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Abstract

e Propose a new tensor network formulation with a trial action

e Apply the formulation to 3D pure SU(2) gauge theory

= By tensor renormalization group(TRG), we obtain the result
which agrees with the one obtained by weak/strong coupling expansion

It is the first TRG application to 3D non-Abelian gauge theory
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Conjectured QCD phase diagram[Fukushima and Hatsuda, 2011]
Known that finite QCD is hard to analyze

The Monte Carlo method is difficult to apply due to the sign problem
caused by the complex action

*.* We cannot simply consider the Boltzmann weight as the probability

= Consider Tensor renormalization group(TRG) as an alternative method to Monte Carlo method
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Tensor Renormalization Group(TRG)[Levin and Nave, 2007]

A deterministic numerical analysis method that represents the partition function as a tensor
network and computes physical quantities using an appropriate information compression.

Advantages
e Free from the sign problem

e Can take large volume limit easily
computational cost o< log(Lattice size)

Disadvantages

e High computational cost for higher-dimensional theories (o D% dim+?)

e Whether it works or not depends on the model, TRG scheme, and initial tensor
Needs trial & error
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procedure

TRG algorithm

1. Tensor network representation of the partition function Z
Z = Z c ’T/jlemnzo e

iy

2. Coarse-grain the tensor: Low rank approximation (of the matrix) by singular value decomposition
S1 > S3 > --- > 0: Singular values
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How to apply TRG to field theories

To apply TRG to field theories,
we need to make tensors of a continuous field configs

Case: Scalar field[Kadoh et al., 2019]

Gauss-Hermite quadrature ) K
[ dae g(a) ~ 3 wague)
a=1
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How to apply TRG to field theories

To apply TRG to field theories,
we need to make tensors of a continuous field configs

Case: Scalar field[Kadoh et al., 2019]

Gauss-Hermite quadrature s K
[ dae g(a) ~ 3 wague)
a=1

Case: 2D Yang-Mills[Fukuma et al., 2021]

Generate configs chosen uniformly from the group manifold

1 K
[awiw)y~ %> sw)

and approximate the integral
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TRG applications to field theories

Scalar field

e 4D scalar field[Akiyama et al., 2021b]

Fermion field

e 4D Nambu-Jona-Lasinio model[Akiyama et al., 2021a]
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RG applications to field theories

Scalar field

4D scalar field[Akiyama et al., 2021b]

Fermion field

4D Nambu-Jona-Lasinio model[Akiyama et al., 2021a]

Gauge field

Introduction

2D U(1) + 6 term[Kuramashi and Yoshimura, 2020]

2D non-Abelian Higgs[Bazavov et al., 2019]

2D Yang—l\/lills[Fukuma et al., 2021, Hirasawa et al., 2021]

3D Zg[Kuramashi and Yoshimura, 2019]

4D Z»-Higgs[Akiyama and Kuramashi, 2022]

3D pure SU(2) [Kuwahara and Tsuchiya, 2022] arxiv:2205.08883(to be published in PTEP)
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Proposal of a tensor network formulation for 3D SU(N) gauge theory:

Introduce a trial action

The partition function

Z = /HdUWe*S
n,p

ENg Z ReTr(l - UNV(n))7 UMV(n) = UnvNUn+ﬂa’/U71+l/ ;LU:L v
n,u>v

Introduce a trial action while keeping Z unchanged
Add and subtract the trial action S, from the original action

— /HdUn pe (550 =5y

n,p

Sy = Z S v single link action

= Z (——ReTrUn u)

We adopt the simplest one given by the trace of a single link variable

Proposal of a tensor network formulation
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Tensor network formulation with the trial action

n,u

_ ng<€_(s_s“)>v, (Zv _ /dUe_g”(U(n’M»)

<' . U Z3V/HdUVIlt"' —ZRHS(U”“)

n,

Approximate the integral to the statistical average
under the weight of the trial action

K
1
/dUn#g Unp, Uns ,“...)%E E 9(Us, Upt s - )
i=1

H = 0(S,(U(n, 1)) o< H) corresponds to the random sampling method(cf.[Fukuma et al., 2021])
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The initial tensor T’

Based on the weight of the trial action e~ ),
generate field configs {U1,Us, - ,Uk} by the Monte Carlo method
We can obtain a A tensor from Z:
1/~ - - -
A = exp [%TY (UinU,IUlT) -3 (sv(Ui) + 5o (U;) + o (U) + SU(UZ))]
Introduce the Kronecker delta B;jri = dijri = 0i010k101
to construct a 6-rank tensor from A;jx; (cf.Exact blocking formula[Xie et al., 2012])

The initial tensor T = AQRARARBRBR B

y A0

A

Proposal of a tensor network formulation
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Tensor network representation

Tensor network representation for SU(N)
based on configs generated with the weight e~ S»(U(7:1))

T=ARARARB®BR®B

Procedure

1. Generate configs {U, Uy, -+ ,Ux} from S,(U(n, 1)) to construct the initial tensor T
2. Perform TRG
3. Repeat 1 and 2 to take the statistical average
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Numerical results for 3D pure SU(2) gauge theory
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D dependenc 1024, K=12)
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For small 3, small H is efficient = In the strong coupling regime,
the uniform distribution works well

" H = 0 corresponds to random sampling method[Fukuma et al., 2021]

For large 3, large H is efficient = In the weak coupling regime,
Numerical results for 3D pure SU(2) gauge theory tuning the variational parameter H(> 0) is crutial 15z
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Optimize the variational parameter H

In principle the partition function is independent of the variational parameter H (if K&D are large enough)
= Read off the optimized value H from the plateau
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The free energy

or e e weak coupling expansion
° ——. strong coupling expansion
. ® TRG
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The strong coupling expansion(small ) : F(8)

~36+ 262 — 33;8* + O(8°)
The weak coupling expansion(large ) : F(8) = —3logB+C + O %)

Unfortunately, we could not find the plateau in the 7 < 8 < 19 region

We expect this to be resolved by increasing K and/or improving the trial action

The TRG result agree with the one obtained by the strong/weak coupling expansion

Numerical results for 3D pure SU(2) gauge theory
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Conclusion

Summary

e Propose a new tensor network formulation based on configs
generated with the weight e~ (U (1))

e Apply the formulation to 3D SU(2) gauge theory and obtain the results that agree with
the one obtained by the strong/weak coupling expansion

Future work

e Calculate with large K

Improve the trial action

Calculate in the intermediate coupling regime

Wilson loop

Finite temperature transition

e 0 term

Extension to 4-dimension 20/21
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Construction of the initial tensor

T=A9gAY ® A® ® B B® B

If the initial T tensor is constructed exactly, the six-rank tensor needs O((K?2)%) memory
footprint.

= Install isometries[Xie et al., 2012] to truncate bond dimension from K? to D

AW

A0)

A

Construction of the initial tensor



Determine the isometries

Consider the indices for the x direction x1, z2 as the row of a matrix M
from eigen value decomposition of MM T we obtain the isometry U, for the x direction

MM =UAU)"

7 40 A0) o

P - = £

e P B ma

Isometries U, and U are obtained in the same way

Construction of the initial tensor
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