Toward tensor renormalization group study of three-dimensional non-Abelian gauge theory

Takaaki Kuwahara

Collaborator: Asato Tsuchiya

Based on arXiv:2205.08883(to be published in PTEP)

Lattice 2022, 10 August

Shizuoka University

Abstract

- Propose a new tensor network formulation with a trial action
- Apply the formulation to 3D pure SU(2) gauge theory
- \Rightarrow By tensor renormalization group(TRG), we obtain the result which agrees with the one obtained by weak/strong coupling expansion

It is the first TRG application to 3D non-Abelian gauge theory

Contents

Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure SU(2) gauge theory

Conclusion

Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure SU(2) gauge theory

Conclusion

Introduction 3/21

Finite density QCD

Known that finite QCD is hard to analyze

The Monte Carlo method is difficult to apply due to the sign problem caused by the complex action

 \because We cannot simply consider the Boltzmann weight as the probability

⇒ Consider Tensor renormalization group(TRG) as an alternative method to Monte Carlo method

Introduction 4/21

Tensor Renormalization Group(TRG)[Levin and Nave, 2007]

A deterministic numerical analysis method that represents the partition function as a tensor network and computes physical quantities using an appropriate information compression.

Advantages

- Free from the sign problem

Disadvantages

- High computational cost for higher-dimensional theories ($\propto D^{a\cdot {\rm dim}+b}$)
- Whether it works or not depends on the model, TRG scheme, and initial tensor
 Needs trial & error

ntroduction 5/21

TRG procedure

TRG algorithm

1. Tensor network representation of the partition function Z

$$Z = \sum_{\dots,i,\dots} \cdots T_{ijkl} T_{mnio} \cdots$$

2. Coarse-grain the tensor: Low rank approximation (of the matrix) by singular value decomposition $S_1 \ge S_2 \ge \cdots \ge 0$: Singular values

$$T_{ijkl} = M_{(ij),(kl)} = \sum_{m} U_{(ij),m} \cdot S_m \cdot V_{m,(kl)}^{\dagger} \sim \sum_{m=1}^{D} U_{(ij),m} \cdot S_m \cdot V_{m,(kl)}^{\dagger}$$

Introduction 6/21

How to apply TRG to field theories

To apply TRG to field theories, we need to make tensors of a continuous field configs

Case: Scalar field[Kadoh et al., 2019]

Gauss-Hermite quadrature

$$\int dx e^{-x^2} g(x) \sim \sum_{\alpha=1}^K \omega_{\alpha} g(y_{\alpha})$$

Introduction 7/21

How to apply TRG to field theories

To apply TRG to field theories, we need to make tensors of a continuous field configs

Case: Scalar field[Kadoh et al., 2019]

Gauss-Hermite quadrature

$$\int dx e^{-x^2} g(x) \sim \sum_{\alpha=1}^K \omega_{\alpha} g(y_{\alpha})$$

Case: 2D Yang-Mills[Fukuma et al., 2021]

Generate configs chosen uniformly from the group manifold

and approximate the integral

$$\int dU f(U) \sim \frac{1}{K} \sum_{i=1}^{K} f(U_i)$$

Introduction 7/2:

TRG applications to field theories

Scalar field

• 4D scalar field[Akiyama et al., 2021b]

Fermion field

• 4D Nambu-Jona-Lasinio model[Akiyama et al., 2021a]

Introduction 8/21

TRG applications to field theories

Scalar field

• 4D scalar field[Akiyama et al., 2021b]

Fermion field

• 4D Nambu-Jona-Lasinio model[Akiyama et al., 2021a]

Gauge field

- 2D $U(1) + \theta$ term[Kuramashi and Yoshimura, 2020]
- 2D non-Abelian Higgs[Bazavov et al., 2019]
- 2D Yang-Mills[Fukuma et al., 2021, Hirasawa et al., 2021]
- 3D \mathbb{Z}_2 [Kuramashi and Yoshimura, 2019]
- ullet 4D Z_2 -Higgs[Akiyama and Kuramashi, 2022]
- 3D pure SU(2) [Kuwahara and Tsuchiya, 2022] arxiv:2205.08883(to be published in PTEP)

Introduction 8/21

Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure SU(2) gauge theory

Conclusion

Proposal of a tensor network formulation for $3D \ SU(N)$ gauge theory: Introduce a trial action

The partition function

$$Z = \int \prod_{n,\mu} dU_{n,\mu} e^{-S}$$

$$S = \frac{\beta}{N} \sum_{n,\mu>\nu} \text{ReTr}(1 - U_{\mu\nu}(n)), \quad U_{\mu\nu}(n) = U_{n,\mu} U_{n+\hat{\mu},\nu} U_{n+\hat{\nu},\mu}^{\dagger} U_{n,\nu}^{\dagger}$$

Introduce a trial action while keeping Z unchanged

Add and subtract the trial action S_v from the original action

$$Z = \int \prod_{n,\mu} dU_{n,\mu} e^{-(S-S_v)-S_v}$$

$$S_v = \sum_{n,\mu} \tilde{S}_v(U_{n,\mu}), \quad \tilde{S}_v \colon \text{single link action}$$

$$= \sum_{n,\mu} \left(-\frac{H}{N} \mathrm{Re} \mathrm{Tr} U_{n,\mu} \right)$$

We adopt the simplest one given by the trace of a single link variable

Proposal of a tensor network formulation 10/21

Tensor network formulation with the trial action

$$Z = \int \prod_{n,\mu} dU_{n,\mu} e^{-(S-S_v)-S_v}$$

$$= Z_v^{3V} \langle e^{-(S-S_v)} \rangle_v, \quad \left(Z_v = \int dU e^{-\tilde{S}_v(U(n,\mu))} \right)$$

$$\langle \cdots \rangle_v = \frac{1}{Z_v^{3V}} \int \prod_{n,\mu} dU_{n,\mu} \cdots e^{-\sum n,\mu \tilde{S}(U_{n,\mu})}$$

Approximate the integral to the statistical average under the weight of the trial action

$$\int dU_{n,\mu}g(U_{n,\mu}, U_{n',\mu'}, \dots) \approx \frac{1}{K} \sum_{i=1}^{K} g(U_i, U_{n',\mu'}, \dots)$$

 $H=0(ilde{S_v}(U(n,\mu))\propto H)$ corresponds to the random sampling method(cf.[Fukuma et al., 2021])

Proposal of a tensor network formulation

The initial tensor T

Based on the weight of the trial action $e^{-\tilde{S}_v}(U)$, generate field configs $\{U_1,U_2,\cdots,U_K\}$ by the Monte Carlo method We can obtain a A tensor from Z:

$$A_{ijkl} = \exp\left[\frac{\beta}{N} \operatorname{Tr}\left(U_i U_j U_k^{\dagger} U_l^{\dagger}\right) - \frac{1}{4} \left(\tilde{S}_v(U_i) + \tilde{S}_v(U_j) + \tilde{S}_v(U_k) + \tilde{S}_v(U_l)\right)\right]$$

Introduce the Kronecker delta $B_{ijkl}=\delta_{ijkl}=\delta_{ij}\delta_{jk}\delta_{kl}\delta_{li}$ to construct a 6-rank tensor from A_{ijkl} (cf.Exact blocking formula[Xie et al., 2012])

The initial tensor $T = A \otimes A \otimes A \otimes B \otimes B \otimes B$

Proposal of a tensor network formulation

Tensor network representation

Tensor network representation for SU(N) based on configs generated with the weight $e^{-\tilde{S}_v(U(n,\mu))}$

$$T = A \otimes A \otimes A \otimes B \otimes B \otimes B$$

Procedure

- 1. Generate configs $\{U_1,U_2,\cdots,U_K\}$ from $\tilde{S}_v(U(n,\mu))$ to construct the initial tensor T
- 2. Perform TRG
- 3. Repeat 1 and 2 to take the statistical average

$$\Rightarrow Z(K) = \left(e^{-\beta} \frac{Z_v}{K}\right)^{3V} t \operatorname{Tr} \otimes_n T$$

Proposal of a tensor network formulation 13/2

Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure SU(2) gauge theory

Conclusion

D dependence(L=1024, K=12)

For small β , small H is efficient \Rightarrow In the strong coupling regime, the uniform distribution works well

 $\because H=0$ corresponds to random sampling method[Fukuma et al., 2021]

For large β , large H is efficient \Rightarrow In the weak coupling regime,

K dependence(L=1024, D=12)

For small β , small H is efficient \Rightarrow In the strong coupling regime, the uniform distribution works well

 $\because H=0$ corresponds to random sampling method[Fukuma et al., 2021]

For large β , large H is efficient \Rightarrow In the weak coupling regime,

tuning the variational parameter H(>0) is crutial

Optimize the variational parameter H

In principle the partition function is independent of the variational parameter H(if K&D are large enough) \Rightarrow Read off the optimized value H from the plateau

The free energy

The strong coupling expansion(small β) : $F(\beta) = -3\beta + \frac{3}{8}\beta^2 - \frac{3}{384}\beta^4 + \mathcal{O}(\beta^6)$ The weak coupling expansion(large β) : $F(\beta) = -3\log\beta + C + \mathcal{O}\left(\frac{1}{\beta}\right)$

Unfortunately, we could not find the plateau in the $7 \le \beta \le 19$ region We expect this to be resolved by increasing K and/or improving the trial action

The TRG result agree with the one obtained by the strong/weak coupling expansion

Introduction

Proposal of a tensor network formulation

Numerical results for 3D pure $\mathsf{SU}(2)$ gauge theory

Conclusion

Conclusion 19/21

Conclusion

Summary

- Propose a new tensor network formulation based on configs generated with the weight $e^{-\tilde{S}_v(U(n,\mu))}$
- Apply the formulation to $3D \, SU(2)$ gauge theory and obtain the results that agree with the one obtained by the strong/weak coupling expansion

Future work

- ullet Calculate with large K
- Improve the trial action
- Calculate in the intermediate coupling regime
- Wilson loop
- Finite temperature transition
- \bullet θ term
- Extension to 4-dimension

Backup slides

References i

Akiyama, S. and Kuramashi, Y. (2022).

Tensor renormalization group study of (3+1)-dimensional \mathbb{Z}_2 gauge-Higgs model at finite density.

Akiyama, S., Kuramashi, Y., Yamashita, T., and Yoshimura, Y. (2021a).

Restoration of chiral symmetry in cold and dense Nambu–Jona-Lasinio model with tensor renormalization group.

JHEP, 01:121.

Akiyama, S., Kuramashi, Y., and Yoshimura, Y. (2021b).

Phase transition of four-dimensional lattice $\phi {\bf 4}$ theory with tensor renormalization group.

Phys. Rev. D, 104(3):034507.

References ii

Bazavov, A., Catterall, S., Jha, R. G., and Unmuth-Yockey, J. (2019).

Tensor renormalization group study of the non-Abelian Higgs model in two dimensions.

Phys. Rev. D, 99(11):114507.

Fukuma, M., Kadoh, D., and Matsumoto, N. (2021).

Tensor network approach to 2D Yang-Mills theories.

Fukushima, K. and Hatsuda, T. (2011).

The phase diagram of dense QCD.

Rept. Prog. Phys., 74:014001.

Hirasawa, M., Matsumoto, A., Nishimura, J., and Yosprakob, A. (2021).

Tensor renormalization group and the volume independence in 2D U(N) and SU(N) gauge theories.

JHEP, 12:011.

References iii

Tensor network analysis of critical coupling in two dimensional ϕ^4 theory. JHEP,~05:184.

Kuramashi, Y. and Yoshimura, Y. (2019).

Three-dimensional finite temperature Z_2 gauge theory with tensor network scheme.

JHEP, 08:023.

Kuramashi, Y. and Yoshimura, Y. (2020).

Tensor renormalization group study of two-dimensional U(1) lattice gauge theory with a θ term.

JHEP, 04:089.

References iv

- Kuwahara, T. and Tsuchiya, A. (2022).Tensor renormalization group study of three-dimensional su(2) gauge theory.
- Levin, M. and Nave, C. P. (2007).

 Tensor renormalization group approach to 2D classical lattice models.

 Phys. Rev. Lett., 99(12):120601.
- Xie, Z. Y., Chen, J., Qin, M. P., Zhu, J. W., Yang, L. P., and Xiang, T. (2012). Coarse-graining renormalization by higher-order singular value decomposition. *Physical Review B*, 86(4).

Construction of the initial tensor

$$T = A^{(0)} \otimes A^{(1)} \otimes A^{(2)} \otimes B \otimes B \otimes B$$

If the initial T tensor is constructed exactly, the six-rank tensor needs $O((K^2)^6)$ memory footprint.

 \Rightarrow Install isometries[Xie et al., 2012] to truncate bond dimension from K^2 to D

Construction of the initial tensor

Determine the isometries

Consider the indices for the x direction x_1 , x_2 as the row of a matrix M from eigen value decomposition of MM^\dagger we obtain the isometry U_x for the x direction

$$MM^{\dagger} = U\Lambda(U)^{\dagger}$$

Isometries U_y and U_z are obtained in the same way