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Monte Carlo Trace Estimation



Problem Statement

Consider the problem of computing

» In our case: f(A)=A"!

» for A € C"*" large, sparse matrix.

» Compute (1) directly — not possible (storage, cost).

» Hutchinson's method — estimate tr(A~!) stochastically.
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Hutchinson approach: (Hutchinson, 1989)

» Assume: a vector z € C" with i.id distribution as:

x; € {—1, 1} with equal probabililty %, (2)
x; is N(0,1) normally distributed. (3)

» the unbiased trace estimator of A~! is given by:

1 S
tr(A™) ~ gzx;mlxi. (4)
i=1

1

where 7 = 2* A~z is the mean value,

» the variance:

* 41— 1 : _
V[z"A™ ] = 5 lloffdiag(A Ol (5)
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MC trace algorithm

 Input: A,z,¢e,m
: for s =1 to m do
T — A7z
if Var(7)/s < e then
stop
end if
end for
. Output: mean of 7

o N a s

Properties:
» simple, requires a solver for A~1.
» convergence rate of MC is slow — as O(1/4/s).
» variance — very large when a;; large.
Variance Reduction: via, Deflation, .., Hutch-++, MLMC
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Variance Redcution Methods



Approximate/Inexact deflation

Projections — does not depend on eigenmodes

» Projection vector <— V = WU*
> VV, U e (Cnxd
> tr(A) =tr(A(I —V)) + tr(AV)
P use the cyclic trace property :
tr(AV) = tr(AWU*) = tr(U*AW), U*AW € C¥4

Our case: B= A1
» stochastic column vectors — W = U = BV, V € C**d
[Hutch++]
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Hutch ++ method

The idea of the Hutch++ based on the projection technique..

>

>

v

given, A € C"*" is a PSD , ¢ relative accuracy , d nr.
deflation. vects.

Rademacher matrix: S =2 x randi(2,n,d) — 3
S € C™*? with entries {—1,1}

solve the system Y = A~1S, and Y € C"*¢

Project eigenvectors: [V, | = ¢r(Y,0)
the projection: W = V'V’
tr(A™Y) = tr(A™'W) +tr(AH (T — W)

directly stochastically
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Hutch++4 algorithm

Compute Stochastic part: tr(A;!) =tr(A~1(1 —W))

 Input: A,S,d,m,x
: fors=1—mdo
T WA Wz
if Var(7)/s < e then
stop
end if
end for
: Qutput: mean of 7

o N a R wh R

Imporvments:

» easy and simple, reduce the accuracy dependence from
O(n?) = O(n).
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MLMC approach



MLMC: main idea (Giles, 2015)

Assume a random function ¢q splits as

L
q0 = qu, ¢ nr of level differnce
=1

L—-1

Elgo] = Z Elge — qe41]

+ qr
=1 M

=Wy =wy,

where wél) independent samples on each level.

In case: w = 2* A1z, the unbiased estimator for tr(A~!) given by
1, ‘
N Zx(l)Aflx(‘) ~tr(A™h)
i=1

The variance: 25:1 N%V[wg].
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MLMC: setup phase

» The goal: Solver & Hierarchy of the linear system
» define Prolongation P, — [ =0,1,...,L
» define Restriction R; — [ =0,1,...,L

» usually - R = P*

» define coarse matrix — B 1 = R B P

Smooth

1st Coarse Grid

MG

V-cycle |:|

Figure: MG V-cycle: setup phase
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MLMC-stochastic phase

2-grid mimc

2grid-Levels Level difference
1 Bi
\ l
B2
2 My =B, - PBR,

Figure: 2-Grid example

» Accumulated prolongation and restriction:
PKZPO'.'PE’ RKZRZ”'RO'
» Multilevel decomposition:

L—1
*Bx = % " (PngRg - Pg+1Bg+1Rg+1)l‘ + I*(PLBLRL)I‘
q0 = ~~ wr,

We
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accuracy type

Target accuracy p <+ measured standard deviation

Uniform accuracy:

P |dea: distribute the target accuracy in equal.
Achieve: py = p/v/L — 1 for all ¢,

Optimized accuracy:

» Idea: minimize the work if we know the cost Cy ...and the
variance V}

» for each sample: update Cy and measured V.

> define the new optimal target tolerance py
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mlmc++



» Idea: MLMC & Hutch++ together..
» The level difference matrix given as:

M, =PBR — Py B Ry . Mye C™™  (6)

> generate random matrix S, € C™*4 [ =1, L —1
applying the projection vectors: Q; = qr[MflSl, 0],
P split the matrix level difference:

My = (Mp)a + (M; — (M;)q) (7)

v

P trace of multilevel decomposition of M;:

tr(M; ) = tr(Q; MiQy) + tr(M; (I — Qf Q1)) (8)

directly stochastically

» challenge: find an optimal way to determine d; to reduce the
variance enough
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Numerical Results



Schwinger model: Table

Schwinger model
N (=1 =2 (=3 (=4
128 | ny 2.128% 4-32° 8- 82 822
nnz(Sy) | 2.94e5 1.64e5 2.46e4 1024
m | —0.1320 —0.1325 —0.1329 —0.1332 —0.1333
Ndefl 384 384 512 512 512

S

Table: Parameters and quantities for Schwinger example
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schwinger accuracy: Figures

schwinger, eps = 0.001
Schwinger, eps = 0.001 9 L
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Figure: Comparison of uniform and optimal mimc for schwinger matrix:

no of samples on each level difference (left) and total work for different
(right) m.
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mlmcPP work: Figures
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Figure: On each level diff: (1) explore accomulated work of defl.Hutch,
mimc and mimc++ for schwinger matrix (left), (2) comparison between
setup and stochastic work of mimc++ (right).
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schwinger variance: Figures
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Figure: show samples of mimc++ and deflation Hutch. for schwinger
matrix (left). variance comparison between mlmc and mlmc++ on each
level difference.
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mlmc++  deflation mlmc: compromise |

defl. mime, | =1, schw m = -0.132
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Figure: compromise of mlmc++ and def. mimc for schwinger matrix at
first level difference: samples, MG V-cycles, and the variance.
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mlmc++  deflation mlmc: compromise |
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Figure: compromise of mlmc++ and def. mimc for schwinger matrix at
second level difference: samples, MG V-cycles, and the variance.
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mlmc++  deflation mlmc: compromise |

mimc pp, | =3, schw m = -0.132 defl. mimc, | =3, schw m = -0.132
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Figure: compromise of mlmc++ and def. mimc for schwinger matrix at
third level difference: samples, MG V-cycles, and the variance.
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Conclusions



» We exploreed another approach — reduction of the variance
of tr(A~1)

» higher precision can be obtained at much less work.

P the optimal way to project eigenmodes is not yet reproduced

Outlook:
» turn into 4D problems of QCD.
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Thank You for your attention!
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