.1103/PhysRevLett.127.270502].

Self-mitigation uses an error estimation circuit identical to the physics circuit:

Our error estimation circuit has the same gates,
in the same order and the identical or opposite
variables inside the rotations gates, and therefore
it closely reproduces the physics circuit noise.

The hardware error can be estimated in how far
the final state of the error estimation circuit is
measured from the initial state.
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Error mitigation techniques

Self-mitigation [2/2]

Ptrue − 1
2

Pcomputed − 1
2

∣∣∣∣∣
physics run

=
Ptrue − 1

2
Pcomputed − 1

2

∣∣∣∣∣
mitigation run

On a perfect hardware the mitigation
circuit returns a probability of 1 for the
left plaquette and 0 for the right one.

red error bar without symbols
mitigation data left plaquette j = 1/2
from the ibmq lagos.

blue error bar without symbols
mitigation data right plaquette
j = 1/2 from the ibmq lagos.

red (blue) triangles left (right)
plaquette j = 1/2 data from the
ibmq lagos.
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Error mitigation techniques

Self-mitigation [2/2]

On a perfect hardware the mitigation
circuit returns a probability of 1 for the
left plaquette and 0 for the right one.

red error bar without symbols
mitigation data left plaquette j = 1/2
from the ibmq lagos.

blue error bar without symbols
mitigation data right plaquette
j = 1/2 from the ibmq lagos.

red (blue) triangles left (right)
plaquette j = 1/2 data from the
ibmq lagos.
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Measurement protocol

Measurement protocol
On the hardware ibmq lagos 300 circuits with 104 hits can be submitted as a single list.

Submit the 2n circuits for the mitigation of measurement error.
(4 circuit for the 2 plaquettes case)

Submit the randomized compiling circuits for the error estimation circuits and the physics circuits
(148 error estimation circuits and 148 physics circuits)

Collect all the measurements

Apply the measurement-error calibration matrix to the self-mitigation and physics results

Use the self-mitigation equation to mitigate the hardware error on the physics result:

Ptrue − 1
2

Pcomputed − 1
2

∣∣∣∣∣
physics run

=
Ptrue − 1

2
Pcomputed − 1

2

∣∣∣∣∣
mitigation run

Calculate the error of the error mitigation and physics results as the sum in quadrature of the statistical
error from the 104 hits and the 1480 bootstrap samples.
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An example of dynamical process in real-time

A traveling excitation

Initial state: left plaquette on.

x = 0.8, dt = 0.12, 2 Trotter steps.

red solid curve exact probability left
plaquette on j = 1/2.

blue dashed curve exact probability
right plaquette on j = 1/2.

red and blue triangles are calculations
on the ibmq lagos.

For x < 1 the dominant states are the low energy ones and these are the single-plaquette states,
therefore traveling excitation across the lattice are visible.
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An example of dynamical process in real-time

Going toward a larger lattice: 5 plaquettes

Initial state: center plaquette on

x = 2.0, 4 Trotter steps,
various time step sizes;

full symbols are calculations on the
ibmq lagos after self-mitigation.

open symbols are obtained using
zero-noise extrapolation with 3
CNOTs every CNOT.

5 plaquettes is the largest lattice implementable on a 7-qubits hardware without swaps due to qubits
connectivity.
zero-noise extrapolation consist of creating new circuits with extra CNOT gates and then fitting the
result to extract the zero noise limit.
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Conclusions

Take-home message from our work

The IBM gate based quantum computer can be successfully used to study the real-time evolution of a
non-Abelian lattice gauge theory.

The real-time evolution study was extended to a time range much larger than previous study on
non-Abelian gauge theories.

As an example of real-time dynamical process: local excitation moving across the lattice was observed.

Measurement mitigation and randomized compiling were important error mitigation tools in our study,
but our approach Self-mitigation that uses the same physics circuit as it own noise-mitigation circuit,
was the tool for achieving the extra mile.

Self-mitigation can be successfully combined with zero-noise extrapolation if extra error mitigation is
needed.

Self-mitigation was successfully used recently:
[ Y. Y. Atas, J. F. Haase, J. Zhang, V. Wei, S. M.-L. Pfaendler, R. Lewis and C. Muschik, Real-time evolution of SU(3) hadrons on a quantum computer, arXiv:2207.03473 ]
see also: [R. C. Farrell,I. A. Chernyshev, S. J. M. Powell, N. A. Zemlevskiy, M. Illa and M. J. Savage,Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I)
Axial Gauge, arXiv:2207.01731]

13 / 14

https://arxiv.org/abs/2207.03473
https://arxiv.org/abs/2207.01731


Thank you for your time!
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Backup Slides

SU(2) pure gauge lattice theory, more about the operators

Ĥ = g2

2

 ∑
i=links

Ê 2
i − 2x

∑
i=plaquettes

□̂i


Multiplicities used for the basis states, E ≡ 2jE + 1 .

|ψ⟩ = |jE ⟩ |jA⟩ |jB⟩ |jF ⟩ |jC⟩ |jD⟩ |jG⟩g is the coupling constant and x ≡ 2/g4.
Ê 2

i is the chromoelectric field for the ith lattice link.
⟨ψfinal|

∑
i Ê 2

i |ψinitial⟩ = ∑L
i=A ji(ji + 1) δfinal,initial

□̂i is the plaquette operator trace of the product of four gauge link operators of the ith plaquette.
⟨ψfinal|□1 |ψinitial⟩ = (−1)jA+jB+jC +jD+2JE +2JF +2jI+2jJ√

2jE + 1
√

2JE + 1
√

2jJ + 1
√

2JJ + 1
√

2jF + 1
√

2JF + 1
√

2jI + 1
√

2JI + 1{
jA jE jI
1
2 JI JE

} {
jB jF jI
1
2 JI JF

} {
jC jE jJ
1
2 JJ JE

} {
jD jF jJ
1
2 JJ JF

}
where ji and Ji are the links in |ψinitial⟩ and |ψfinal⟩, respectively.
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The two different regimes x < 1 and x > 1 for the time evolution [1/2]
For small x, the chromomagnetic contribution is negligible, therefore at low energy the dominant states
are weakly coupled chromoelectric eigenstates. The single-plaquette states move across the lattice.
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The single-plaquette propagation time is larger for small x, diverging for x = 0, where the Hamiltonian
is diagonal, containing only the chromoelectric term, and the single-plaquette are eigenstate, therefore
are constant in time.
In the right figure, increasing x let higher frequencies to appear as oscillations superimposed to the
single-plaquette transition.
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The two different regimes x < 1 and x > 1 for the time evolution [2/2]
For x larger than 1 at larger energy, the chromomagnetic contribution dominates mixing the
single-plaquette states. This is evident by the presence of many higher frequencies superimposed to the
single-plaquettes transitions.
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Larger is x more high frequencies are present as evident moving from left figure at x = 1.5 to right
figure at x = 5.0
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The 5 plaquettes case [1/2]
From the N plaquettes Hamiltonian written using gates, the 5 plaquettes case is obtained with N=5:

H = g2

2 (hE + hB) ,

hE = 3
8(3N + 1) − 9

8(Z0 + ZN−1) − 3
4

N−2∑
n=1

Zn

−3
8

N−2∑
n=0

ZnZn+1 ,

hB = −x
2(3 + Z1)X0 − x

2(3 + ZN−2)XN−1

−x
8

N−2∑
n=1

(9 + 3Zn−1 + 3Zn+1 + Zn−1Zn+1)Xn .

5 plaquettes lattice:

Initial state used:

Dashed line j = 0 solid tick line j = 1/2

A 7 qubits hardware such as ibmq lagos has only 5 qubits chain with
nearest-neighbor connectivity, therefore 5 plaquettes is the current largest lattice.
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The 5 plaquettes case [2/2]

The corresponding time evolution circuit of a single Suzuki-Trotter step for the 5-plaquettes lattice is:
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The code makes some optimization:
The edge CNOTs cancel out, leaving
22 CNOTs per Trotter step.

The edge rotation gates are combined
in one gate.
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Mitigation of measurement error
Measurement error mitigation is the procedure needed to correct the hardware errors in measuring the
qubits state. Working with n qubits there are 2n possible states. Each state should be recreated with a
circuit and measured to construct the 2n × 2n calibration matrix, whose entries are the probabilities that a
particular states once is measured has a superposition with another state. This matrix is then applied to the
measurements of the physics circuit.

In the case of 2 plaquettes lattice we use 2 qubits, therefore there are 4 mitigation circuits:

A calibration matrix looks like :
0.9865 0.0131 0.0064 0.0003
0.0084 0.9817 0.0002 0.008
0.0049 0.0001 0.9832 0.0125
0.0002 0.0051 0.0102 0.9792


|00⟩
|01⟩
|10⟩
|11⟩

In case of no hardware errors for example on the
simulator, the matrix is diagonal meaning that
the states have no superposition with each other.

Normally the hardware makes errors and the
matrix is not diagonal.
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Randomized compiling* (Pauli-twirling)

Randomized compiling is a technique to transform the CNOT coherent noise into incoherent noise.
This is done by ”surrounding” a CNOT gate by Pauli or identity gates creating a circuit equivalent to a
single CNOT gate.

It can be shown that there are 16 possible options:

X X

X

Y Y

X

Z Z

X X

X X

X

Y Y

X

Z Z

X X

Z

Y Y

X Y

Y Z

Y X

Y Z

Z

Y Y

Z

Z Z

X Y

Z Y

Y X

Z Y

Z

Z Z

The circuit should be runned a sufficient number of times to randomly access all the combinations for
the ”surrounding” gates of each CNOT gate in the physics circuit.

*[ Joel J. Wallman and Joseph Emerson, Phys. Rev. A 94 052325 (2016), doi: 10.1103/PhysRevA.94.052325
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Zero-noise extrapolation *
The method consists in study the circuit noise by creating copies of the original circuits where the noise is
artificially increase by replacing each CNOT gate by odd multiplet (triplet, quintet etc.) of CNOTS. The
zero-noise limit is extracted by fitting the circuits measurements with a function of the CNOT multiplets.

The original circuit:

Gates Gates Gates

Gates Gates Gates

A copy of the original circuit with each CNOT gates
replaced by a CNOT triplet:

Gates Gates Gates

Gates Gates Gates

●

●

●
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A possible linear extrapolation of the
zero-noise limit as the line intercept with
the y-axis.

*[ Y. Li and S.C. Benjamin, ”Efficient Variational Quantum Simulator Incorporating Active Error Minimization”, Phys. Rev X 7 021050 (2017), doi:10.1103/PhysRevX.7.021050]
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