Oscillating autocorrelation and the HMC algorithm

Falk Zimmermann fzimmermann@hiskp.uni-bonn.de

Helmholtz-Institut für Strahlen- und Kernphysik

39th International Symposium on Lattice Field Theory August 2022

Algorithm:

1. remove τ average and IR filter

$$c_{\lambda}(t, au) \; \equiv \; \sum_{ au'=1}^{N} [c(t, au') - \langle c
angle_{ au}(t)] rac{1}{\sqrt{2\pi\lambda^2}} e^{-rac{(au- au')^2}{2\lambda^2}}$$

2. normalise each time slice, respectively

$$ar{c}(t, au) \; \equiv \; rac{c_{\lambda}(t, au) - \langle c_{\lambda}
angle_{ au}(t)}{\sigma_{ au}[c](t)}$$

3. remove all t means, respectively

$$ar{ar{c}}_{\lambda}(t, au) \; \equiv \; ar{c}_{\lambda}(t, au) - \langle ar{c}_{\lambda}
angle_t(au)$$

t-shift first: $c(t) \rightarrow c(t+1) - c(t)$ remove excited states first via cosh fit

Meta correlation

The fluctuation fields $\bar{c}(\tau,t)$ & $\bar{c}(\tau,t)$ are t-isotropic and one may study their autocorrelations

• generalised 2d-correlation: $\Gamma[c_a, c_b](\Delta \tau, t)$

▶ standard AC for time slice t: $\Gamma_t[c_a, c_b](\Delta \tau)$

▶ and the *t*-averaged AC: $\langle \Gamma_t[c_a, c_b] \rangle_t(\Delta \tau)$

for fields $c_a=ar{c}[\eta_i^{ ext{connected}}]$ and the topology correlator $c[qq_{10}]$ with $q\propto tr[F_{\mu\nu}F^{\mu\nu}]$, $N_{ ext{HYP}}=10$.

Oscillating autocorrelation

Challenge:

Complex and/or hard to estimate autocorrelation $\Gamma(\tau)$

Prime examples:

- ► long AC with noisy tail
 - ightarrow prevents precise estimation of the integrated AC time au_{int} .
 - \rightarrow and variance estimation $\sigma^2 = 2\tau_{\rm int}\Gamma(0)/N$
- non-stationary stochastic process: dependence on iteration number τ $\Gamma(\Delta\tau) := \langle \hat{o}(0)\hat{o}(\Delta\tau) \rangle_{\text{independent runs}} \neq \langle \hat{o}(\tau)\hat{o}(\Delta\tau + \tau) \rangle_{\text{independent runs}} \text{ for } \tau > 0$

Madras-Sokal formula

expected variance of the normalised AC $\rho(\tau) \equiv \Gamma(\tau)/\Gamma(0)$:

[Luscher:2004pav]

[Wolff:2003sm]

$$\langle \delta \rho^2(\tau) \rangle \approx \frac{1}{N} \sum_{k=1}^{\infty} \{ \rho(k+\tau) + \rho(k-\tau) - 2\rho(k)\rho(\tau) \}$$

is not valid for non-stationary stochastic processes!

An effective number of independent DOF

Idea 1: entropy ${\cal H}$ of a distribution is a measure for the amount of contained information:

$$N_{\rm eff}[c] \propto \mathcal{H}[p[c_a](t, au)]$$

Idea 2: Interested in the ratio given by the entropy of the autocorrelated distribution $\mathcal{H}[Corr]$ divided by $\mathcal{H}[\operatorname{diag}(Corr)]$. Advantages:

▶ No normalisation needed: don't care about units of information (bits, nats)

It can be shown, that the Shannon entropy $\mathcal{H}[p(x)] \equiv -\int_x p(x) \log p(x) dx$ for multiple (n) normal p-distributions with correlation Corr:

$$\mathcal{H}[c] = \log\left(\sqrt{2\pi}\det(Corr)\right) + n/2$$

$$N_{ ext{eff}}[c] \ \equiv rac{\mathcal{H}[p, \mathit{Corr}]}{\mathcal{H}[p, \mathbb{1}]} \ = \ rac{\log \left(\sqrt{2\pi \det^2(\mathit{Corr})} \
ight) + N_{ ext{conf}}/2}{\log \left(\sqrt{(2\pi \sigma_f^2)^{N_{ ext{conf}}}} \
ight) + N_{ ext{conf}}/2}$$

Entropy of continuous distributions

$$\mathcal{H}(p) \equiv -\sum_{x} p(x) \log p(x) \rightarrow -\int p(x) \log p(x) dx$$

Naive generalisation of discrete \mathcal{H} for continuous p distributions is flawed:

- ▶ if p is approximated by a histogram h with n_{classes} $\rightarrow \mathcal{H}$ strongly depends on n_{classes}
- consider a simple rectangular probability distribution, represented by:

$$h_1(c)=1$$
 with $n_{ ext{classes}}=1$ & $h_2(c)=1/2$ with $n_{ ext{classes}}=2$ $ightarrow \mathcal{H}[h_1]=0
eq \mathcal{H}[h_2]=\log 2$

▶ naive definition widely in use: $\mathcal{H}[\mathcal{N}(\mu,\sigma)] = \frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2}$... $\mathcal{H}[\mathcal{N}]$ becomes negative $\Leftrightarrow \sigma^2 < 1/2\pi e$

Limiting density:

$$\mathcal{H} \equiv -\int_x p(x) \log \frac{p(x)}{m(x)} dx$$
, $m(x)$ uniform distribution: "resolution"

[Jaynes:1963]

Determining the resolution m(x)

The resolution has a large impact on the amount of information needed to store an invent drawn from $p(x) \to \text{Need}$ to compute the resolution for each element of $Corr(\tau, t)$:

Idea: increasing the resolution $m=n_{\text{classes}}^{-1}$ of a histogram h increases $\mathcal{H}[h]$ slower if there is more than uniform noise.

Algorithm:

input: list L of data pts

- 1. generate histogram h[L], $n_{classes} = n_0$
- 2. draw N_{samples} lists G_s of length $(L) \sim h[L]$
- 3. $n_i := n_0$, iterate: at resolution $n_{\text{classes}} := n_i$ generate
 - ightharpoonup generic histogram samples $h_s[G_s]$
 - ightharpoonup the true histogram $h_{\text{True}}[L]$
 - $\stackrel{\blacktriangleright}{\longrightarrow} \inf \langle \mathcal{H}[h_s] \rangle_s \mathcal{H}[h_{\mathsf{True}}] > \sigma_c$
 - $n_0 := n_i$, go to 1.
 - ightharpoonup increase $n_i := max(1.1n_i, n_i + 1)$

Gives lower boundary of m.

Toeplitz matrix

Main task is the computation of the determinant of the $N_{conf} \times N_{conf}$ autocorrelation matrix Corr:

$$Corr(\tau_1, \tau_2) \equiv \sqrt{\Gamma_a(|\tau_1 - \tau_2|) * \Gamma_b(|\tau_1 - \tau_2|)}$$
 for correlators a, b

- \rightarrow simple structure: constant diagonals!
- ▶ so called "Toeplitz matrix"
- ightharpoonup characterized by a N_{conf} vector T
- computation of is not trivial!
- ightharpoonup error of the AC: repeated for each point au

Algorithm:

"A fast elementary algorithm for computing the determinant of toeplitz matrices" [Cinkir:2011]

- ▶ complexity $\mathcal{O}((N_{\text{cut-off}} 1)^3 \cdot log(N))$
- ▶ $N_{\text{cut-off}} \approx \frac{1}{2} N_{\text{conf}} \leftarrow \text{AC oscillations}$ $N_{\text{cut-off}} \ll N_{\text{conf}}$ may even result in $\det(\textit{Corr}) < 0$!
- was generalized for block toeplitz matrices

Result1: Oscillating autocorrelation

Example1: AC of connected eta_l (LHS) and η_s correlators (RHS) for $\lambda=68$

Result1: Oscillating autocorrelation

Example2: topological charge q via an improved version of $tr[F_{\mu\nu}F^{\mu\nu}]$ with $N_{\rm HYP}=10$ smearing steps.

Amplitudes:

How much of the signal is left?

• define relative amplitude via the sd ratio of fields c_{λ} & $c_{\lambda=0}$:

$$A_{\lambda} \equiv \sigma_{t, au}\left[c_{\lambda}(t, au)/\sigma_{ au}[c_{\lambda=0}](t)
ight]$$

- → between 20% and 40% left after IR-filtering
- ▶ smoothing introduces AC such that N/λ configurations remain independent
 - ightharpoonup fraction $O(1/\lambda)$ of the original information
 - ▶ neglecting the (small) AC of the UV-contributions

The latter effect should be dominant and explains why observables usually don't show oscillations.

 λ

Result2: coupling to (space)-time modes

Result2: coupling to (space)-time modes

HMC, a 5D-theory

The Hamiltonian used for Molecular Dynamics part of the HMC introduces canonical momenta P for the fields U and essentially defines a 5d-theory.

The momenta are defined by the choice of the kinetic term in $H_{\rm MD}$ and the Hamiltonian EOM.

$$\mathcal{H}_{\mathsf{MD}} \equiv rac{1}{2} \sum_{\mathrm{x},\mu} P_{\mathrm{x},\mu}^2 + \mathcal{S}_{\mathsf{G}}[\mathit{U}] + \mathcal{S}_{\mathsf{PF}}[\mathit{U},\phi,\phi^\dagger]$$

- ► AC oscillations originate from 5d-theory.
- ▶ theory includes QCD → potentially complex
- similar modes seen with Fourier Acceleration [Sheta:2021hsd]:
 - bco weak coupling limit & landau gauge fixing?
 - ▶ fields decouple & perform simple harmonic motions
 - ightharpoonup showed oscillations for vec potentials A_{μ}
- not weakly coupled, here.

Randomization of momenta $P_{x,\mu} \propto e^{-P^2/2}$ at the beginning of each trajectory shall ensure ergodicity \rightarrow identify bypass?

- 1. 2nd law of thermodynamics introduces arrow of time, nevertheless.
- 2. fixed trajectory length: system left in equivalent dynamical states $\$ w lots of potential energy V & grad $V \neq 0$ @end of trajectory ...

measure for pair annihilation after 2 updates << other configuration space

Bibliography

See [Sheta:2021hsd] for related observations from Fourier Acceleration.

- Wolff, Ulli (2004). "Monte Carlo errors with less errors". In: Comput. Phys. Commun. 156. [Erratum: Comput.Phys.Commun. 176, 383 (2007)], pp. 143–153. DOI: 10.1016/S0010-4655(03)00467-3. arXiv: hep-lat/0306017.
- Luscher, Martin (2005). "Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD". In: Comput. Phys. Commun. 165, pp. 199–220. DOI: 10.1016/j.cpc.2004.10.004. arXiv: hep-lat/0409106.
- Jaynes, Edwin T. (1963). "Information Theory and Statistical Mechanics". In: Brandeis University Summer Institute: In K. Ford (ed.). Statistical Physics (PDF). Benjamin, New York 3, pp. 181–218. URL: http://bayes.wustl.edu/etj/articles/brandeis.pdf.
- Cinkir, Zubeyir (2011). A fast elementary algorithm for computing the determinant of toeplitz matrices. DOI: 10.48550/ARXIV.1102.0453. URL: https://arxiv.org/abs/1102.0453.
- Sheta, Ahmed, Yidi Zhao, and Norman H. Christ (2022). "Gauge-Fixed Fourier Acceleration". In: PoS LATTICE2021, p. 084. DOI: 10.22323/1.396.0084. arXiv: 2108.05486 [hep-lat].