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In one slide...the problem

Want to generate representative samples...

{Φ(1), . . . ,Φ(N)} , Φ ∼ p(Φ) =
1

Z
e−S(Φ) (1)

...estimate expectation values...

O =
1

N

∑
{Φ}

O(Φ) , SEO = σO

√
2τO
N

(2)

...and extrapolate to the continuum limit ξ →∞. But most
MCMC methods suffer from critical slowing down

τO ∝ ξz , z ≃ 2 (3)
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In one slide...the idea

CSD occurs because proposals are correlated. Let’s train a
neural model to generate independent proposals with a high
probability of acceptance.

Important requirement

For asymptotically exact sampling, the model must permit
exact and efficient computation of the proposal density q(Φ)!

Albergo, Kanwar, Shanahan (2019) [1904.12072]: model learns
an invertible, differentiable transformation F : Ψ 7→ Φ from a
set of ‘latent variables’ Ψ for which independent sampling is
trivial — e.g. Ψ ∼ exp

(
−1

2

∑
i Ψ

2
i

)
. Proposal density is

q(Φ) = q(Ψ)

∣∣∣∣∂F (Ψ)

∂Ψ

∣∣∣∣−1

(4)
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The model

Let p(x) ∝ e−S(x), q(z) denote the target density and prior
density respectively. We seek to approximate p(x) with

q(x) =

∫
dz q(z)q(x | z) = q(z)

q(x | z)
q(z | x)

. (5)

q(x | z) is a neural model which we can optimise. Usually it
has several layers,

q(x | z) =
∫

dy (1) . . . dy (T−1)q(x | y (T−1))q(y (T−1) | y (T−2)) . . .

. . . q(y (2) | y (1))q(y (1) | z) . (6)

Each q(y (t+1) | y (t)) represents a transition probability.
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Computing the density

From (5) we can define weights w(x) ∝ p(x)/q(x),

w(x) = exp

(
−S(x)− log q(z) + log

q(z | x)
q(x | z)

)
(7)

log
q(z | x)
q(x | z)

=
T−1∑
t=0

log
q(y (t) | y (t+1))

q(y (t+1) | y (t))
(8)

Asymptotically exact sampling via Metropolis test:

Pr(x → x ′) = min

(
1 ,

w(x ′)

w(x)

)
. (9)

Note that w(x) need not be normalised: − log p(x)⇔ S(x).
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Training

The ‘reverse’ Kullbach-Leibler divergence,

DKL(p̃∥p) =
∫

dx q(x) log
q(x)

p(x)
(10)

can be estimated using samples generated by the model

D̂KL({x}) =
1

N

∑
{x∼q}

− logw(x) + const. (11)

Training amounts to

1 Sampling from the model, z 7→ x

2 Computing log q(x), S(x), and hence logw(x)

3 Backprop and gradient-based update θ ← θ − η d
dθ D̂KL
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Deterministic flows

Most studies to date have set

q(y (t+1) | y (t)) = δ
(
y (t+1) − ft(y

(t))
)

(12)

where ft : y
(t) 7→ y (t+1) is invertible and differentiable.

x = F (z) = fT−1 ◦ fT−2 ◦ . . . ◦ f0(z) (13)

q(x) = q(F−1(x))

∣∣∣∣∂F−1(x)

∂x

∣∣∣∣ (14)

Perfectly trained flow F−1 : x 7→ z , x ∼ p(x), z ∼ q(z) is a
trivialising map (Lüscher [0907.5491])
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Coupling layers

Triangular Jacobian makes density calculation easy.

f (yi ) =

{
yi , i ∈ P
g
(
yi ;n(yP)

)
, i ∈ A

A ∩ P = ∅ (15)

log

∣∣∣∣∂f (y)∂y

∣∣∣∣ = ∑
i∈A

log
dg(yi )

dyi
. (16)

E.g. checkerboard partitioning of lattice A ∪ P = Λ.
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MIT, Deepmind and collaborators

Albergo, Kanwar, Shanahan [1904.12072]: Proof of
principle on ϕ4 theory using affine coupling layers

Kanwar et al. [2003.06413]: U(1) equivariant flows

Boyda et al. [2008.05456]: SU(N) equivariant flows

Albergo et al. [2106.05934]: Dynamical fermions

Hackett et al. [2107.00734]: Optimising flow-based
samplers for multi-modal distributions

Boyda et al. [2202.05838]: ML applications for lattice field
theory white paper

Albergo et al. [2202.11712]: Schwinger model

Abbott et al. [2207.08945]: Pseudofermions
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Other contributions

Nicoli et al. [2007.07115]: Another proof of principle on
ϕ4 theory, but using additive coupling layers

Gabrié, Rotskoff, Vanden-Eijnden [2105.12603]: Combines
flow-based moves with local updates

Del Debbio, Marsh Rossney, Wilson [2105.12481]: Spline
flows for ϕ4, measured scaling with lattice size

De Haan et al. [2110.02673]: Continuous normalising
flows

Foreman et al. [2112.01586]: HMC with normalising flows

Finkerath [2201.02216]: Flow-based updates on
subvolumes of the lattice

Caselle et al. [2201.08862]: Improve CNN-based flows by
interleaving stochastic layers
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ϕ4 Theory

S(ϕ) =
∑
x∈Λ

[
− β

2∑
µ=1

ϕx+eµϕx + ϕ2
x + λ(ϕ2

x − 1)2
]
. (17)

Fix λ = 0.5, vary β.
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Reproducing original results

We found low acceptance rates when trying to reproduce
original results of Albergo, Kanwar, Shanahan for ϕ4 (at fixed
ξ = L/4). But...

Introducing more flexible ‘spline’ transformations led to a
huge improvement over affine layers

Enforcing Z2 equivariance in the affine layers helped
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Rational quadratic splines

Network generates segments widths wk
i ,x , heights h

k
i ,x and knot

derivatives dki ,x . a & −a are fixed points of the transformation.
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How to compare models?

|θ|: total number of trainable parameters (network weights
and biases)

|Φtrain|: number of configurations generated during
training, i.e. batch size × number of training steps
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Dependence on model size |θ|

For fully-connected networks: shallow outperforms deep, but
quickly diminishing returns.
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Dependence on training |Φtrain|

Conclusion

Model expressivity is no longer the limiting factor. Acceptances
are dictated by the total number of configurations exposed
during training.
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Attempt to quantify scaling of training cost
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Caveats

These results look pretty bad, but...

Part of the poor scaling can be attributed to
fully-connected neural networks; CNNs should scale better

We made no attempt to augment the training strategy,
but it is well known that reverse-KL training becomes
exponentially slow to fit tails of ill-conditioned target
densities
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Outstanding questions

What is the origin of this bad scaling? A pathology of
reverse KL training for ill-conditioned target densities is a
candidate, but this requires verification.

To what extent do alternative / equivariant architectures
alleviate the poor scaling we observed? (Requires
systematic study on larger lattices.)

Are flow-based samplers effective at mitigating CSD of
topological modes in QCD-like models (CPN−1)?

Are there more efficient models than the deterministic,
coupling layer based flows?

Is it worth looking for better priors than the isotropic
Gaussian or uniform distribution?
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Reference

“Efficient modeling of trivializing maps for lattice ϕ4

theory using normalizing flows: A first look at scalability”

arxiv:2105.12481 / Phys. Rev. D 104, 094507 (2021)

With Prof. Luigi Del Debbio and Michael Wilson.



Machine
Learning

Trivializing
Maps

Joe Marsh
Rossney

Introduction

Latent
Variable
Models

The story so
far...

What we did

Next steps

Conclusions

Table of Contents

1 Introduction

2 Latent Variable Models

3 The story so far...

4 What we did

5 Next steps



Machine
Learning

Trivializing
Maps

Joe Marsh
Rossney

Introduction

Latent
Variable
Models

The story so
far...

What we did

Next steps

Conclusions

Next steps

Currently pursuing four non-orthogonal directions:

1 Build better models

2 Test efficacy on topologically non-trivial theory – CPN−1

3 Increase the lattice size (correlation length)

4 Look at other ways to use flows in sampling algorithms
(see next talk!)
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XY model

Simplest, O(2)-invariant action for a set of 2-spins
σ = (cosϕ, sinϕ) on a lattice Λ

S (σ) = −β
∑
x∈Λ

d∑
µ=1

σx · σx+µ̂

= −β
∑
x∈Λ

d∑
µ=1

cos (ϕx − ϕx+µ̂) (18)

In d = 2 Mermin-Wagner theorem forbids SSB, but there is a
Kosterlitz-Thouless transition at β ≈ 1.1.
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Context

Poor results (versus ϕ4) using checkerboard partitioning &
spline coupling layers...
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A snag: O(2) symmetry broken by the splines...
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Concluding remarks

Huge strides made in developing machinery needed to
apply Normalising Flows to the sampling problem.

Our work in [2105.12481] raises interesting questions
regarding the scaling of training costs, but a large-scale
systematic study with more sophisticated architectures is
now needed.

Punchline

Flow-based sampling is promising but (from my perspective at
least) work remains to establish which, if any, architectures are
scalable!
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