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Abstract

• Propose a new tensor network formulation with a trial action

• Apply the formulation to 3D pure SU(2) gauge theory

⇒ By tensor renormalization group(TRG), we obtain the result

which agrees with the one obtained by weak/strong coupling expansion

It is the first TRG application to 3D non-Abelian gauge theory
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Conjectured QCD phase diagram[Fukushima and Hatsuda, 2011]

Known that finite QCD is hard to analyze

The Monte Carlo method is difficult to apply due to the sign problem

caused by the complex action

∵ We cannot simply consider the Boltzmann weight as the probability

⇒ Consider Tensor renormalization group(TRG) as an alternative method to Monte Carlo method
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Tensor Renormalization Group(TRG)[Levin and Nave, 2007]

A deterministic numerical analysis method that represents the partition function as a tensor

network and computes physical quantities using an appropriate information compression.

Advantages

• Free from the sign problem

• Can take large volume limit easily

computational cost ∝ log(Lattice size)

Disadvantages

• High computational cost for higher-dimensional theories (∝ Da·dim+b)

• Whether it works or not depends on the model, TRG scheme, and initial tensor

Needs trial & error
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TRG procedure

TRG algorithm

1. Tensor network representation of the partition function Z

Z =
∑

··· ,i,···

· · ·TijklTmnio · · ·

2. Coarse-grain the tensor : Low rank approximation (of the matrix) by singular value decomposition

S1 ≥ S2 ≥ · · · ≥ 0: Singular values

Tijkl = M(ij),(kl) =
∑
m

U(ij),m · Sm · V †
m,(kl) ∼

D∑
m=1

U(ij),m · Sm · V †
m,(kl)

Coarse-

graining

Coarse-

graining
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How to apply TRG to field theories

To apply TRG to field theories,

we need to make tensors of a continuous field configs

Case: Scalar field[Kadoh et al., 2019]

Gauss-Hermite quadrature ∫
dxe−x2

g(x) ∼
K∑

α=1

ωαg(yα)

Case: 2D Yang-Mills[Fukuma et al., 2021]

Generate configs chosen uniformly from the group manifold

and approximate the integral ∫
dUf(U) ∼ 1

K

K∑
i=1

f(Ui)
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TRG applications to field theories

Scalar field

• 4D scalar field[Akiyama et al., 2021b]

Fermion field

• 4D Nambu-Jona-Lasinio model[Akiyama et al., 2021a]

Gauge field

• 2D U(1) + θ term[Kuramashi and Yoshimura, 2020]

• 2D non-Abelian Higgs[Bazavov et al., 2019]

• 2D Yang-Mills[Fukuma et al., 2021, Hirasawa et al., 2021]

• 3D Z2[Kuramashi and Yoshimura, 2019]

• 4D Z2-Higgs[Akiyama and Kuramashi, 2022]

• 3D pure SU(2) [Kuwahara and Tsuchiya, 2022] arxiv:2205.08883(to be published in PTEP)
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Proposal of a tensor network formulation for 3D SU(N) gauge theory :

Introduce a trial action

The partition function

Z =

∫ ∏
n,µ

dUn,µe
−S

S =
β

N

∑
n,µ>ν

ReTr(1− Uµν(n)), Uµν(n) = Un,µUn+µ̂,νU
†
n+ν̂,µU

†
n,ν

Introduce a trial action while keeping Z unchanged

Add and subtract the trial action Sv from the original action

Z =

∫ ∏
n,µ

dUn,µe
−(S−Sv)−Sv

Sv =
∑
n,µ

S̃v(Un,µ), S̃v : single link action

=
∑
n,µ

(
−H

N
ReTrUn,µ

)
We adopt the simplest one given by the trace of a single link variable
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Tensor network formulation with the trial action

Z =

∫ ∏
n,µ

dUn,µe
−(S−Sv)−Sv

= Z3V
v ⟨e−(S−Sv)⟩v,

(
Zv =

∫
dUe−S̃v(U(n,µ))

)

⟨· · · ⟩v =
1

Z3V
v

∫ ∏
n,µ

dUn,µ · · · e−
∑

n,µS̃(Un,µ)

Approximate the integral to the statistical average

under the weight of the trial action∫
dUn,µg(Un,µ, Un′,µ′ , . . .) ≈ 1

K

K∑
i=1

g(Ui, Un′,µ′ , . . .)

H = 0(S̃v(U(n, µ)) ∝ H) corresponds to the random sampling method(cf.[Fukuma et al., 2021])
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The initial tensor T

Based on the weight of the trial action e−S̃v (U),

generate field configs {U1, U2, · · · , UK} by the Monte Carlo method

We can obtain a A tensor from Z:

Aijkl = exp

[
β

N
Tr

(
UiUjU

†
kU

†
l

)
− 1

4

(
S̃v(Ui) + S̃v(Uj) + S̃v(Uk) + S̃v(Ul)

)]
Introduce the Kronecker delta Bijkl = δijkl = δijδjkδklδli

to construct a 6-rank tensor from Aijkl (cf.Exact blocking formula[Xie et al., 2012])

The initial tensor T = A⊗A⊗A⊗B ⊗B ⊗B
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Tensor network representation

Tensor network representation for SU(N)

based on configs generated with the weight e−S̃v(U(n,µ))

T = A⊗A⊗A⊗B ⊗B ⊗B

Procedure

1. Generate configs {U1, U2, · · · , UK} from S̃v(U(n, µ)) to construct the initial tensor T

2. Perform TRG

3. Repeat 1 and 2 to take the statistical average

⇒ Z(K) =

(
e−β Zv

K

)3V

tTr⊗n T

Proposal of a tensor network formulation 13/21



Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure SU(2) gauge theory

Conclusion

Numerical results for 3D pure SU(2) gauge theory 14/21



D dependence(L=1024, K=12)
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For small β, small H is efficient ⇒ In the strong coupling regime,

the uniform distribution works well

∵ H = 0 corresponds to random sampling method[Fukuma et al., 2021]

For large β, large H is efficient ⇒ In the weak coupling regime,

tuning the variational parameter H(> 0) is crutialNumerical results for 3D pure SU(2) gauge theory 15/21



K dependence(L=1024, D=12)
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Optimize the variational parameter H

In principle the partition function is independent of the variational parameter H(if K&D are large enough)

⇒ Read off the optimized value H from the plateau

Plateau

(a) β = 1

Plateau

(b) β = 50
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The free energy
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TRG

The strong coupling expansion(small β) : F (β) = −3β + 3
8
β2 − 3

384
β4 +O(β6)

The weak coupling expansion(large β) : F (β) = −3 log β + C +O
(

1
β

)
Unfortunately, we could not find the plateau in the 7 ≤ β ≤ 19 region

We expect this to be resolved by increasing K and/or improving the trial action

The TRG result agree with the one obtained by the strong/weak coupling expansion
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Conclusion

Summary

• Propose a new tensor network formulation based on configs

generated with the weight e−S̃v(U(n,µ))

• Apply the formulation to 3D SU(2) gauge theory and obtain the results that agree with

the one obtained by the strong/weak coupling expansion

Future work

• Calculate with large K

• Improve the trial action

• Calculate in the intermediate coupling regime

• Wilson loop

• Finite temperature transition

• θ term

• Extension to 4-dimensionConclusion 20/21
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Construction of the initial tensor

T = A(0) ⊗A(1) ⊗A(2) ⊗B ⊗B ⊗B

If the initial T tensor is constructed exactly, the six-rank tensor needs O((K2)6) memory

footprint.

⇒ Install isometries[Xie et al., 2012] to truncate bond dimension from K2 to D

Construction of the initial tensor



Determine the isometries

Consider the indices for the x direction x1, x2 as the row of a matrix M

from eigen value decomposition of MM† we obtain the isometry Ux for the x direction

MM† = UΛ(U)†

Isometries Uy and Uz are obtained in the same way

Construction of the initial tensor
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