MLMC++ as a variance reduction method

M. Khalil, A. Frommer

Wuppertal University
Lattice conference, Aug 8-13 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No' 765048

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach
mlmc ++

Conclusions

Numerical Results

Problem Statement

Consider the problem of computing

$$
\begin{equation*}
\operatorname{tr}(f(A)):=\sum_{i=1}^{n}[f(A)]_{i i} \tag{1}
\end{equation*}
$$

- In our case: $f(A)=A^{-1}$
- for $A \in \mathbb{C}^{n \times n}$ large, sparse matrix.
- Compute (1) directly \rightarrow not possible (storage, cost).
- Hutchinson's method \rightarrow estimate $\operatorname{tr}\left(A^{-1}\right)$ stochastically.

Hutchinson approach: (Hutchinson, 1989)

- Assume: a vector $x \in \mathbb{C}^{n}$ with i.id distribution as:

$$
\begin{align*}
& x_{i} \in\{-1,1\} \text { with equal probabililty } \frac{1}{2}, \tag{2}\\
& x_{i} \text { is } N(0,1) \text { normally distributed. } \tag{3}
\end{align*}
$$

- the unbiased trace estimator of A^{-1} is given by:

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1}\right) \approx \frac{1}{s} \sum_{i=1}^{s} x_{i}^{*} A^{-1} x_{i} \tag{4}
\end{equation*}
$$

where $\tau=x^{*} A^{-1} x$ is the mean value,

- the variance:

$$
\begin{equation*}
\mathbb{V}\left[x^{*} A^{-1} x\right]=\frac{1}{2}\left\|\operatorname{offdiag}\left(A^{-1}\right)\right\|_{F}^{2} \tag{5}
\end{equation*}
$$

MC trace algorithm

1: Input: A, x, ϵ, m
2: for $s=1$ to m do
3: $\quad \tau_{i} \leftarrow x^{*} A^{-1} x$
4: if $\operatorname{Var}(\tau) / s \leq \epsilon$ then
5: stop
6: end if
7: end for
8: Output: mean of τ

Properties:

- simple, requires a solver for A^{-1}.
- convergence rate of MC is slow \rightarrow as $O(1 / \sqrt{s})$.
- variance \rightarrow very large when $a_{i j}$ large.

Variance Reduction: via, Deflation, .., Hutch++, MLMC

Content

MLMC approach

MLMC approach

$\mathrm{mlmc}++$

,

Numerical Results
Numerical Results
Numerical Results

Variance Redcution Methods
Variance Redcution Methods

\qquad
\square

-
\qquad都
.....

Conclusions
Conclusions ?

\qquad
\qquad (
\qquad
\qquad
\qquad
Monte Carlo Trace Estimation
Monte Carlo Trace Estimation
Monte Carlo Trace Estimation . .
\qquad
\square

Approximate/Inexact deflation

Projections \rightarrow does not depend on eigenmodes

- Projection vector $\leftarrow V=W U^{*}$
- $W, U \in \mathbb{C}^{n \times d}$
- $\operatorname{tr}(A)=\operatorname{tr}(A(I-V))+\operatorname{tr}(A V)$
- use the cyclic trace property : $\operatorname{tr}(A V)=\operatorname{tr}\left(A W U^{*}\right)=\operatorname{tr}\left(U^{*} A W\right), \quad U^{*} A W \in \mathbb{C}^{d \times d}$

Our case: $B=A^{-1}$

- stochastic column vectors $\rightarrow W=U=B V, V \in \mathbb{C}^{n \times d}$ [Hutch++]

Hutch ++ method

The idea of the Hutch++ based on the projection technique..

- given, $A \in C^{n \times n}$ is a PSD, ϵ relative accuracy, $d \mathrm{nr}$. deflation. vects.
- Rademacher matrix: $S=2 \times \operatorname{randi}(2, n, d)-3$ $S \in C^{n \times d}$ with entries $\{-1,1\}$
- solve the system $Y=A^{-1} S$, and $Y \in C^{n \times d}$
- Project eigenvectors: $[V]=,q r(Y, 0)$
- the projection: $W=V V^{\prime}$
- $\operatorname{tr}\left(A^{-1}\right)=\underbrace{\operatorname{tr}\left(A^{-1} W\right)}_{\text {directly }}+\underbrace{\operatorname{tr}\left(A^{-1}(I-W)\right)}_{\text {stochastically }}$

Hutch++ algorithm

Compute Stochastic part: $\operatorname{tr}\left(A_{s}^{-1}\right)=\operatorname{tr}\left(A^{-1}(I-W)\right)$
1: Input: A, S, d, m, x
2: for $s=1 \rightarrow m$ do
3: $\quad \tau \leftarrow x^{*} W A^{-1} W x$
4: if $\operatorname{Var}(\tau) / s \leq \epsilon$ then
5: stop
6: end if
7: end for
8: Output: mean of τ

Imporvments:

- easy and simple, reduce the accuracy dependence from $O\left(n^{2}\right) \rightarrow O(n)$.

Content
Monte Carl
Variance R
MLMC app
mamet+
Numerical
Conclusion
 \section*{\section*{MLMC approach
 \section*{\section*{MLMC approach

 \qquad

 Monte Carlo}
 \title{

}
 \qquad

 \section*{} Monte} Monte}

Monte Carlo Trace Estimation
Variance Redcution Methods
MLMC approach Monte Carlo Trace Estimation
Variance Redcution Methods
MLMC approach
$m \min ++$
Content
Monte Carl
Variance R
MLMC app
mime+ +
Numerical
Conclusions
Content
Monte Carlo
Variance Rec
MLMC appr
mime ++
Numerical R
Conclusions

Numerical Results

Content
Monte Carlo
Variance Rec
MLMC appr
mlmc++
Numerical R
Conclusions
Content
Monte Carl
Variance R
MLMC app
mime ++
Numerical
Conclusions
Content
Monte Carl
Variance R
MLMC app
mime ++
Numerical
Conclusions
Content
Monte Carlo Trace Estimation
Variance Redcution Methods
MLMC approach
mlmc ++
Numerical Results
Conclusions
Content
Monte Carl
Variance R
MLMC app
mime ++
Numerical
Conclusions
Content
Monte Carla
Variance Re
MLMC app
mlmc++
Numerical
Conclusions
Carlo Tracerastina Monte Carlo Trace Estimation


```
*
``` Carlo Trace Estimation
\(\qquad\)
路

\(\qquad\)
\(\qquad\)
\(\qquad\)
 \(\qquad\)

 Carlo Trace Estimation
\(\square\)

\(\qquad\) \(\square\)
 \(+\) \(+\) ,
\(\qquad\)

 (
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\square\)
\(\square\)

\begin{abstract}
\(\qquad\)
\(\square\)
T
\end{abstract}
\(\square\)
. \(\square\)
\(\square\)
,
\(\qquad\)
\(\square\) (.) f
Content
Monte Carl
Variance R
MLMC app
mime ++
Numerical
Conclusions
Content
Monte Carl
Variance R
MLMC app
mime ++
Numerical
Conclusions

\begin{abstract}

\end{abstract}

\begin{abstract}

\end{abstract}

\section*{MLMC: main idea (Giles, 2015)}

Assume a random function \(q_{0}\) splits as
\[
\begin{gathered}
q_{0}=\sum_{\ell=1}^{L} q_{l}, \quad \ell \mathrm{nr} \text { of level differnce } \\
\mathbb{E}\left[q_{0}\right]=\sum_{\ell=1}^{L-1} \underbrace{\mathbb{E}\left[q_{\ell}-q_{\ell+1}\right]}_{=w_{\ell}}+\underbrace{q_{L}}_{=w_{L}}
\end{gathered}
\]
where \(w_{\ell}^{(i)}\) independent samples on each level.
In case: \(w=x^{*} A^{-1} x\), the unbiased estimator for \(\operatorname{tr}\left(A^{-1}\right)\) given by
\[
\frac{1}{N} \sum_{i=1}^{N} x^{(i)} A^{-1} x^{(i)} \approx \operatorname{tr}\left(A^{-1}\right)
\]

The variance: \(\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \mathbb{V}\left[w_{\ell}\right]\).

\section*{MLMC: setup phase}
- The goal: Solver \& Hierarchy of the linear system
- define Prolongation \(P_{l} \rightarrow l=0,1, \ldots, L\)
- define Restriction \(R_{l} \rightarrow l=0,1, \ldots, L\)
- usually \(\rightarrow R=P^{*}\)
- define coarse matrix \(\rightarrow B_{l+1}=R_{l} B_{l} P_{l}\)

Figure: MG V-cycle: setup phase

\section*{MLMC-stochastic phase}

\section*{2-grid mlmc}

Figure: 2-Grid example
- Accumulated prolongation and restriction:
\[
\hat{P}_{\ell}=P_{0} \cdots P_{\ell}, \quad \hat{R}_{\ell}=R_{\ell} \cdots R_{0}
\]
- Multilevel decomposition:
\[
\underbrace{x^{*} B x}_{q_{0}}=\sum_{\ell=0}^{L-1} \underbrace{x^{*}\left(\hat{P}_{\ell} B_{\ell} \hat{R}_{\ell}-\hat{P}_{\ell+1} B_{\ell+1} \hat{R}_{\ell+1}\right)}_{w_{\ell}} x+\underbrace{x^{*}\left(\hat{P}_{L} B_{L} \hat{R}_{L}\right) x}_{w_{L}}
\]

\section*{accuracy type}

Target accuracy \(\rho \leftarrow\) measured standard deviation

\section*{Uniform accuracy:}
- Idea: distribute the target accuracy in equal. Achieve: \(\rho_{\ell}=\rho / \sqrt{L-1}\) for all \(\ell\),

\section*{Optimized accuracy:}
- Idea: minimize the work if we know the cost \(C_{\ell} \ldots\) and the variance \(V_{\ell}\)
- for each sample: update \(C_{\ell}\) and measured \(V_{\ell}\).
- define the new optimal target tolerance \(\rho_{\ell}\)

\section*{Content \\ Content}
\(\square\)

Monte Carlo Trace Estimation
Variance Redcution Methods

mete Carlo Trace Estimation

\author{
Monte Carlo Trace Estimation
Variance Redcution Methods \\ \(\longrightarrow\) \\ \(\qquad\)
} Monte Carlo Trace
Variance Redcution
MLMC approach
mIme++ Monte Carlo Trace
Variance Redcution
MLMC approach
mIme++
Numerical Results

\author{
Conclusions
}

\author{
\(\qquad\)
}

Numerical Results

2
 Monte Carlo Trace
Variance Redcution
Maim approach
Mime+ Monte Carlo Trace Es
Variance Redcution
MLMC approach
mime+ +路

\[
2
\]
\(\qquad\)

\(\qquad\)
\(\qquad\) \(\downarrow\)

 \(\square\)
```

,

```
 (- \(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{\(\mathrm{mlmc}++\)}
- Idea: MLMC \& Hutch++ together..
- The level difference matrix given as:
\[
\begin{equation*}
M_{l}=\hat{P}_{l} B_{l} \hat{R}_{l}-\hat{P}_{l+1} B_{l+1} \hat{R}_{l+1} \quad, \quad M_{l} \in C^{n_{l} \times n_{l}} \tag{6}
\end{equation*}
\]
- generate random matrix \(S_{\ell} \in C^{n_{l} \times d_{l}}, l=1, . ., L-1\)
- applying the projection vectors: \(Q_{l}=q r\left[M_{l}^{-1} S_{l}, 0\right]\),
- split the matrix level difference:
\[
\begin{equation*}
M_{l}=\left(M_{l}\right)_{d}+\left(M_{l}-\left(M_{l}\right)_{d}\right) \tag{7}
\end{equation*}
\]
- trace of multilevel decomposition of \(M_{l}\) :
\[
\begin{equation*}
\operatorname{tr}\left(M_{l}^{-1}\right)=\operatorname{tr}(\underbrace{Q_{l}^{*} M_{l} Q_{l}}_{\text {directly }})+\operatorname{tr}(M_{l} \underbrace{\left(I-Q_{l}^{*} Q_{l}\right)}_{\text {stochastically }}) \tag{8}
\end{equation*}
\]
- challenge: find an optimal way to determine \(d_{l}\) to reduce the variance enough

\section*{Content}

\author{
Variance Redcution Methods \\ MLMC approach \\ mime ++ \\ ML MC \\ MC \\ \\ \(\qquad\) \\ \\ \title{

} \\ \\ \\ 都 \\ mime ++
}

Numerical Results
Conclusions

\title{
Monte Carlo Trace Estimation
}
\(\square\)

\author{

}

\author{

}

五

 (

\section*{Schwinger model: Table}
\begin{tabular}{|r|c|cccc|c|}
\hline \multicolumn{7}{|c|}{ Schwinger model } \\
\hline\(N\) & & \(\ell=1\) & \(\ell=2\) & \(\ell=3\) & \(\ell=4\) & \(L\) \\
\hline 128 & \(n_{\ell}\) & \(2 \cdot 128^{2}\) & \(4 \cdot 32^{2}\) & \(8 \cdot 8^{2}\) & \(8 \cdot 2^{2}\) & 4 \\
& \(\mathrm{nnz}\left(S_{\ell}^{N}\right)\) & \(2.94 e 5\) & \(1.64 e 5\) & \(2.46 e 4\) & 1024 & \\
\hline \hline\(m\) & -0.1320 & -0.1325 & -0.1329 & -0.1332 & -0.1333 & \\
\(n_{\text {defl }}\) & 384 & 384 & 512 & 512 & 512 & \\
\hline
\end{tabular}

Table: Parameters and quantities for Schwinger example

\section*{schwinger accuracy: Figures}

Figure: Comparison of uniform and optimal mlmc for schwinger matrix: no of samples on each level difference (left) and total work for different (right) \(m\).

\section*{mlmcPP work: Figures}

Figure: On each level diff: (1) explore accomulated work of defl.Hutch, mlmc and mlmc++ for schwinger matrix (left), (2) comparison between setup and stochastic work of mlmc++ (right).

\section*{schwinger variance: Figures}

Figure: show samples of mlmc++ and deflation Hutch. for schwinger matrix (left). variance comparison between mlmc and mlmc++ on each level difference.

\section*{\(\mathrm{mlmc}++\&\) deflation \(\mathrm{mlmc}:\) compromise I}

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at first level difference: samples, MG V-cycles, and the variance.

\section*{\(\mathrm{mlmc}++\) \& deflation mlmc: compromise I}

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at second level difference: samples, MG V-cycles, and the variance.

\section*{\(\mathrm{mlmc}++\&\) deflation \(\mathrm{mlmc}:\) compromise I}

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at third level difference: samples, MG V-cycles, and the variance.

\section*{Content}

\author{
Monte Carlo Trace Estimation \\ \section*{Variance Redcution Methods} \\ MLMC approach \\ \section*{\(\mathrm{mlmc}++\) \\ \\ } \\ Numerical Results \\ Conclusions
}
- We exploreed another approach \(\rightarrow\) reduction of the variance of \(\operatorname{tr}\left(A^{-1}\right)\)
- higher precision can be obtained at much less work.
- the optimal way to project eigenmodes is not yet reproduced

\section*{Outlook:}
- turn into \(4 D\) problems of QCD .

\section*{Thank You for your attention!}```

