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Problem Statement

Consider the problem of computing

tr(f(A)) :=

n∑
i=1

[f(A)]ii (1)

▶ In our case: f(A) = A−1

▶ for A ∈ Cn×n large, sparse matrix.

▶ Compute (1) directly → not possible (storage, cost).

▶ Hutchinson’s method → estimate tr(A−1) stochastically.
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Hutchinson approach: (Hutchinson, 1989)

▶ Assume: a vector x ∈ Cn with i.id distribution as:

xi ∈ {−1, 1} with equal probabililty 1
2 , (2)

xi is N(0, 1) normally distributed. (3)

▶ the unbiased trace estimator of A−1 is given by:

tr(A−1) ≈ 1

s

s∑
i=1

x∗iA
−1xi. (4)

where τ = x∗A−1x is the mean value,

▶ the variance:

V[x∗A−1x] =
1

2
∥offdiag(A−1)∥2F . (5)
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MC trace algorithm

1: Input: A, x, ϵ,m
2: for s = 1 to m do
3: τi ← x∗A−1x
4: if Var(τ)/s ≤ ϵ then
5: stop
6: end if
7: end for
8: Output: mean of τ

Properties:

▶ simple, requires a solver for A−1.

▶ convergence rate of MC is slow → as O(1/
√
s).

▶ variance → very large when aij large.

Variance Reduction: via, Deflation, .., Hutch++, MLMC
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Approximate/Inexact deflation

Projections → does not depend on eigenmodes

▶ Projection vector ← V = WU∗

▶ W,U ∈ Cn×d

▶ tr(A) = tr(A(I − V )) + tr(AV )

▶ use the cyclic trace property :
tr(AV ) = tr(AWU∗) = tr(U∗AW ), U∗AW ∈ Cd×d

Our case: B = A−1

▶ stochastic column vectors → W = U = BV , V ∈ Cn×d

[Hutch++]
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Hutch ++ method

The idea of the Hutch++ based on the projection technique..

▶ given, A ∈ Cn×n is a PSD , ϵ relative accuracy , d nr.
deflation. vects.

▶ Rademacher matrix: S = 2× randi(2, n, d)− 3
S ∈ Cn×d with entries {−1, 1}

▶ solve the system Y = A−1S, and Y ∈ Cn×d

▶ Project eigenvectors: [V, ] = qr(Y, 0)

▶ the projection: W = V V ′

▶ tr(A−1) = tr(A−1W )︸ ︷︷ ︸
directly

+ tr(A−1(I −W ))︸ ︷︷ ︸
stochastically
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Hutch++ algorithm

Compute Stochastic part: tr(A−1
s ) = tr(A−1(I −W ))

1: Input: A,S, d,m, x
2: for s = 1→ m do
3: τ ← x∗WA−1Wx
4: if Var(τ)/s ≤ ϵ then
5: stop
6: end if
7: end for
8: Output: mean of τ

Imporvments:

▶ easy and simple, reduce the accuracy dependence from
O(n2)→ O(n).
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MLMC: main idea (Giles, 2015)

Assume a random function q0 splits as

q0 =

L∑
ℓ=1

ql, ℓ nr of level differnce

E[q0] =
L−1∑
ℓ=1

E[qℓ − qℓ+1]︸ ︷︷ ︸
=wℓ

+ qL︸︷︷︸
=wL

where w
(i)
ℓ independent samples on each level.

In case: w = x∗A−1x, the unbiased estimator for tr(A−1) given by

1

N

N∑
i=1

x(i)A−1x(i) ≈ tr(A−1)

The variance:
∑L

ℓ=1
1
Nℓ

V[wℓ].
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MLMC: setup phase

▶ The goal: Solver & Hierarchy of the linear system

▶ define Prolongation Pl → l = 0, 1, ..., L

▶ define Restriction Rl → l = 0, 1, ..., L

▶ usually → R = P ∗

▶ define coarse matrix → Bl+1 = RlBlPl

Figure: MG V-cycle: setup phase
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MLMC-stochastic phase

2-grid mlmc

Figure: 2-Grid example

▶ Accumulated prolongation and restriction:
P̂ℓ = P0 · · ·Pℓ, R̂ℓ = Rℓ · · ·R0.

▶ Multilevel decomposition:

x∗Bx︸ ︷︷ ︸
q0

=

L−1∑
ℓ=0

x∗
(
P̂ℓBℓR̂ℓ − P̂ℓ+1Bℓ+1R̂ℓ+1

)
x︸ ︷︷ ︸

wℓ

+x∗(P̂LBLR̂L)x︸ ︷︷ ︸
wL
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accuracy type

Target accuracy ρ ← measured standard deviation

Uniform accuracy:

▶ Idea: distribute the target accuracy in equal.
Achieve: ρℓ = ρ/

√
L− 1 for all ℓ,

Optimized accuracy:

▶ Idea: minimize the work if we know the cost Cℓ . . . and the
variance Vℓ

▶ for each sample: update Cℓ and measured Vℓ.

▶ define the new optimal target tolerance ρℓ
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mlmc++

▶ Idea: MLMC & Hutch++ together..
▶ The level difference matrix given as:

Ml = P̂lBlR̂l − P̂l+1Bl+1R̂l+1 , Ml ∈ Cnl×nl (6)

▶ generate random matrix Sℓ ∈ Cnl×dl , l = 1, .., L− 1
▶ applying the projection vectors: Ql = qr[M−1

l Sl, 0],
▶ split the matrix level difference:

Ml = (Ml)d + (Ml − (Ml)d) (7)

▶ trace of multilevel decomposition of Ml:

tr(M−1
l ) = tr(Q∗

lMlQl︸ ︷︷ ︸
directly

) + tr(Ml (I −Q∗
lQl)︸ ︷︷ ︸

stochastically

) (8)

▶ challenge: find an optimal way to determine dl to reduce the
variance enough
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Schwinger model: Table

Schwinger model
N ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 L

128 nℓ 2 · 1282 4 · 322 8 · 82 8 · 22 4
nnz(SN

ℓ ) 2.94e5 1.64e5 2.46e4 1024

m −0.1320 −0.1325 −0.1329 −0.1332 −0.1333
ndefl 384 384 512 512 512

Table: Parameters and quantities for Schwinger example
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schwinger accuracy: Figures

-0.1333-0.1332 -0.1329 -0.1325 -0.132

mass

10
3

10
4

#
 e

s
ti
m

a
te

s

Schwinger, eps = 0.001

L=1

L=2

L=3

deflat. Hutch.

-0.1333-0.1332 -0.1329 -0.1325 -0.132

Lattice Size

10
4

10
5

a
c
c
o

m
u

la
te

d
 w

o
rk

schwinger, eps = 0.001

MC optimal

MC uniform

deflation

Figure: Comparison of uniform and optimal mlmc for schwinger matrix:
no of samples on each level difference (left) and total work for different
(right) m.
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mlmcPP work: Figures
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Figure: On each level diff: (1) explore accomulated work of defl.Hutch,
mlmc and mlmc++ for schwinger matrix (left), (2) comparison between
setup and stochastic work of mlmc++ (right).
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schwinger variance: Figures
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Figure: show samples of mlmc++ and deflation Hutch. for schwinger
matrix (left). variance comparison between mlmc and mlmc++ on each
level difference.
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mlmc++ & deflation mlmc: compromise I
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Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at
first level difference: samples, MG V-cycles, and the variance.
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mlmc++ & deflation mlmc: compromise I
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Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at
second level difference: samples, MG V-cycles, and the variance.
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mlmc++ & deflation mlmc: compromise I
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Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at
third level difference: samples, MG V-cycles, and the variance.
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Summery

▶ We exploreed another approach → reduction of the variance
of tr(A−1)

▶ higher precision can be obtained at much less work.

▶ the optimal way to project eigenmodes is not yet reproduced

Outlook:

▶ turn into 4D problems of QCD.
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Thank You for your attention!
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