Digitizing SU(2) gauge fields and what to look out for when doing so

Tobias Hartung ^{1 2} Timo Jakobs ^{3 4} Karl Jansen ⁵ Johann Ostmeyer ⁶ Carsten Urbach ^{3 4} August 9, 2022 @ LATTICE 2022

¹Department of Mathematical Sciences, University of Bath

²Computation-based Science and Technology Research Center, The Cyprus Institute

³Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn

⁴Bethe Center for Theoretical Physics, University of Bonn

⁵NIC, DESY Zeuthen

⁶Department of Mathematical Sciences, University of Liverpool

Action and Observables	Digitization Approaches	Phase Transitions 000	Conclusion OO	References

1

Action and Observables

Pure SU(2) lattice gauge action

$$S = -\frac{\beta}{2} \sum_{n \ in\Lambda} \sum_{\mu < \nu} \operatorname{Tr} \left[P_{\mu\nu}(n) \right]$$

with

$$P_{\mu\nu}(n) = U_{\mu}(n) \, U_{\nu}(n+\hat{\mu}) \, U_{\mu}^{\dagger}(n+\hat{\nu}) \, U_{\nu}^{\dagger}(n)$$

on a hypercubic lattice of length ${\cal L}$

$$\Lambda = \{ (n_0, \dots, n_{d-1}) \in \mathbb{N}_0^4 | 0 \le n_\mu \le L - 1 \}$$

Action and Observables	Digitization Approaches	Phase Transitions 000	Conclusion 00	References
Action and Observ	vables			
Pure $SU(2)$ lattic	ce gauge action	Metropolis Markov	Chain Monte Carlo S	ampling
S = -1	$\frac{\beta}{2} \sum_{n \ in\Lambda} \sum_{\mu < \nu} \operatorname{Tr} \left[P_{\mu\nu}(n) \right]$	to generate link co $\mathbb{P}(\mathcal{U})$	nfigurations $\{\mathcal{U}_i\}$ $0\propto \exp{(-S(\mathcal{U}))}$	

1

with

$$P_{\mu\nu}(n) = U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)$$

on a hypercubic lattice of length ${\cal L}$

$$\Lambda = \{ (n_0, \dots, n_{d-1}) \in \mathbb{N}_0^4 | 0 \le n_\mu \le L - 1 \}$$

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion OO	References
Action and Observ	vables			
Pure $SU(2)$ latti	ce gauge action	Metropolis Markov	Chain Monte Carlo Sa	ampling
S	$\beta \sum \sum T_{n} [P_{n}(n)]$	to generate link co	nfigurations $\{\mathcal{U}_i\}$	

$$\mathbb{P}(\mathcal{U}) \propto \exp\left(-S(\mathcal{U})\right)$$

Observe average Plaquette

$$\langle P \rangle = \frac{1}{N} \sum_{i=1}^{N} P(\mathcal{U}_i)$$

with

$$P(\mathcal{U}) = \frac{2}{d(d-1)L^d} \sum_n \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr} P_{\mu\nu}(n) \,.$$

$$S = -\frac{\beta}{2} \sum_{n \ in\Lambda} \sum_{\mu < \nu} \operatorname{Tr} \left[P_{\mu\nu}(n) \right]$$

with

$$P_{\mu
u}(n) = U_{\mu}(n) \, U_{
u}(n+\hat{\mu}) \, U^{\dagger}_{\mu}(n+\hat{
u}) \, U^{\dagger}_{
u}(n)$$

on a hypercubic lattice of length ${\cal L}$

$$\Lambda = \{ (n_0, \dots, n_{d-1}) \in \mathbb{N}_0^4 | 0 \le n_\mu \le L - 1 \}$$

1

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion OO	References
Action and Observ	vables			
Pure $SU(2)$ latti	ce gauge action	Metropolis Markov	Chain Monte Carlo S	ampling
S = -	$\frac{\beta}{2} \sum \sum \operatorname{Tr} \left[P_{\mu\nu}(n) \right]$	to generate link co	nfigurations $\{\mathcal{U}_i\}$	

with

$$P_{\mu\nu}(n) = U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n+\hat{\nu})$$

 $n in\Lambda \mu < \nu$

on a hypercubic lattice of length \boldsymbol{L}

$$\Lambda = \{ (n_0, \dots, n_{d-1}) \in \mathbb{N}_0^4 | 0 \le n_\mu \le L - 1 \}$$

Observe average Plaquette

$$\langle P \rangle = \frac{1}{N} \sum_{i=1}^{N} P(\mathcal{U}_i)$$

 $\mathbb{P}(\mathcal{U}) \propto \exp\left(-S(\mathcal{U})\right)$

with

$$P(\mathcal{U}) = \frac{2}{d(d-1)L^d} \sum_n \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr} P_{\mu\nu}(n) \,.$$

 \Rightarrow To test discretizations we restrict U_{μ} to finite subsets of SU(2)

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	●00000	000	OO	

Finite Subgroups

 binary tetrahedral, octahedral and icosahedral groups T, O and I
 (24, 48, 120 elements respectively)

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	●00000	000	OO	

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion 00	References

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
 - Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")

Action and Observables	Digitization Approaches	Conclusion	References
	00000		

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
 - Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
 - Freezing transition improves with finer partitionings

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	●000000	000	OO	

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
 - Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
 - Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

• Make use of isomorphy between SU(2) and S_3

$$x \in S_3 \Leftrightarrow \begin{pmatrix} x_0 + \mathrm{i}x_1 & x_2 + \mathrm{i}x_3 \\ -x_2 + \mathrm{i}x_3 & x_0 - \mathrm{i}x_1 \end{pmatrix} \in \mathrm{SU}(2)$$

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	●000000	000	00	

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
 - Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
 - Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

• Make use of isomorphy between SU(2) and S_3

$$x \in S_3 \Leftrightarrow \begin{pmatrix} x_0 + \mathrm{i}x_1 & x_2 + \mathrm{i}x_3 \\ -x_2 + \mathrm{i}x_3 & x_0 - \mathrm{i}x_1 \end{pmatrix} \in \mathrm{SU}(2)$$

• SU(N) and U(N) can always be expressed as a product of spheres

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	●000000	000	OO	

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups T, O and I (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
 - Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
 - Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

• Make use of isomorphy between SU(2) and S_3

$$x \in S_3 \Leftrightarrow \begin{pmatrix} x_0 + \mathrm{i}x_1 & x_2 + \mathrm{i}x_3 \\ -x_2 + \mathrm{i}x_3 & x_0 - \mathrm{i}x_1 \end{pmatrix} \in \mathrm{SU}(2)$$

- SU(N) and U(N) can always be expressed as a product of spheres
 - ⇒ Approaches can be generalized for other gauge groups

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	○●○○○○	000	OO	

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	000000	000	OO	

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	000000	000	OO	
Candada Dalukadua				

Linear Lattices

$$L_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| \sum_{i=0}^k j_i = m, \ \forall i \in \{0, \dots, k\} : \ s_i \in \{\pm 1\}, \ j_i \in \mathbb{N} \right\}, \quad M \quad \coloneqq \sqrt{\sum_{i=0}^k j_i^2}$$

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References

Linear Lattices

$$L_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| \sum_{i=0}^k j_i = m, \ \forall i \in \{0, \dots, k\} : \ s_i \in \{\pm 1\}, \ j_i \in \mathbb{N} \right\}, \quad M \quad \coloneqq \sqrt{\sum_{i=0}^k j_i^2}$$

• Created from subdividing the *k*-dimensional octahedron

• Available with 8, 32, 88, 192, 360, 608... elements (for S₃)

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	00●000	000	00	

Linear Lattices

$$L_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| \sum_{i=0}^k j_i = m, \ \forall i \in \{0, \dots, k\} : \ s_i \in \{\pm 1\}, \ j_i \in \mathbb{N} \right\}, \quad M \quad \coloneqq \sqrt{\sum_{i=0}^k j_i^2}$$

• Created from subdividing the *k*-dimensional octahedron

• Available with 8, 32, 88, 192, 360, 608... elements (for S₃)

Volleyball Lattices

$$V_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| (j_0, \dots, j_k) \in \{ \text{all perm. of } (m, a_1, \dots, a_k) \}, \\ s_i \in \{ \pm 1 \}, \, a_i \in \{ 0, \dots, m \} \right\}$$

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	00●000	000	OO	

Linear Lattices

$$L_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| \sum_{i=0}^k j_i = m, \ \forall i \in \{0, \dots, k\} : \ s_i \in \{\pm 1\}, \ j_i \in \mathbb{N} \right\}, \quad M \quad \coloneqq \sqrt{\sum_{i=0}^k j_i^2}$$

• Created from subdividing the k-dimensional octahedron

• Available with 8, 32, 88, 192, 360, 608... elements (for S₃)

Volleyball Lattices

$$V_m(k) \coloneqq \left\{ \frac{1}{M} \left(s_0 j_0, \dots, s_k j_k \right) \middle| (j_0, \dots, j_k) \in \{ \text{all perm. of } (m, a_1, \dots, a_k) \}, \\ s_i \in \{ \pm 1 \}, \, a_i \in \{ 0, \dots, m \} \right\}$$

• Created from subdividing the k-dimensional cube

• Available with 16, 80, 240, 544, 1040, ... elements (for S₃)

Action and Observables O	Digitization Approaches	Phase Transitions	Conclusion OO	References
Geodesic Polyhedra	- Weights			

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References
Geodesic Polyhedra -	Weights			
		10^{-1} +	+ <u>+</u> No Weig	hts
	ation caused by anisotropic	$\begin{array}{c} 10^{-2} \\ 0 \\ 1 \\ 10^{-3} \\ 0 \\ 10^{-4} \end{array}$	+ + + +	*
distribution of p	oints	$\begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	L_2 L_3 L_4 L_5 L_{10}	
		10 ⁻¹	∃ No Weig	hts
		$\begin{array}{c} 10^{-2} \\ \alpha_{-}^{10} \\ 10^{-3} \\ \alpha_{-} \\ 10^{-4} \end{array}$	+ + + + +	+
		0		

5

 V_1 V_2 V_3 V_4 V_5 V_{10} V_{50}

 8^4 lattice at $\beta = 3$

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References

Geodesic Polyhedra - Weights

- Systematic deviation caused by anisotropic distribution of points
- Modification of Metropolis step:

$$\Delta S \qquad \rightarrow \qquad \Delta S' = \frac{w_{\text{new}}}{w_{\text{old}}} \Delta S$$

 w_{old} / w_{new} are proportional to the (estimated) Voronoi cell volumes surrounding the current / newly proposed link.

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References

Geodesic Polyhedra - Weights

- Systematic deviation caused by anisotropic distribution of points
- Modification of Metropolis step:

$$\Delta S \qquad \rightarrow \qquad \Delta S' = \frac{w_{\text{new}}}{w_{\text{old}}} \Delta S$$

 w_{old} / w_{new} are proportional to the (estimated) Voronoi cell volumes surrounding the current / newly proposed link.

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	0000●0	000	OO	

• 2D Fibonacci lattice in unit square:

$$\Lambda_n^2 = \left\{ \tilde{t}_m \middle| 0 \le m < n, \ m \in \mathbb{N} \right\}$$

with $\tilde{t}_m = (x_m, \ y_m)^t = \left(\frac{m}{\tau} \mod 1, \frac{m}{n} \right)^t$,
 $\tau = (1 + \sqrt{5})/2$.

- Can be mapped from $[0,1)^2$ onto other manifolds such that volume is preserved

Fibonacci Lattice with n = 256 on S_2

Action and Observables O	Digitization Approaches 00000●	Phase Transitions	Conclusion OO	References
Fibonacci Lattices				

• Generalization for higher dimensions

$$\Lambda_n^k = \{t_m | 0 \le m < n, \ m \in \mathbb{N}\}$$
$$t_m = \begin{pmatrix} t_m^1 \\ t_m^2 \\ \vdots \\ t_m^k \end{pmatrix} = \begin{pmatrix} \frac{m}{n} & & \\ a_1 m \mod 1 \\ \vdots \\ a_{k-1} m \mod 1 \end{pmatrix}$$

with

$$\frac{a_i}{a_j} \notin \mathbb{Q} \quad \text{for} \quad i \neq j$$

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References
F 1 1 1 1				

• Generalization for higher dimensions

$$\Lambda_n^k = \{t_m | 0 \le m < n, \ m \in \mathbb{N}\}$$
$$t_m = \begin{pmatrix} t_m^1 \\ t_m^2 \\ \vdots \\ t_m^k \end{pmatrix} = \begin{pmatrix} \frac{m}{n} & & \\ a_1 m \mod 1 \\ \vdots \\ a_{k-1} m \mod 1 \end{pmatrix}$$

with

$$\frac{a_i}{a_j} \notin \mathbb{Q} \quad \text{for} \quad i \neq j$$

• Map to SU(2) is constructed from metric tensor of S_3

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	00000●	000	00	

• Generalization for higher dimensions

$$\Lambda_n^k = \{t_m | 0 \le m < n, \ m \in \mathbb{N}\}$$
$$t_m = \begin{pmatrix} t_m^1 \\ t_m^2 \\ \vdots \\ t_m^k \end{pmatrix} = \begin{pmatrix} \frac{m}{n} & & \\ a_1 m \mod 1 \\ \vdots \\ a_{k-1} m \mod 1 \end{pmatrix}$$

with

$$\frac{a_i}{a_j} \notin \mathbb{Q} \quad \text{for} \quad i \neq j$$

• Map to SU(2) is constructed from metric tensor of S_3

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	00000●	000	00	

• Generalization for higher dimensions

$$\Lambda_n^k = \{t_m | 0 \le m < n, \ m \in \mathbb{N}\}$$
$$t_m = \begin{pmatrix} t_m^1 \\ t_m^2 \\ \vdots \\ t_m^k \end{pmatrix} = \begin{pmatrix} \frac{m}{n} & & \\ a_1 m \mod 1 \\ \vdots \\ a_{k-1} m \mod 1 \end{pmatrix}$$

with

$$\frac{a_i}{a_j} \notin \mathbb{Q} \quad \text{for} \quad i \neq j$$

- Map to SU(2) is constructed from metric tensor of S_3
- Deviations due to the "chaotic" nature get smaller for larger sets

7

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	000000	●00	OO	

Phase Transitions

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
		000		

Phase Transitions I

Action and Observables O	Digitization Approaches	Phase Transitions	Conclusion OO	References

• Prediction for β_c from Petcher and Weingarten 1980:

$$\beta_c \approx \frac{\ln\left(1 + \sqrt{2}\right)}{1 - \cos\left(2\pi/\tilde{N}\right)}$$

with $\tilde{N} = \#$ of steps along equator

Action and Observables	Digitization Approaches	Phase Transitions 00●	Conclusion OO	References
0	000000		00	

• Prediction for β_c from Petcher and Weingarten 1980:

$$\beta_c \approx \frac{\ln\left(1+\sqrt{2}\right)}{1-\cos\left(2\pi/\tilde{N}\right)}$$

with $ilde{N} = \#$ of steps along equator

• Average distance of n points for cubical packing:

$$\begin{aligned} d(n) &= (\mathrm{Vol}(\mathrm{S}_3)/n)^{\frac{1}{3}}\\ \text{Opening Angle:} & \alpha(n) &= 2\sin^{-1}\left(d(n)/2\right)\\ &\Rightarrow \tilde{N} &= 2\pi/\alpha(n) \end{aligned}$$

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
O	000000	00●	OO	

Action and Observables O	Digitization Approaches	Phase Transitions 00●	Conclusion 00	References

• Prediction for β_c from Petcher and Weingarten 1980:

$$\beta_c \approx \frac{\ln\left(1+\sqrt{2}\right)}{1-\cos\left(2\pi/\tilde{N}\right)}$$

with $ilde{N} = \#$ of steps along equator

• Average distance of n points for cubical packing:

$$\begin{aligned} d(n) &= (\operatorname{Vol}(\operatorname{S}_3)/n)^{\frac{1}{3}} \\ \text{Opening Angle:} \quad \alpha(n) &= 2\sin^{-1}\left(d(n)/2\right) \\ &\Rightarrow \tilde{N} &= 2\pi/\alpha(n) \end{aligned}$$

• Correct for "zick-zack" path by factor $\sqrt{2/3}$ (Ratio of side length and height of a tetrahedron)

Action and Observables	Digitization Approaches	Phase Transitions	Conclusion	References
	000000	000	00	

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion ●O	References

Outlook

#!T0D0

- Test digitizations of other gauge groups (e.g. SU(3))
- Figure out how to make use of this on quantum computers

Action and Observables	Digitization Approaches	Conclusion	References
		0	

Outlook

#!T0D0

- Test digitizations of other gauge groups (e.g. SU(3))
- Figure out how to make use of this on quantum computers

The End - Thanks for listening

Paper can be found at:

https://doi.org/10.1140/epjc/s10052-022-10192-5

o 000000 000 o ●	Action and Observables	Digitization Approaches		Conclusion	References
	0	000000	000	0•	

Action and Observables O	Digitization Approaches	Phase Transitions 000	Conclusion OO	References
References				

Petcher, D. and D. H. Weingarten (1980). "Monte Carlo Calculations and a Model of the Phase Structure for Gauge Theories on Discrete Subgroups of SU(2)". In: *Phys. Rev. D* 22, p. 2465. DOI: 10.1103/PhysRevD.22.2465.