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• Massive Schwinger model with a -term: 

 

• Apply a chiral transformation:  
,      

 

• In the temporal gauge ,   

 

and the Gauss law  

θ

ℒ = −
1
4

FμνFμν +
gθ
4π

ϵμνFμν + iψ̄γμ(∂μ + igAμ)ψ − mψ̄ ψ

ψ → ei θ
2 γ5ψ ψ̄ → ψ̄ei θ

2 γ5

ℒ = −
1
4

FμνFμν + iψ̄γμ(∂μ + igAμ)ψ − mψ̄eiθγ5ψ

A0 = 0 E = F10 = − ·A1

H = ∫ dx [−iψ̄γ1(∂1 + igA1)ψ + mψ̄eiθγ5ψ +
1
2

E2]
∂1E = gψ̄γ0ψ Schwinger, PR125 (1962), 

Coleman, Jackiw, Susskind, AP93 (1975)
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• One-dimensional lattice of size  

 

         

• Staggered fermions:  
   for even ,        for odd  

• Rescaled fields  
,  ,  ,    

• Gauss law:   

N

H = − i
N−1

∑
n=1

( 1
2a

− (−1)n m
2

sin θ) [χ†
neiϕnχn+1 − χ†

n+1e
−iϕnχn]

+ m cos θ
N

∑
n=1

(−1)n χ†
n χn +

g2a
2

N−1

∑
n=1

L2
n

ψ(x) = (ψu(x), ψd(x))T

χn = aψu(xn) n χn = aψd(xn) n

A1(xn) → − ϕn/(ag) E(xn) → gLn w = 1/(2a) J = ga2/2

Ln − Ln−1 = χ†
n χn −

1 − (−1)n

2
Chakraborty, Honda, Izubuchi, Kikuchi, 
Tomiya, PRD105 (2022),  
Hamer, Weihong, Oitmaa, PRD56 (1997)
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• Jordan-Wigner transformation  

 

• ,    set  (shift in ) 

• Absorb phases:   

χn = (∏
l<n

− iZl) Xn − iYn

2

Ln = L0 +
1
2

n

∑
l=1

(Zl + (−1)l) L0 = 0 θ

χn → ∏
l<n

[e−iϕn]χn

Chakraborty, Honda, Izubuchi, Kikuchi, 
Tomiya, PRD105 (2022),  
Hamer, Weihong, Oitmaa, PRD56 (1997)
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• Final Hamiltonian:   

 

 

H = HZZ + H± + HZ

HZZ =
J
2

N−1

∑
n=2

∑
1≤k<l≤n

ZkZl

H± =
1
2

N−1

∑
n=1

(w − (−1)n m
2

sin θ) [XnXn+1 + YnYn+1]

HZ =
m cos θ

2

N

∑
n=1

(−1)nZn −
J
2

N−1

∑
n=1

(n mod 2)
n

∑
l=1

Zl

Chakraborty, Honda, Izubuchi, Kikuchi, 
Tomiya, PRD105 (2022),  
Hamer, Weihong, Oitmaa, PRD56 (1997)
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• In this context also called Adiabatic State Preparation (ASP) 
• Rely on the adiabatic theorem: the system will remain in the ground 

state if the perturbation is slow and there is a gap 

• Find a Hamiltonian   whose ground state  is known 

• Construct an adiabatic Hamiltonian   that interpolates between 
  and , i.e.   and   

• The ground state  of   is then obtained through evolution:  

 

• In practice,   is finite so the evolution is not infinitely slow

H0 |vac⟩0

HA(t)
H0 H HA(t = 0) = H0 HA(t = T ) = H

|vac⟩ H

|vac⟩ = lim
T→∞

𝒯 exp (−i∫
T

0
dt HA(t)) |vac⟩0

T

Farhi, Goldstone, Gutmann, Sipser, quant-ph/0001106
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• Let   be the instantaneous eigenstates of  
 

• The state at time  
 

• The expansion coefficients satisfy  

 

• The adiabatic approximation = neglecting r.h.s. 

|n(t)⟩ HA(t)
HA(t) |n(t)⟩ = En(t) |n(t)⟩

t
|ψ(t)⟩ = ∑

n

cn(t) |n(t)⟩

·cm(t) + ( i
ℏ

Em(t) + ⟨m(t) | ·m(t)⟩) cm(t) = ∑
m≠n

⟨m(t) | ·HA(t) |n(t)⟩
Em(t) − En(t)

cn(t)

Alexei Bazavov (MSU) Aug 9, 2022 8
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• Then  
 

,      

and thus  

cm(t) = cm(0)eiθm(t)eiγm(t)

θm(t) ≡ − ∫
t

0

Em(t′�)
ℏ

dt′ � γm(t) = i∫
t

0
⟨m(t′�) | ·m(t′ �)⟩dt′ �

|cm(t) |2 = |cm(t = 0) |2

Quantum Adiabatic Evolution (QAE)
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• Split the Hamiltonian:  
,      

• The system can be prepared in the ground state of     

• Commonly used interpolating Hamiltonian  
 

• This amounts to evolving the parameters  

,    ,     

 

• Trotter-Suzuki decomposition to represent  (1st, 2nd order)

H = H0 + H± H0 = HZZ + HZ |m→m0,θ→0

H0 |1010…10⟩

HA(t) = (1 − t)H0 + tH

w →
ti
T

w θ →
ti
T

θ m → (1 −
ti
T ) m0 +

ti
T

m

t0 = 0 < t1 < t2 < … < tM = T
e−iHA(t)δt

Quantum Adiabatic Evolution (QAE)
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• Total time ,    steps 
• Time steps: 

,                                linear (L)  

,        sine (S)  

,     cosine (C)

T M

δtn =
T
M

δtn = 2
T
M

sin2 (π
n
M )

δtn = 2
T
M

cos2 (π
n

2M )

Quantum Adiabatic Evolution (QAE)
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Quantum Adiabatic Evolution (QAE) + noise
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• Idea: instead of evolving with fixed step size make the step sizes 
parameters for optimization  

 
and rely on the variational principle to minimize  

 

• Hybrid algorithm:  
energy evaluation — quantum  
minimization — classical  

|ψM( ⃗β , ⃗γ)⟩ = e−iβMH0e−iγMH…e−iβ1H0e−iγ1H |ψ0⟩

⟨ψM( ⃗β , ⃗γ) |H |ψM( ⃗β , ⃗γ)⟩ ≥ E0

Farhi, Goldstone, Gutmann, 1411.4028
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Method # of Steps # of CNOT/Qubit E0 GS Overlap

ASP L1 10 45 �1.7140 0.9827
ASP S1 10 45 �1.6751 0.9599
ASP C1 10 45 �1.7144 0.9827

ASP L2 10 75 �1.7089 0.9729
ASP S2 10 75 �1.7204 0.9847
ASP C2 10 75 �1.7260 0.9880

QAOA 2 18 �1.7353 0.9975
QAOA 3 27 �1.7357 0.9977

RA 9 37 �1.7387 0.9991

Table 1: Comparison of final states from ASP and QAOA for the same

system as in Fig. ??. For reference, the ground state energy from exact

diagonalizaition is E0 = �1.7386. Calculations are performed using the

Qiskit software package from IBM [?].

1

• Exact ground state energy E0 = − 1.7386
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• Object system  coupled to  ancilla qubits (rodeo arena) 

• Controlled time evolution for time   followed by the phase gate  
,   — preset parameter

Hobj N

tn
|0⟩⟨0 | + eiEtn |1⟩⟨1 | E

Rodeo Algorithm for Quantum Computing

Kenneth Choi,1 Dean Lee,2 Joey Bonitati,2 Zhengrong Qian,2 and Jacob Watkins2

1
Ridgefield High School, Ridgefield, CT 06877, USA

2
Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, MI 48824, USA

We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamil-
tonian within a selected energy interval [E � ✏, E + ✏]. In order to reduce the spectral weight of all other
eigenvectors by a suppression factor �, the required computational effort scales as O[| log �|/(p✏)], where p is
the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo al-
gorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter
E. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic
factor that depends on the proximity of their energy to E. In this manner, we converge to the target eigenvector
with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method
can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples.
For energy eigenvalue determination with error ✏, the computational scaling is O[(log ✏)2/(p✏)]. For eigenstate
preparation, the computational scaling is O(log�/p), where � is the magnitude of the orthogonal component
of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation
or adiabatic evolution.

Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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We present a stochastic quantum computing algorithm that can prepare any eigenvector of a quantum Hamil-
tonian within a selected energy interval [E � ✏, E + ✏]. In order to reduce the spectral weight of all other
eigenvectors by a suppression factor �, the required computational effort scales as O[| log �|/(p✏)], where p is
the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo al-
gorithm, uses auxiliary qubits to control the time evolution of the Hamiltonian minus some tunable parameter
E. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic
factor that depends on the proximity of their energy to E. In this manner, we converge to the target eigenvector
with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method
can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples.
For energy eigenvalue determination with error ✏, the computational scaling is O[(log ✏)2/(p✏)]. For eigenstate
preparation, the computational scaling is O(log�/p), where � is the magnitude of the orthogonal component
of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation
or adiabatic evolution.

Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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tonian within a selected energy interval [E � ✏, E + ✏]. In order to reduce the spectral weight of all other
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the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo al-
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E. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic
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preparation, the computational scaling is O(log�/p), where � is the magnitude of the orthogonal component
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Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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tonian within a selected energy interval [E � ✏, E + ✏]. In order to reduce the spectral weight of all other
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Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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tonian within a selected energy interval [E � ✏, E + ✏]. In order to reduce the spectral weight of all other
eigenvectors by a suppression factor �, the required computational effort scales as O[| log �|/(p✏)], where p is
the squared overlap of the initial state with the target eigenvector. The method, which we call the rodeo al-
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E. With each auxiliary qubit measurement, the amplitudes of the eigenvectors are multiplied by a stochastic
factor that depends on the proximity of their energy to E. In this manner, we converge to the target eigenvector
with exponential accuracy in the number of measurements. In addition to preparing eigenvectors, the method
can also compute the full spectrum of the Hamiltonian. We illustrate the performance with several examples.
For energy eigenvalue determination with error ✏, the computational scaling is O[(log ✏)2/(p✏)]. For eigenstate
preparation, the computational scaling is O(log�/p), where � is the magnitude of the orthogonal component
of the residual vector. The speed for eigenstate preparation is exponentially faster than that for phase estimation
or adiabatic evolution.

Quantum computing is a powerful paradigm with the po-
tential to describe large complex systems and eventually per-
form computations beyond the reach of classical computing.
Recently, there have been several exciting algorithmic ad-
vances in describing the time evolution of Hamiltonians on
quantum computers using a variety of different tools [1–6].
They can be broadly categorized as either Lie-Trotter-Suzuki
product formulas [7, 8] or linear combinations of unitaries
[9]. Unfortunately, the application of these techniques for
quantum state preparation is limited by existing hardware ca-
pabilities. Quantum adiabatic evolution is one approach to
quantum state preparation that starts with an eigenstate of a
simple Hamiltonian that slowly evolves with an interpolating
time-dependent Hamiltonian until reaching the desired target
Hamiltonian [10, 11]. The problem is that calculations based
on quantum adiabatic evolution require an extended time evo-
lution that makes the computational cost prohibitive for large
systems. To address this problem, we introduce a new frame-
work for quantum state preparation and spectrum determina-
tion called the rodeo algorithm.

The rodeo algorithm employs a strategy that is opposite to
quantum adiabatic evolution. As the name suggests, the rodeo
algorithm operates by shaking off all other states until only
the target eigenvector remains. In this regard, the rodeo algo-
rithm is similar in character to the projected cooling algorithm
[12, 13]. However, the rodeo algorithm has the advantage that
it can be applied to any quantum Hamiltonian and is a recur-
sive algorithm that achieves exponential convergence in the
number of cycles. It can be used to compute the full energy
spectrum as well as prepare any energy eigenstate. While the
rodeo algorithm might appear similar to Kitaev’s iterative ver-
sion of quantum phase estimation [14] and fixed-time energy
band filtering methods [15, 16], none of these methods can be
used efficiently to prepare individual eigenstates of a general
quantum Hamiltonian.

We will refer to the Hamiltonian of interest as the object
Hamiltonian, Hobj, and the linear space which it acts upon

FIG. 1. (color online) Circuit diagram for the rodeo algorithm.

The object system starts in an arbitrary state | Ii. Each of the ancilla
qubits are initialized in the state |1i and operated on by a Hadamard
gate H. We use each ancilla qubit n = 1, · · · , N for the controlled
time evolution of the object Hamiltonian, Hobj, for time tn. This
is followed by a phase rotation P(Etn) on ancilla qubit n, another
Hadamard gate H, and then measurement.

the object system. By assumption, the object system starts
in some initial state | Ii, which in general will update after
each measurement. We will use auxiliary or ancilla qubits
coupled to the object system. In the following we use the
standard terminology, ancilla qubits. But we also mention that
this collection of ancilla qubits is also informally called the
“rodeo arena”.

If the quantum device allows for mid-circuit measurements,
then only one ancilla qubit is needed. However, here we focus
on the implementation using different ancilla qubits for each
cycle of the rodeo algorithm. Each of the ancilla qubits is
initialized in the state |1i and operated on by a Hadamard gate
H. We use each ancilla qubit n = 1, · · · , N to control the
time evolution of Hobj for time tn. In order to achieve the
desired energy filtering, we operate on each ancilla qubit n
with the phase rotation gate P(Etn), follow that with another
Hadamard gate H, and then measure the qubit. We use the
convention that P(Etn) multiplies the phase eiEtn to the |1i
state and leaves the |0i state untouched. The circuit diagram
for the rodeo algorithm is shown in Fig. 1.
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Method # of Steps # of CNOT/Qubit E0 GS Overlap

ASP L1 10 45 �1.7140 0.9827
ASP S1 10 45 �1.6751 0.9599
ASP C1 10 45 �1.7144 0.9827

ASP L2 10 75 �1.7089 0.9729
ASP S2 10 75 �1.7204 0.9847
ASP C2 10 75 �1.7260 0.9880

QAOA 2 18 �1.7353 0.9975
QAOA 3 27 �1.7357 0.9977

RA 9 37 �1.7387 0.9991

Table 1: Comparison of final states from ASP and QAOA for the same

system as in Fig. ??. For reference, the ground state energy from exact

diagonalizaition is E0 = �1.7386. Calculations are performed using the

Qiskit software package from IBM [?].

1

• Exact ground state energy E0 = − 1.7386



Conclusion

Alexei Bazavov (MSU)

• The Schwinger model with a -term can be mapped onto a quantum 
spin systems and the fermionic degrees of freedom are mapped onto 
qubits 

• The Gauss law constraint is solved explicitly 
• We compared three algorithms for evolving the system towards its 

ground state: Quantum Adiabatic Evolution (QAE), Quantum 
Approximate Optimization Algorithm (QAOA) and  
Rodeo Algorithm (RA) 

• QAE and QAOA rely on finding a starting Hamiltonian whose 
ground state can be easily initialized and do not require ancilla qubits 

• RA allows for scanning an energy range, does not require a starting 
Hamiltonian and requires ancilla qubits for controlled evolution 

• Can chain together different algorithms — preconditioning

θ
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