Oscillating autocorrelation and the HMC algorithm
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Motivation: fluctuation of correlators

Algorithm:
1. remove T average and IR filter
N (r=1)?
a(t,7) = ) [e(t,7) = () ()] T=e »?

vV 27r/\2

/=1

2. normalise each time slice, respectively

a(t, 1) = (en)-(t)
o-[c](t)

3. remove all t means, respectively

c(t,r) =

a(t,7) = a(t,7) — (&)e(r)

]
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t-shift first: c(t) — c(t+1) — c(t)
via cosh fit



Meta correlation

The fluctuation fields &(7, t) & €(r,t) are t-isotropic and one may study their autocorrelations

> generalised 2d-correlation:  T[ca, cp] (AT, t)
» standard AC for time slice t: [¢[ca, co](AT)
» and the t-averaged AC: (Ce[ca, cb])e(AT)

for fields c, = E[nf°>™*"*] and the topology correlator c[qquo] with g o tr[Fu. F**], Nuve = 10.
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Oscillating autocorrelation

Challenge:
Complex and/or hard to estimate autocorrelation (1)

Prime examples:

» long AC with noisy tail
— prevents precise estimation of the integrated AC time Tin:. [Wolff:2003sm]
— and variance estimation ¢° = 27,.['(0)/N

» non-stationary stochastic process: dependence on iteration number 7
r(AT) = <6(0)6(AT)>independent runs 7é <6(T)6(AT + T))independent runs for 7 >0

Madras-Sokal formula

expected variance of the normalised AC p(7) = I'()/(0): [Luscher:2004pav]
1 o0
2 -~ — p— p—
Op°(mh = kEZI{P(k +7) + plk —7) = 2p(k)p(7)}

is not valid for non-stationary stochastic processes!



An effective number of independent DOF

Idea 1: entropy H of a distribution is a measure for the amount of contained information:
Neii[c] oc H[p[co](t,7)]

Idea 2: Interested in the ratio given by the entropy of the autocorrelated distribution #[Corr] divided
by #[diag(Corr)]. Advantages:
» No normalisation needed: don’t care about units of information (bits, nats)

It can be shown, that the Shannon entropy H[p(x)] = — [ p(x)log p(x)dx for multiple (n) normal
p-distributions with correlation Corr:

Hlc] = log (\/ﬂdet(Corr) ) +n/2

2
H[p, Corr] log < 27 det*(Corr) ) + Neont/2

Hp 1 0g (/2702 e ) + Neowi/2

Negt[c] =



Entropy of continuous distributions

Hp) = =Y p()logp() = — [ p(x)logp(x) dx

X

Naive generalisation of discrete H for continuous p distributions is flawed:
» if p is approximated by a histogram h with ngjasses
— H strongly depends on Ngjasses
» consider a simple rectangular probability distribution, represented by:
hi(c) =1 with Naasses =1 & hao(c) = 1/2 with Nejasses = 2

— H[h] =0 # H[h] =log2

> naive definition widely in use: H[N(u,0)] = 3 log(2mo?) + 1
... H[N] becomes negative < o2 < 1/2re

Limiting density:
H =~ [, p(x)log 22 dx , m(x) uniform distribution: “resolution”

m(x)

[Jaynes:1963]



Determining the resolution m(x)

The resolution has a large impact on the amount of information needed to store an invent drawn from
p(x) — Need to compute the resolution for each element of Corr(r, t):

-1

Idea: increasing the resolution m=n_, .

than uniform noise.

Algorithm:
input: list L of data pts

1. generate histogram h[L], Nciasses = Mo

2. draw Nsamples lists Gs of length(L) ~
3. nj := ng, iterate:
at resolution Neasses 1= N; generate

> generic histogram samples hs[Gs]
> the true histogram hrye[L]

> if (H[hs])s — H[hTrue] > oc
—
ng := nj, go to 1.
» increase n; := max(1.1nj,n; + 1)

Gives lower boundary of m.

of a histogram h increases H[h] slower if there is more
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Toeplitz matrix

Main task is the computation of the determinant of the Neonf X Neons autocorrelation matrix Corr:

Corr(r1,m) = /Ta(|r1 — 72|) * To(J71 — 2|) for correlators a, b

— simple structure: constant diagonals!

» so called “Toeplitz matrix”
» characterized by a Neons vector T
» computation of is not triviall

» error of the AC: repeated for each point 7

Algorithm:

“A fast elementary algorithm for computing the determinant of
toeplitz matrices” [Cinkir:2011]
> complexity O((Neytoff — 1)° - log(N))
> Neutoff & 3 Neont — AC oscillations

Neyt-off € Neons may even result in det(Corr) < 0!

> was generalized for block toeplitz matrices




Resultl: Oscillating autocorrelation

Examplel: AC of connected eta; (LHS) and 75 correlators (RHS) for A = 68
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Resultl: Oscillating autocorrelation

Example2: topological charge g via an improved version of tr[F., F*"] with Nuyp = 10 smearing steps.

A =36 A =304



Amplitudes:

How much of the signal is left?

» define relative amplitude via the sd ratio
of fields ¢\ & cr—o :

Ax = oe[ea(t, 7) /o [ex=o](t)]

— between 20% and 40% left after IR-filtering
» smoothing introduces AC such that
N/ configurations remain independent

» — fraction O(1/X) of the original information
> neglecting the (small) AC of the UV-contributions

The latter effect should be dominant and explains why
observables usually don’t show oscillations.
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Result2: coupling to (space)-time modes
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HMC, a 5D-theory

The Hamiltonian used for Molecular Dynamics part of the HMC introduces canonical momenta P for
the fields U and essentially defines a 5d-theory.
The momenta are defined by the choice of the kinetic term in Hvp and the Hamiltonian EOM.

Huvp = = Z P, + Sc[U] + See[U, ¢, 6]
Xy [ Vs B tiﬁ:\\

» AC oscillations originate from 5d-theory.
» theory includes QCD — potentially complex

» similar modes seen with Fourier Acceleration [Sheta:2021hsd]:

» bco weak coupling limit & landau gauge fixing?
> fields decouple & perform simple harmonic motions
> showed oscillations for vec potentials Ay,

» not weakly coupled, here.

N _p? -
Randomization of momenta P,, o e " /2 at the beginning of each

trajectory shall ensure ergodicity — identify bypass?

1. 2nd law of thermodynamics introduces arrow of time, nevertheless. T Sonsncsestt’

measure for pair annihilation after 2 updates

2. fixed trajectory length: system left in equivalent dynamical states << other configuration space
\w lots of potential energy V & gradV # 0 @end of trajectory ... A
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