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Motivation: fluctuation of correlators

Algorithm:

1. remove τ average and IR filter

cλ(t, τ) ≡
N∑

τ ′=1

[c(t, τ ′)− ⟨c⟩τ (t)]
1√
2πλ2

e
− (τ−τ′)2

2λ2

2. normalise each time slice, respectively

c̄(t, τ) ≡ cλ(t, τ)− ⟨cλ⟩τ (t)
στ [c](t)

3. remove all t means, respectively

¯̄cλ(t, τ) ≡ c̄λ(t, τ)− ⟨c̄λ⟩t(τ)

t-shift first: c(t) → c(t + 1)− c(t)
remove excited states first via cosh fit



Meta correlation

The fluctuation fields c̄(τ, t) & ¯̄c(τ, t) are t-isotropic and one may study their autocorrelations

▶ generalised 2d-correlation: Γ[ca, cb](∆τ, t)

▶ standard AC for time slice t: Γt [ca, cb](∆τ)

▶ and the t-averaged AC: ⟨Γt [ca, cb]⟩t(∆τ)

for fields ca = c̄[ηconnected
l ] and the topology correlator c[qq10] with q ∝ tr [FµνF

µν ], NHYP = 10.

−3000 −2000 −1000 0 1000 2000 3000

τ



Oscillating autocorrelation

Challenge:

Complex and/or hard to estimate autocorrelation Γ(τ)

Prime examples:

▶ long AC with noisy tail
→ prevents precise estimation of the integrated AC time τint. [Wolff:2003sm]
→ and variance estimation σ2 = 2τintΓ(0)/N

▶ non-stationary stochastic process: dependence on iteration number τ
Γ(∆τ) := ⟨ô(0)ô(∆τ)⟩independent runs ̸= ⟨ô(τ)ô(∆τ + τ)⟩independent runs for τ > 0

Madras-Sokal formula
expected variance of the normalised AC ρ(τ) ≡ Γ(τ)/Γ(0): [Luscher:2004pav]

⟨δρ2(τ)⟩ ≂ 1

N

∞∑
k=1

{ρ(k + τ) + ρ(k − τ)− 2ρ(k)ρ(τ)}

is not valid for non-stationary stochastic processes!



An effective number of independent DOF

Idea 1: entropy H of a distribution is a measure for the amount of contained information:

Neff[c] ∝ H[p[ca](t, τ)]

Idea 2: Interested in the ratio given by the entropy of the autocorrelated distribution H[Corr ] divided
by H[diag(Corr)]. Advantages:
▶ No normalisation needed: don’t care about units of information (bits, nats)

It can be shown, that the Shannon entropy H[p(x)] ≡ −
∫
x
p(x) log p(x)dx for multiple (n) normal

p-distributions with correlation Corr :

H[c] = log
(√

2π det(Corr)
)
+ n/2

Neff [c] ≡
H[p,Corr ]
H[p, 1] =

log

(√
2π det2(Corr)

)
+ Nconf/2

log
(√

(2πσ2
f )

Nconf

)
+ Nconf/2



Entropy of continuous distributions

H(p) ≡ −
∑
x

p(x) log p(x) → −
∫

p(x) log p(x) dx

Naive generalisation of discrete H for continuous p distributions is flawed:

▶ if p is approximated by a histogram h with nclasses
→ H strongly depends on nclasses

▶ consider a simple rectangular probability distribution, represented by:

h1(c) = 1 with nclasses = 1 & h2(c) = 1/2 with nclasses = 2

→ H[h1] = 0 ̸= H[h2] = log 2

▶ naive definition widely in use: H[N (µ, σ)] = 1
2
log(2πσ2) + 1

2

... H[N ] becomes negative ⇔ σ2 < 1/2πe

Limiting density:

H ≡ −
∫
x
p(x) log p(x)

m(x)
dx , m(x) uniform distribution: “resolution” [Jaynes:1963]



Determining the resolution m(x)

The resolution has a large impact on the amount of information needed to store an invent drawn from
p(x) → Need to compute the resolution for each element of Corr(τ, t):

Idea: increasing the resolution m=n−1
classes of a histogram h increases H[h] slower if there is more

than uniform noise.

Algorithm:

input: list L of data pts
1. generate histogram h[L], nclasses = n0

2. draw Nsamples lists Gs of length(L) ∼ h[L]

3. ni := n0, iterate:
at resolution nclasses := ni generate
▶ generic histogram samples hs [Gs ]
▶ the true histogram hTrue[L]

▶ if ⟨H[hs ]⟩s −H[hTrue] > σc

→
n0 := ni , go to 1.

▶ increase ni := max(1.1ni , ni + 1)
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Toeplitz matrix

Main task is the computation of the determinant of the Nconf × Nconf autocorrelation matrix Corr :

Corr(τ1, τ2) ≡
√

Γa(|τ1 − τ2|) ∗ Γb(|τ1 − τ2|) for correlators a, b

→ simple structure: constant diagonals!

▶ so called “Toeplitz matrix”

▶ characterized by a Nconf vector T

▶ computation of is not trivial!

▶ error of the AC: repeated for each point τ

Algorithm:

“A fast elementary algorithm for computing the determinant of
toeplitz matrices” [Cinkir:2011]

▶ complexity O((Ncut-off − 1)3 · log(N))

▶ Ncut-off ≈ 1
2
Nconf ← AC oscillations

Ncut-off ≪ Nconf may even result in det(Corr) < 0 !

▶ was generalized for block toeplitz matrices
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Result1: Oscillating autocorrelation

Example1: AC of connected etal (LHS) and ηs correlators (RHS) for λ = 68
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Result1: Oscillating autocorrelation

Example2: topological charge q via an improved version of tr [FµνF
µν ] with NHYP = 10 smearing steps.
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Amplitudes:

How much of the signal is left?

▶ define relative amplitude via the sd ratio
of fields cλ & cλ=0 :

Aλ ≡ σt,τ [cλ(t, τ)/στ [cλ=0](t)]

→ between 20% and 40% left after IR-filtering

▶ smoothing introduces AC such that
N/λ configurations remain independent
▶ → fraction O(1/λ) of the original information
▶ neglecting the (small) AC of the UV-contributions

The latter effect should be dominant and explains why
observables usually don’t show oscillations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450 500

ηconn
η′
conn

η
η′

ηl,conn
ηs,conn

B55, cIRλ

λ



Result2: coupling to (space)-time modes

∆τ = 0 ∆τ = 99



Result2: coupling to (space)-time modes

∆τ = 540 ∆τ = 650



HMC, a 5D-theory

The Hamiltonian used for Molecular Dynamics part of the HMC introduces canonical momenta P for
the fields U and essentially defines a 5d-theory.
The momenta are defined by the choice of the kinetic term in HMD and the Hamiltonian EOM.

HMD ≡
1

2

∑
x,µ

P2
x,µ + SG[U] + SPF[U, ϕ, ϕ†]

▶ AC oscillations originate from 5d-theory.

▶ theory includes QCD → potentially complex

▶ similar modes seen with Fourier Acceleration [Sheta:2021hsd]:
▶ bco weak coupling limit & landau gauge fixing?
▶ fields decouple & perform simple harmonic motions
▶ showed oscillations for vec potentials Aµ

▶ not weakly coupled, here.

Randomization of momenta Px,µ ∝ e−P2/2 at the beginning of each
trajectory shall ensure ergodicity → identify bypass?

1. 2nd law of thermodynamics introduces arrow of time, nevertheless.

2. fixed trajectory length: system left in equivalent dynamical states
\w lots of potential energy V & gradV ̸= 0 @end of trajectory ...

2. step

1. step

0. pair creation

measure for pair annihilation after 2 updates 
<< other configuration space

2. step

λ
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