MLMC++ as a variance reduction method

M. Khalil, A. Frommer

Wuppertal University Lattice conference, Aug 8 – 13 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No' 765048

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

Consider the problem of computing

$$tr(f(A)) := \sum_{i=1}^{n} [f(A)]_{ii}$$
(1)

- ► In our case: $f(A) = A^{-1}$
- for $A \in \mathbb{C}^{n \times n}$ large, sparse matrix.
- Compute (1) directly \rightarrow not possible (storage, cost).
- Hutchinson's method \rightarrow estimate tr (A^{-1}) stochastically.

Hutchinson approach: (Hutchinson, 1989)

• Assume: a vector $x \in \mathbb{C}^n$ with i.id distribution as:

$$x_i \in \{-1, 1\}$$
 with equal probability $\frac{1}{2}$, (2)
 x_i is $N(0, 1)$ normally distributed. (3)

• the unbiased trace estimator of A^{-1} is given by:

$$\operatorname{tr}(A^{-1}) \approx \frac{1}{s} \sum_{i=1}^{s} x_i^* A^{-1} x_i.$$
(4)

where $\tau = x^* A^{-1} x$ is the mean value,

the variance:

$$\mathbb{V}[x^*A^{-1}x] = \frac{1}{2} \|\text{offdiag}(A^{-1})\|_F^2.$$
 (5)

MC trace algorithm

- 1: Input: A, x, ϵ, m 2: for s = 1 to m do
- 3: $\tau_i \leftarrow x^* A^{-1} x$
- 4: **if** $Var(\tau)/s \le \epsilon$ **then**
- 5: stop
- 6: end if
- 7: end for
- 8: Output: mean of au

Properties:

- simple, requires a solver for A^{-1} .
- convergence rate of MC is slow \rightarrow as $O(1/\sqrt{s})$.
- ▶ variance \rightarrow very large when a_{ij} large.

Variance Reduction: via, Deflation, .., Hutch++, MLMC

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

 ${\sf Projections} \to {\sf does} \; {\sf not} \; {\sf depend} \; {\sf on} \; {\sf eigenmodes}$

- ▶ Projection vector $\leftarrow V = WU^*$
- $\blacktriangleright W, U \in \mathbb{C}^{n \times d}$
- $\blacktriangleright \ \operatorname{tr}(A) = \operatorname{tr}(A(I-V)) + \operatorname{tr}(AV)$
- ▶ use the cyclic trace property : $tr(AV) = tr(AWU^*) = tr(U^*AW), U^*AW \in \mathbb{C}^{d \times d}$
- Our case: $B = A^{-1}$
 - ▶ stochastic column vectors $\rightarrow W = U = BV$, $V \in \mathbb{C}^{n \times d}$ [Hutch++]

The idea of the Hutch++ based on the projection technique..

- ▶ given, $A \in C^{n \times n}$ is a PSD , ϵ relative accuracy , d nr. deflation. vects.
- ▶ Rademacher matrix: $S = 2 \times \operatorname{randi}(2, n, d) 3$ $S \in C^{n \times d}$ with entries $\{-1, 1\}$
- ▶ solve the system $Y = A^{-1}S$, and $Y \in C^{n \times d}$

▶ Project eigenvectors:
$$[V,] = qr(Y, 0)$$

▶ the projection: $W = VV'$
▶ tr $(A^{-1}) = \underbrace{tr(A^{-1}W)}_{directly} + \underbrace{tr(A^{-1}(I - W))}_{stochastically}$

Hutch++ algorithm

Compute Stochastic part: $tr(A_s^{-1}) = tr(A^{-1}(I - W))$

- 1: Input: A, S, d, m, x
- 2: for $s = 1 \rightarrow m$ do
- 3: $\tau \leftarrow x^*WA^{-1}Wx$
- 4: **if** $Var(\tau)/s \le \epsilon$ then
- 5: stop
- 6: end if
- 7: end for
- 8: Output: mean of au

Imporvments:

• easy and simple, reduce the accuracy dependence from $O(n^2) \rightarrow O(n)$.

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

MLMC: main idea (Giles, 2015)

Assume a random function q_0 splits as

$$q_0 = \sum_{\ell=1}^{L} q_l, \quad \ell \text{ nr of level differnce}$$

 $\mathbb{E}[q_0] = \sum_{\ell=1}^{L-1} \underbrace{\mathbb{E}[q_\ell - q_{\ell+1}]}_{=w_\ell} + \underbrace{q_L}_{=w_L}$

where $w_\ell^{(i)}$ independent samples on each level. In case: $w=x^*A^{-1}x$, the unbiased estimator for ${\rm tr}(A^{-1})$ given by

$$\frac{1}{N} \sum_{i=1}^{N} x^{(i)} A^{-1} x^{(i)} \approx \operatorname{tr}(A^{-1})$$

The variance: $\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \mathbb{V}[w_{\ell}].$

MLMC: setup phase

- The goal: Solver & Hierarchy of the linear system
- define Prolongation $P_l \rightarrow l = 0, 1, ..., L$
- define Restriction $R_l \rightarrow l = 0, 1, ..., L$
- usually $\rightarrow R = P^*$
- define coarse matrix $\rightarrow B_{l+1} = R_l B_l P_l$

Figure: MG V-cycle: setup phase

MLMC-stochastic phase

2-grid mlmc

Figure: 2-Grid example

• Accumulated prolongation and restriction: $\hat{P}_{\ell} = P_0 \cdots P_{\ell}, \quad \hat{R}_{\ell} = R_{\ell} \cdots R_0.$

Multilevel decomposition:

$$\underbrace{x^*Bx}_{q_0} = \sum_{\ell=0}^{L-1} \underbrace{x^* \left(\hat{P}_{\ell} B_{\ell} \hat{R}_{\ell} - \hat{P}_{\ell+1} B_{\ell+1} \hat{R}_{\ell+1}\right) x}_{w_{\ell}} + \underbrace{x^* (\hat{P}_{L} B_{L} \hat{R}_{L}) x}_{w_{L}}$$

Target accuracy ho — — measured standard deviation

Uniform accuracy:

► Idea: distribute the target accuracy in equal. Achieve: $\rho_{\ell} = \rho/\sqrt{L-1}$ for all ℓ ,

Optimized accuracy:

- ▶ Idea: minimize the work if we know the cost C_{ℓ} ... and the variance V_{ℓ}
- for each sample: update C_{ℓ} and measured V_{ℓ} .
- define the new optimal target tolerance ρ_ℓ

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

mlmc++

- ► Idea: MLMC & Hutch++ together..
- The level difference matrix given as:

 $M_{l} = \hat{P}_{l}B_{l}\hat{R}_{l} - \hat{P}_{l+1}B_{l+1}\hat{R}_{l+1} \quad , \quad M_{l} \in C^{n_{l} \times n_{l}}$ (6)

- ▶ generate random matrix $S_{\ell} \in C^{n_l \times d_l}$, l = 1, .., L 1
- ▶ applying the projection vectors: $Q_l = qr[M_l^{-1}S_l, 0]$,
- split the matrix level difference:

$$M_l = (M_l)_d + (M_l - (M_l)_d)$$
(7)

- ► trace of multilevel decomposition of M_l : $tr(M_l^{-1}) = tr(\underbrace{Q_l^* M_l Q_l}_{directly}) + tr(M_l \underbrace{(I - Q_l^* Q_l)}_{stochastically})$ (8)
- challenge: find an optimal way to determine d_l to reduce the variance enough

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

Schwinger model						
N		$\ell = 1$	$\ell = 2$	$\ell = 3$	$\ell = 4$	L
128	n_ℓ	$2 \cdot 128^2$	$4 \cdot 32^2$	$8 \cdot 8^2$	$8 \cdot 2^2$	4
	$\operatorname{nnz}(S^N_\ell)$	2.94e5	1.64e5	2.46e4	1024	
m	-0.1320	-0.1325	-0.1329	-0.1332	-0.1333	
$n_{\rm defl}$	384	384	512	512	512	

Table: Parameters and quantities for Schwinger example

schwinger accuracy: Figures

Figure: Comparison of uniform and optimal mlmc for schwinger matrix: no of samples on each level difference (left) and total work for different (right) m.

mlmcPP work: Figures

Figure: On each level diff: (1) explore accomulated work of defl.Hutch, mlmc and mlmc++ for schwinger matrix (left), (2) comparison between setup and stochastic work of mlmc++ (right).

schwinger variance: Figures

Figure: show samples of mlmc++ and deflation Hutch. for schwinger matrix (left). variance comparison between mlmc and mlmc++ on each level difference.

mlmc++ & deflation mlmc: compromise I

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at first level difference: samples, MG V-cycles, and the variance.

mlmc++ & deflation mlmc: compromise I

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at second level difference: samples, MG V-cycles, and the variance.

mlmc++ & deflation mlmc: compromise I

Figure: compromise of mlmc++ and def. mlmc for schwinger matrix at third level difference: samples, MG V-cycles, and the variance.

Content

Monte Carlo Trace Estimation

Variance Redcution Methods

MLMC approach

mlmc++

Numerical Results

- \blacktriangleright We exploreed another approach \rightarrow reduction of the variance of $\mathrm{tr}(A^{-1})$
- higher precision can be obtained at much less work.
- the optimal way to project eigenmodes is not yet reproduced

Outlook:

▶ turn into 4*D* problems of QCD.

Thank You for your attention!