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Action and Observables

Pure SU(2) lattice gauge action

S = −β
2

∑
n inΛ

∑
µ<ν

Tr [Pµν(n)]

with

Pµν(n) = Uµ(n)Uν(n+ µ̂)U†µ(n+ ν̂)U†ν (n)

on a hypercubic lattice of length L

Λ =
{

(n0, . . . , nd−1) ∈ N4
0

∣∣0 ≤ nµ ≤ L− 1
}

Metropolis Markov Chain Monte Carlo Sampling

to generate link configurations {Ui}

P(U) ∝ exp (−S(U))

Observe average Plaquette

〈P 〉 =
1

N

N∑
i=1

P (Ui)

with

P (U) =
2

d(d− 1)Ld

∑
n

∑
µ<ν

Re TrPµν(n) .

⇒ To test discretizations we restrict Uµ to finite subsets of SU(2)
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Off The Shelf Solutions

Finite Subgroups

• binary tetrahedral, octahedral and

icosahedral groups T , O and I

(24, 48, 120 elements respectively)

• Discussed extensively by Petcher and

Weingarten 1980

• Main Takeaways:

• Sudden Drop in acceptance rates at

higher values of β (Dubbed “freezing

transition”)

• Freezing transition improves with

finer partitionings

Asymptotically Dense Partitionings

• Make use of isomorphy between SU(2) and S3

x ∈ S3 ⇔

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
∈ SU(2)

• SU(N) and U(N) can always be expressed as a

product of spheres

⇒ Approaches can be generalized for other

gauge groups

2
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Geodesic Polyhedra
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Geodesic Polyhedra

Linear Lattices

Lm(k) :=

{
1

M
(s0j0, . . . , skjk)

∣∣∣∣∣
k∑
i=0

ji = m, ∀i ∈ {0, . . . , k} : si ∈ {±1}, ji ∈ N

}
, M :=

√√√√ k∑
i=0

j2
i

• Created from subdividing the k-dimensional

octahedron

• Available with 8, 32, 88, 192, 360, 608 . . .

elements (for S3)

Volleyball Lattices

Vm(k) :=

{
1

M
(s0j0, . . . , skjk)

∣∣∣∣ (j0, . . . , jk) ∈ {all perm. of (m,a1, . . . , ak)} ,

si ∈ {±1}, ai ∈ {0, . . . ,m}
}

• Created from subdividing the k-dimensional

cube

• Available with 16, 80, 240, 544, 1040, . . .

elements (for S3)
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Geodesic Polyhedra - Weights

• Systematic deviation caused by anisotropic

distribution of points

• Modification of Metropolis step:

∆S → ∆S′ =
wnew

wold
∆S

• wold / wnew are proportional to the (estimated)

Voronoi cell volumes surrounding the current /

newly proposed link.

L1 L2 L3 L4 L5 L10 L50

0

10−4

10−3

10−2

10−1

P
−
P
re
f

No Weights

V1 V2 V3 V4 V5 V10 V50

0

10−4

10−3

10−2

10−1

P
−
P
re
f

No Weights

84 lattice at β = 3
5
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Fibonacci Lattices

• 2D Fibonacci lattice in unit square:

Λ2
n =

{
t̃m
∣∣0 ≤ m < n, m ∈ N

}
with t̃m = (xm, ym)t =

(m
τ

mod 1,
m

n

)t
,

τ = (1 +
√

5)/2 .

• Can be mapped from [0, 1)2 onto other manifolds such

that volume is preserved

Fibonacci Lattice with n = 256 on S2

6
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Fibonacci Lattices

• Generalization for higher dimensions

Λkn = {tm|0 ≤ m < n, m ∈ N}

tm =


t1m
t2m
...

tkm

 =


m
n

a1 m mod 1
...

ak−1 m mod 1


with

ai
aj

/∈ Q for i 6= j

• Map to SU(2) is constructed from metric tensor of S3

• Deviations due to the “chaotic” nature get smaller for

larger sets

F8 F16 F32 F64 F128 F256 F512

0

10−4

10−3

10−2

10−1

P
−
P
re
f

84 lattice at β = 1.0

F8 F16 F32 F64 F128 F256 F512

0

10−4

10−3

10−2

10−1

P
−
P
re
f

84 lattice at β = 3.0
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Phase Transitions

0 2 4 6 8 10

β

0.0

0.2

0.4

0.6

0.8

1.0

P

continuous SU(2)

F88 - cold start

F88 - hot start

0 2 4 6 8 10

β

0.0

0.2

0.4

0.6

0.8

1.0

P

continuous SU(2)

L3 - cold start

L3 - hot start
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Phase Transitions I

101 102

n

2

4

6

8

β
c

T

O

I

V
(w)
0

V1

V w
1

L
(w)
1

L2

L3

Lw
2

Lw
3

Lw
4

Fn

9
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What can we hope for

• Prediction for βc from Petcher and Weingarten 1980:

βc ≈
ln
(
1 +
√

2
)

1− cos
(

2π/Ñ
)

with Ñ = # of steps along equator

• Average distance of n points for cubical packing:

d(n) = (Vol(S3)/n)
1
3

Opening Angle: α(n) = 2 sin−1 (d(n)/2)

⇒ Ñ = 2π/α(n)

• Correct for “zick-zack” path by factor
√

2/3

(Ratio of side length and height of a tetrahedron)

10
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Fn

10



Action and Observables Digitization Approaches Phase Transitions Conclusion References

What can we hope for

• Prediction for βc from Petcher and Weingarten 1980:

βc ≈
ln
(
1 +
√

2
)

1− cos
(

2π/Ñ
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Outlook

#!TODO

• Test digitizations of other gauge

groups (e.g. SU(3))

• Figure out how to make use of

this on quantum computers

The End - Thanks for listening

Paper can be found at:

https://doi.org/10.1140/epjc/s10052-022-10192-5
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