Reducing the Sign Problem using Line Integrals

Rasmus Larsen
University of Stavanger

August 8. 2022

Motivation

- Reduce the sign problem
- Some systems can be well approximated by expanding around the stable points
- Does not want to calculate the determinant or products of non-sparse matrices
- Does not require analytic continuation
- Sample along regions of importance
- Attempted solution:
- Change sampling from a point to a line
- Many possible lines:
- Follow lines where the imaginary part of the action is changing, such that oscillations will cancel out

Overview

- The path of the lines
- Sampling lines with equal probability
- The line Integral
- Cutoff on integral region
- Implementation
- Usage example: 1D Quantum mechanical Anharmonic oscillator with x^{4} potential
- https://arxiv.org/pdf/2205.02257.pdf

The path of the lines

- Will focus on systems that can be written as

$$
\begin{equation*}
\langle O\rangle=\int d^{N} x \exp (-E(x)) \frac{O(x)}{\langle 1\rangle}, E \in \mathbb{C} \tag{1}
\end{equation*}
$$

- Want to sample lines from which oscillations will cancel
- Solution: Follow the direction in which the imaginary part of the Energy or action E (depending on the system of interest) changes

$$
\begin{aligned}
\frac{\partial E_{i m}(x)}{\partial x_{j}} & \equiv F_{j}(x) \\
\frac{d x_{j}}{d \tau} & =F_{j}(x)
\end{aligned}
$$

- Example on the right:
$E=i\left(x_{1}^{2}+x_{2}^{2}\right)$

Sampling lines with equal probability

- We need to make sure that every point is counted the same amount of times
- Include volume factor $V_{\text {rel }}$ for how often a point is counted, compared to start position of line
- Example: $E=i\left(x_{1}^{2}+x_{2}^{2}\right)$
- 2 Slightly different starting points $x(0)$ and $y(0)$
- At later time (1) the points are further separated
- Need to count contribution to line integral as $\left|\frac{x(1)}{x(0)}\right|$
- Similar to radial coordinates

Change in volume factor

- We look at the change of the unit vectors v under a infinitesimal change with the force

$$
\begin{align*}
{\left[d x_{i}\left(x+\epsilon_{2} v\right)-d x_{i}(x)\right] / \epsilon_{2}=} & \\
\epsilon\left[F_{i}\left(x+\epsilon_{2} v\right)-F_{i}(x)\right] / \epsilon_{2}= & \epsilon \frac{\partial^{2} E_{i m}(x)}{\partial x_{i} \partial x_{j}} v_{j}+O\left(\epsilon_{2}\right) \\
\frac{V_{\text {rel }}(\tau+\epsilon)}{V_{\text {rel }}(\tau)}=\operatorname{det}\left[I_{i j}+\epsilon \frac{\partial^{2} E_{i m}(x(\tau))}{\partial x_{i} \partial x_{j}}\right]= & 1+\epsilon \sum_{j=1}^{N} \frac{\partial^{2} E_{i m}(x(\tau))}{\partial^{2} x_{j}} \\
& +O\left(\epsilon^{2}\right) \tag{2}
\end{align*}
$$

- The change of the volume factor is therefore proportional to the size of the lattice

$$
\begin{equation*}
\frac{d \log \left(V_{r e l}(\tau)\right)}{d \tau}=\sum_{j=1}^{N} \frac{\partial^{2} E_{i m}(x(\tau))}{\partial^{2} x_{j}} \tag{3}
\end{equation*}
$$

The line integral

- Collecting everything into an integral gives us

$$
\begin{aligned}
I_{O}\left(x_{0}\right) & =\int_{-\infty}^{\infty} O(x(s)) \exp [-E(x(s))] V_{\text {rel }}(s) d s \\
& =\int_{-\infty}^{\infty} O(x(\tau)) \exp \left[-E(x(\tau))+\sum_{j=1}^{N} \int_{0}^{\tau} \frac{\partial^{2} E_{i m}\left(x\left(\tau^{\prime}\right)\right)}{\partial^{2} x_{j}} d \tau^{\prime}\right]\left|F\left(x_{0}\right)\right| d \tau
\end{aligned}
$$

- $x(\tau)$ is obtained by following the defined path in both positive and negative τ
- s is the distance traveled along the line

$$
\begin{equation*}
\frac{d s}{d \tau}=|F(x(\tau))| \tag{5}
\end{equation*}
$$

Cutoff the line integral

- We do not want to sample all the way out to infinity
- Cutoff integral with small trick

$$
\begin{align*}
\int_{-\infty}^{\infty} \exp (-E(x)) d x & =\text { constant } \cdot \int_{-\infty}^{\infty} \exp (-\mathrm{E}(\mathrm{x})-\mathrm{g}(\mathrm{~s})) \mathrm{dxds} \tag{6}\\
& =\text { constant } \cdot \int_{-\infty}^{\infty} \exp (-\mathrm{E}(\mathrm{x}+\mathrm{s})-\mathrm{g}(\mathrm{~s})) \mathrm{dxds} \tag{7}
\end{align*}
$$

- Example with $g(s)=s^{2}$, starting at $x=1$
- In case a stable point is hit, direction of integration should be reversed, but s should keep increasing

Implementation

- The entire procedure can be implemented as a set of differential equations

$$
\begin{align*}
F_{j}(x) & =\frac{\partial E_{i m}}{\partial x_{j}}=\frac{d x_{j}}{d \tau} \tag{8}\\
\frac{d s}{d \tau} & =\sqrt{\sum_{j=1}^{N} F_{j}(x)^{2}} \tag{9}\\
\frac{d J}{d \tau} & =\sum_{j=1}^{N} \frac{\partial^{2} E_{i m}}{\partial^{2} x_{j}} \tag{10}\\
\frac{d I_{O}}{d \tau} & =O(x(\tau)) e^{-E(x(\tau))-g(s)+J}\left|F\left(x_{0}\right)\right| \tag{11}\\
I_{O} & =I_{O}(\tau=\infty)-I_{O}(\tau=-\infty) \tag{12}
\end{align*}
$$

- We have defined $J=\log \left(V_{\text {rel }}(\tau)\right)$
- $\left|F\left(x_{0}\right)\right|$ can be absorbed into the initial conditions of J
- We will use $g(s)=(s / \sigma)^{2}$

Example: 1d anharmonic oscillator

- As an example of its usage we calculate the correlator for

$$
\begin{align*}
<O> & =\operatorname{Tr}\left(e^{-\beta H} x e^{-i t H} x e^{i t H}\right) / \operatorname{Tr}\left(e^{-\beta H}\right) \tag{13}\\
H & =\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4!} \tag{14}
\end{align*}
$$

- We will look at the strongly coupled case $\lambda=24$
- $\beta=1.0$
- Compare with solution from discretizing \times

Approach

- The force and double derivative becomes

$$
\begin{aligned}
\langle O\rangle & =\int d^{N} x \exp \left(\sum_{j=1}^{N} i\left[\frac{\left(x_{j}-x_{j+1}\right)^{2}}{2 a_{j}}-\frac{\left(a_{j}+a_{j-1}\right)}{2}\left(\frac{x_{j}^{2}}{2}+\frac{\lambda x_{j}^{4}}{4!}\right)\right]\right) \frac{O(x)}{\langle 1\rangle} \\
E & =-\sum_{j=1}^{N} i\left[\frac{\left(x_{j}-x_{j+1}\right)^{2}}{2 a_{j}}-\frac{\left(a_{j}+a_{j-1}\right)}{2}\left(\frac{x_{j}^{2}}{2}+\frac{\lambda x_{j}^{4}}{4!}\right)\right] \\
\frac{\partial E_{i m}}{\partial x_{j}} & =-\operatorname{Im}\left(i\left[\frac{\left(x_{j}-x_{j+1}\right)}{a_{j}}+\frac{\left(x_{j}-x_{j-1}\right)}{a_{j-1}}-\frac{\left(a_{j}+a_{j-1}\right)}{2}\left(x_{j}+\frac{\lambda x_{j}^{3}}{3!}\right)\right]\right) \\
\frac{\partial^{2} E_{i m}}{\partial^{2} x_{j}} & =-\operatorname{Im}\left(i\left[\frac{1}{a_{j}}+\frac{1}{a_{j-1}}-\frac{\left(a_{j}+a_{j-1}\right)}{2}\left(1+\frac{\lambda x_{j}^{2}}{2}\right)\right]\right)
\end{aligned}
$$

Importance Sampling

$$
\begin{equation*}
\langle O\rangle=\frac{\int d^{N} x I_{O}(x)}{\int d^{N} x I_{1}(x)}=\frac{\int d^{N} x\left|I_{1}(x)\right| \times I_{O}(x) /\left|I_{1}(x)\right|}{\int d^{N} x\left|I_{1}(x)\right| \times I_{1}(x) /\left|I_{1}(x)\right|} \tag{15}
\end{equation*}
$$

- We will sample on the start position of the line using the metropolis algorithm

$$
\begin{aligned}
\langle O\rangle & =\frac{\sum_{j} I_{O}\left(x_{j}\right) /\left|I_{1}\left(x_{j}\right)\right|}{\sum_{j} I_{1}\left(x_{j}\right) /\left|I_{1}\left(x_{j}\right)\right|} \\
O & =x(0) x(t)
\end{aligned}
$$

- The subscript O indicates the observable included in the line integral and j indicates the j'th measurement
- We define the average phase $\langle 1\rangle$ as

$$
\begin{equation*}
\langle 1\rangle=\sum_{j} I_{1}\left(x_{j}\right) /\left|I_{1}\left(x_{j}\right)\right| \tag{16}
\end{equation*}
$$

Correlator

- $\langle x(0) x(t)\rangle$
- Correlator is possible up around $t=1.2$
- Average sign becomes too small afterwards

Summary

- We have defined a set of line integrals

- Shown example of strongly coupled anharmonic oscilator
- Cost due to average sign and other hidden cost like precision limits us currently to $t_{\text {max }}=1.2$
- Still room for optimization

