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In one slide...the problem

Want to generate representative samples...

f � (1) ; : : : ; � (N)g; � � p(�) =
1
Z

e� S(�) (1)

...estimate expectation values...

O =
1
N

X

f � g

O(�) ; SEO = � O

r
2� O

N
(2)

...and extrapolate to the continuum limit� ! 1 . But most
MCMC methods su�er fromcritical slowing down

� O / � z ; z ' 2 (3)
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In one slide...the idea

CSD occurs because proposals are correlated. Let's train a
neural model to generateindependent proposals with a high
probability of acceptance.

Important requirement

For asymptotically exact sampling, the model must permit
exact and e�cient computation of the proposal densityq(�)!

Albergo, Kanwar, Shanahan (2019) [1904.12072]: model learns
an invertible, di�erentiable transformationF : 	 7! � from a
set of `latent variables' 	 for which independent sampling is
trivial | e.g. 	 � exp

�
� 1

2

P
i 	 2

i

�
. Proposal density is

q(�) = q(	)

�
�
�
�
@F(	)

@	

�
�
�
�

� 1

(4)
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The model

Let p(x) / e� S(x) , q(z) denote thetarget density and prior
density respectively. We seek to approximatep(x) with

q(x) =
Z

dz q(z)q(x j z) = q(z)
q(x j z)
q(z j x)

: (5)

q(x j z) is a neural model which we can optimise. Usually it
has several layers,

q(x j z) =
Z

dy(1) : : : dy(T � 1)q(x j y(T � 1))q(y(T � 1) j y(T � 2)) : : :

: : : q(y(2) j y(1) )q(y(1) j z) : (6)

Eachq(y(t +1) j y(t ) ) represents a transition probability.



Machine
Learning

Trivializing
Maps

Joe Marsh
Rossney

Introduction

Latent
Variable
Models

The story so
far...

What we did

Next steps

Conclusions

Computing the density

From (5) we can de�ne weightsw(x) / p(x)=q(x),

w(x) = exp
�

� S(x) � logq(z) + log
q(z j x)
q(x j z)

�
(7)

log
q(z j x)
q(x j z)

=
T � 1X

t =0

log
q(y(t ) j y(t +1) )
q(y(t +1) j y(t ) )

(8)

Asymptotically exact sampling via Metropolis test:

Pr(x ! x0) = min
�

1;
w(x0)
w(x)

�
: (9)

Note that w(x) need not be normalised:� logp(x) , S(x).
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Training

The `reverse' Kullbach-Leibler divergence,

DKL (~pkp) =
Z

dx q(x) log
q(x)
p(x)

(10)

can be estimated using samples generated by the model

D̂KL (f xg) =
1
N

X

f x� qg

� logw(x) + const: (11)

Training amounts to

1 Sampling from the model,z 7! x

2 Computing logq(x), S(x), and hence logw(x)

3 Backprop and gradient-based update�  � � � d
d� D̂KL
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Deterministic 
ows

Most studies to date have set

q(y(t +1) j y(t ) ) = �
�

y(t +1) � ft (y(t ) )
�

(12)

whereft : y(t ) 7! y(t +1) is invertible and di�erentiable.

x = F(z) = fT � 1 � fT � 2 � : : : � f0(z) (13)

q(x) = q(F � 1(x))

�
�
�
�
@F � 1(x)

@x

�
�
�
� (14)

Perfectly trained 
ow F � 1 : x 7! z, x � p(x); z � q(z) is a
trivialising map (L•uscher [0907.5491])
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Coupling layers

Triangular Jacobian makes density calculation easy.

f (yi ) =

(
yi ; i 2 P

g
�
yi ; n(yP)

�
; i 2 A

A \ P = ; (15)

log

�
�
�
�
@f (y)

@y

�
�
�
� =

X

i 2 A

log
dg(yi )

dyi
: (16)

E.g. checkerboard partitioning of latticeA [ P = �.
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MIT, Deepmind and collaborators

Albergo, Kanwar, Shanahan [1904.12072]: Proof of
principle on� 4 theory using a�ne coupling layers

Kanwar et al. [2003.06413]:U(1) equivariant 
ows

Boyda et al. [2008.05456]:SU(N) equivariant 
ows

Albergo et al. [2106.05934]: Dynamical fermions

Hackett et al. [2107.00734]: Optimising 
ow-based
samplers for multi-modal distributions

Boyda et al. [2202.05838]: ML applications for lattice �eld
theory white paper

Albergo et al. [2202.11712]: Schwinger model

Abbott et al. [2207.08945]: Pseudofermions


	Introduction
	Latent Variable Models
	The story so far...
	What we did
	Next steps
	Conclusions

