Quantum state preparation algorithms for the Schwinger model with a theta term

Alexei Bazavov, Brandon Henke, Leon Hostetler, Dean Lee, Huey-Wen Lin, Giovanni Pederiva, Andrea Shindler

Michigan State University

Lattice 2022 Bonn Aug 8 — 13 2022

Outline

- The model
- Lattice discretization
- Quantum Hamiltonian
- Quantum Adiabatic Evolution (QAE)
- Quantum Approximate Optimization Algorithm (QAOA)
- Rodeo Algorithm (RA)
- Conclusion

The model

• Massive Schwinger model with a θ -term:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$$

Schwinger, PR125 (1962), Coleman, Jackiw, Susskind, AP93 (1975)

The model

• Massive Schwinger model with a θ -term:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$$

• Apply a chiral transformation:

$$\psi \to e^{i\frac{\theta}{2}\gamma_5}\psi, \quad \bar{\psi} \to \bar{\psi}e^{i\frac{\theta}{2}\gamma_5}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}e^{i\theta\gamma_5}\psi$$

Schwinger, PR125 (1962), Coleman, Jackiw, Susskind, AP93 (1975)

The model

• Massive Schwinger model with a θ -term:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{g\theta}{4\pi}\epsilon_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}\psi$$

• Apply a chiral transformation:

$$\psi \to e^{i\frac{\theta}{2}\gamma_5}\psi, \quad \bar{\psi} \to \bar{\psi}e^{i\frac{\theta}{2}\gamma_5}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\gamma^{\mu}(\partial_{\mu} + igA_{\mu})\psi - m\bar{\psi}e^{i\theta\gamma_5}\psi$$

• In the temporal gauge $A_0 = 0$, $E = F^{10} = -\dot{A}^1$

$$H = \int dx \left[-i\bar{\psi}\gamma^{1}(\partial_{1} + igA_{1})\psi + m\bar{\psi}e^{i\theta\gamma_{5}}\psi + \frac{1}{2}E^{2} \right]$$

and the Gauss law $\partial_1 E = g \bar{\psi} \gamma_0 \psi$

Schwinger, PR125 (1962), Coleman, Jackiw, Susskind, AP93 (1975)

Lattice version

• One-dimensional lattice of size N

$$H = -i\sum_{n=1}^{N-1} \left(\frac{1}{2a} - (-1)^n \frac{m}{2} \sin \theta \right) \left[\chi_n^{\dagger} e^{i\phi_n} \chi_{n+1} - \chi_{n+1}^{\dagger} e^{-i\phi_n} \chi_n \right]$$

+
$$m\cos\theta \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n + \frac{g^2 a}{2} \sum_{n=1}^{N-1} L_n^2$$

Chakraborty, Honda, Izubuchi, Kikuchi, Tomiya, PRD105 (2022), Hamer, Weihong, Oitmaa, PRD56 (1997)

Lattice version

• One-dimensional lattice of size N

$$H = -i\sum_{n=1}^{N-1} \left(\frac{1}{2a} - (-1)^n \frac{m}{2} \sin \theta \right) \left[\chi_n^{\dagger} e^{i\phi_n} \chi_{n+1} - \chi_{n+1}^{\dagger} e^{-i\phi_n} \chi_n \right]$$

$$+ m\cos\theta \sum_{n=1}^{N} (-1)^n \chi_n^{\dagger} \chi_n + \frac{g^2 a}{2} \sum_{n=1}^{N-1} L_n^2$$

• Staggered fermions: $\psi(x) = (\psi_u(x), \psi_d(x))^T$

$$\chi_n = \sqrt{a}\psi_u(x_n)$$
 for even n , $\chi_n = \sqrt{a}\psi_d(x_n)$ for odd n

Rescaled fields

$$A^{1}(x_{n}) \rightarrow -\phi_{n}/(ag), E(x_{n}) \rightarrow gL_{n}, w = 1/(2a), J = ga^{2}/2$$

Chakraborty, Honda, Izubuchi, Kikuchi, Tomiya, PRD105 (2022), Hamer, Weihong, Oitmaa, PRD56 (1997)

Lattice version

• One-dimensional lattice of size N

$$H = -i\sum_{n=1}^{N-1} \left(\frac{1}{2a} - (-1)^n \frac{m}{2} \sin \theta \right) \left[\chi_n^{\dagger} e^{i\phi_n} \chi_{n+1} - \chi_{n+1}^{\dagger} e^{-i\phi_n} \chi_n \right]$$

+
$$m\cos\theta\sum_{n=1}^{N}(-1)^{n}\chi_{n}^{\dagger}\chi_{n}$$
 + $\frac{g^{2}a}{2}\sum_{n=1}^{N-1}L_{n}^{2}$

• Staggered fermions: $\psi(x) = (\psi_u(x), \psi_d(x))^T$

$$\chi_n = \sqrt{a}\psi_u(x_n)$$
 for even n , $\chi_n = \sqrt{a}\psi_d(x_n)$ for odd n

Rescaled fields

$$A^{1}(x_{n}) \rightarrow -\phi_{n}/(ag), E(x_{n}) \rightarrow gL_{n}, w = 1/(2a), J = ga^{2}/2$$

• Gauss law: $L_n - L_{n-1} = \chi_n^{\dagger} \chi_n - \frac{1 - (-1)^n}{2}$ Chakraborty, Honda, Izubuchi, Kikuchi, Tomiya, PRD105 (2022), Hamer, Weihong, Oitmaa, PRD56 (1997)

Mapping to qubits

• Jordan-Wigner transformation

$$\chi_n = \left(\prod_{l < n} - iZ_l\right) \frac{X_n - iY_n}{2}$$

•
$$L_n = L_0 + \frac{1}{2} \sum_{l=1}^n (Z_l + (-1)^l)$$
, set $L_0 = 0$ (shift in θ)

• Absorb phases:
$$\chi_n \to \prod_{l < n} [e^{-i\phi_n}]\chi_n$$

Chakraborty, Honda, Izubuchi, Kikuchi, Tomiya, PRD105 (2022), Hamer, Weihong, Oitmaa, PRD56 (1997)

Mapping to qubits

• Final Hamiltonian: $H = H_{ZZ} + H_{\pm} + H_{Z}$

$$H_{ZZ} = \frac{J}{2} \sum_{n=2}^{N-1} \sum_{1 \le k \le l \le n} Z_k Z_l$$

$$H_{\pm} = \frac{1}{2} \sum_{n=1}^{N-1} \left(w - (-1)^n \frac{m}{2} \sin \theta \right) \left[X_n X_{n+1} + Y_n Y_{n+1} \right]$$

$$H_Z = \frac{m\cos\theta}{2} \sum_{n=1}^{N} (-1)^n Z_n - \frac{J}{2} \sum_{n=1}^{N-1} (n \text{ mod } 2) \sum_{l=1}^{n} Z_l$$

Chakraborty, Honda, Izubuchi, Kikuchi, Tomiya, PRD105 (2022), Hamer, Weihong, Oitmaa, PRD56 (1997)

- In this context also called Adiabatic State Preparation (ASP)
- Rely on the adiabatic theorem: the system will remain in the ground state if the perturbation is slow and there is a gap

Farhi, Goldstone, Gutmann, Sipser, quant-ph/0001106

- In this context also called Adiabatic State Preparation (ASP)
- Rely on the adiabatic theorem: the system will remain in the ground state if the perturbation is slow and there is a gap
- Find a Hamiltonian H_0 whose ground state $|vac\rangle_0$ is known
- Construct an adiabatic Hamiltonian $H_A(t)$ that interpolates between H_0 and H, i.e. $H_A(t=0) = H_0$ and $H_A(t=T) = H$

Farhi, Goldstone, Gutmann, Sipser, quant-ph/0001106

- In this context also called Adiabatic State Preparation (ASP)
- Rely on the adiabatic theorem: the system will remain in the ground state if the perturbation is slow and there is a gap
- Find a Hamiltonian H_0 whose ground state $|vac\rangle_0$ is known
- Construct an adiabatic Hamiltonian $H_A(t)$ that interpolates between H_0 and H, i.e. $H_A(t=0) = H_0$ and $H_A(t=T) = H$
- The ground state $|vac\rangle$ of H is then obtained through evolution:

$$|vac\rangle = \lim_{T \to \infty} \mathcal{T} \exp\left(-i \int_0^T dt \, H_A(t)\right) |vac\rangle_0$$

• In practice, T is finite so the evolution is not infinitely slow

Farhi, Goldstone, Gutmann, Sipser, quant-ph/0001106

- Let $|n(t)\rangle$ be the instantaneous eigenstates of $H_A(t)$ $H_A(t)|n(t)\rangle = E_n(t)|n(t)\rangle$
- The state at time t

$$|\psi(t)\rangle = \sum_{n} c_n(t) |n(t)\rangle$$

• Let $|n(t)\rangle$ be the instantaneous eigenstates of $H_A(t)$ $H_A(t)|n(t)\rangle = E_n(t)|n(t)\rangle$

• The state at time t

$$|\psi(t)\rangle = \sum_{n} c_n(t) |n(t)\rangle$$

• The expansion coefficients satisfy

$$\dot{c}_m(t) + \left(\frac{i}{\hbar}E_m(t) + \langle m(t) | \dot{m}(t) \rangle\right)c_m(t) = \sum_{m \neq n} \frac{\langle m(t) | \dot{H}_A(t) | n(t) \rangle}{E_m(t) - E_n(t)}c_n(t)$$

• The adiabatic approximation = neglecting r.h.s.

• Then

$$c_m(t) = c_m(0)e^{i\theta_m(t)}e^{i\gamma_m(t)}$$

$$\theta_m(t) \equiv -\int_0^t \frac{E_m(t')}{\hbar}dt', \quad \gamma_m(t) = i\int_0^t \langle m(t') | \dot{m}(t') \rangle dt'$$
and thus $|c_m(t)|^2 = |c_m(t=0)|^2$

• Split the Hamiltonian:

$$H = H_0 + H_{\pm}, \quad H_0 = H_{ZZ} + H_Z|_{m \to m_0, \theta \to 0}$$

• The system can be prepared in the ground state of $H_0 = |1010...10\rangle$

• Split the Hamiltonian:

$$H = H_0 + H_{\pm}, \quad H_0 = H_{ZZ} + H_Z|_{m \to m_0, \theta \to 0}$$

- The system can be prepared in the ground state of $H_0 = |1010...10\rangle$
- Commonly used interpolating Hamiltonian $H_{\Delta}(t) = (1 t)H_0 + tH$
- This amounts to evolving the parameters

$$w \to \frac{t_i}{T} w$$
, $\theta \to \frac{t_i}{T} \theta$, $m \to \left(1 - \frac{t_i}{T}\right) m_0 + \frac{t_i}{T} m$

$$t_0 = 0 < t_1 < t_2 < \dots < t_M = T$$

• Split the Hamiltonian:

$$H = H_0 + H_{\pm}, \quad H_0 = H_{ZZ} + H_Z|_{m \to m_0, \theta \to 0}$$

- The system can be prepared in the ground state of $H_0 = |1010...10\rangle$
- Commonly used interpolating Hamiltonian $H_{\Delta}(t) = (1 t)H_0 + tH$
- This amounts to evolving the parameters

$$w \to \frac{t_i}{T} w, \quad \theta \to \frac{t_i}{T} \theta, \quad m \to \left(1 - \frac{t_i}{T}\right) m_0 + \frac{t_i}{T} m$$

$$t_0 = 0 < t_1 < t_2 < \dots < t_M = T$$

• Trotter-Suzuki decomposition to represent $e^{-iH_A(t)\delta t}$ (1st, 2nd order)

- Total time *T*, *M* steps
- Time steps:

$$\delta t_n = \frac{T}{M},$$

- Total time T, M steps
- Time steps:

$$\delta t_n = \frac{T}{M},$$
 linear (L)
$$\delta t_n = 2\frac{T}{M}\sin^2\left(\pi\frac{n}{M}\right), \quad \text{sine (S)}$$

$$\delta t_n = 2\frac{T}{M}\cos^2\left(\pi\frac{n}{2M}\right)$$
, cosine (C)

12

13

Quantum Adiabatic Evolution (QAE) + noise

Quantum Approximate Optimization Algorithm (QAOA)

• Idea: instead of evolving with fixed step size make the step sizes parameters for optimization

$$|\psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma})\rangle = e^{-i\beta_{M}H_{0}}e^{-i\gamma_{M}H}...e^{-i\beta_{1}H_{0}}e^{-i\gamma_{1}H}|\psi_{0}\rangle$$

and rely on the variational principle to minimize

$$\langle \psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma}) | H | \psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma}) \rangle \geq E_{0}$$

Farhi, Goldstone, Gutmann, 1411.4028

Quantum Approximate Optimization Algorithm (QAOA)

• Idea: instead of evolving with fixed step size make the step sizes parameters for optimization

$$|\psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma})\rangle = e^{-i\beta_{M}H_{0}}e^{-i\gamma_{M}H}...e^{-i\beta_{1}H_{0}}e^{-i\gamma_{1}H}|\psi_{0}\rangle$$
 and rely on the variational principle to minimize $\langle \psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma})|H|\psi_{M}(\overrightarrow{\beta}, \overrightarrow{\gamma})\rangle \geq E_{0}$

Hybrid algorithm:
 energy evaluation — quantum
 minimization — classical

Farhi, Goldstone, Gutmann, 1411.4028

QAE and QAOA comparison (4 qubits)

Method	# of Steps	# of CNOT/Qubit	E_0	GS Overlap
ASP L1	10	45	-1.7140	0.9827
ASP S1	10	45	-1.6751	0.9599
ASP $C1$	10	45	-1.7144	0.9827
ASP L2	10	75	-1.7089	0.9729
ASP $S2$	10	75	-1.7204	0.9847
ASP $C2$	10	75	-1.7260	0.9880
QAOA	2	18	-1.7353	0.9975
QAOA	3	27	-1.7357	0.9977

• Exact ground state energy $E_0 = -1.7386$

• Object system H_{obj} coupled to N ancilla qubits (rodeo arena)

- Object system H_{obj} coupled to N ancilla qubits (rodeo arena)
- Controlled time evolution for time t_n followed by the phase gate $|0\rangle\langle 0| + e^{iEt_n}|1\rangle\langle 1|$, E—preset parameter

Choi, Lee, Bonitati, Qian, Watkins, PRL127 (2021)

17

• The probability of measuring the ancilla qubit in state $|1\rangle$ is

$$\cos^2\left[(E_{obj}-E)t_n/2\right]$$

18

• The probability of measuring the ancilla qubit in state $|1\rangle$ is $\cos^2\left[(E_{obj}-E)t_n/2\right]$

• For
$$N$$
 ancilla qubits: $P_N = \prod_{n=1}^N \cos^2 \left[(E_{obj} - E)t_n/2 \right]$
Choi, Lee, Bonitati, Qian, Watkins, PRL127 (2021)

• Average over random t_n

19

- Average over random t_n
- The spectral weight for $E_{obj} \neq E$ is suppressed by $1/4^N$ for $N \to \infty$
- This circuit "filters" states for a given energy

19

21

QAE, QAOA and RA comparison (4 qubits)

Method	# of Steps	# of CNOT/Qubit	E_0	GS Overlap
ASP L1	10	45	-1.7140	0.9827
ASP S1	10	45	-1.6751	0.9599
ASP $C1$	10	45	-1.7144	0.9827
ASP L2	10	75	-1.7089	0.9729
ASP S2	10	75	-1.7204	0.9847
ASP $C2$	10	75	-1.7260	0.9880
QAOA	2	18	-1.7353	0.9975
QAOA	3	27	-1.7357	0.9977
RA	9	37	-1.7387	0.9991

• Exact ground state energy $E_0 = -1.7386$

Conclusion

- The Schwinger model with a θ -term can be mapped onto a quantum spin systems and the fermionic degrees of freedom are mapped onto qubits
- The Gauss law constraint is solved explicitly
- We compared three algorithms for evolving the system towards its ground state: Quantum Adiabatic Evolution (QAE), Quantum Approximate Optimization Algorithm (QAOA) and Rodeo Algorithm (RA)
- QAE and QAOA rely on finding a starting Hamiltonian whose ground state can be easily initialized and do not require ancilla qubits
- RA allows for scanning an energy range, does not require a starting Hamiltonian and requires ancilla qubits for controlled evolution
- Can chain together different algorithms preconditioning