Digitizing SU(2) gauge fields and what to look out for when doing so

Tobias Hartung 1 2 Timo Jakobs 3 4  Karl Jansen ®  Johann Ostmeyer ©
August 9, 2022 @ LATTICE 2022

1Department of Mathematical Sciences, University of Bath

2Computaticm—based Science and Technology Research Center, The Cyprus Institute
3Helmholtz-Institut fiir Strahlen- und Kernphysik, University of Bonn

4Bethe Center for Theoretical Physics, University of Bonn

SNIC, DESY Zeuthen

6Department of Mathematical Sciences, University of Liverpool

Carsten Urbac!

h34



Action and Observables
[ ]

Action and Observables

Pure SU(2) lattice gauge action

S=-5 3 S T(Pun)]

n inA p<v
with
Pouv(n) = Uu(n) Up(n + ) Ul (n + 2) Ul (n)
on a hypercubic lattice of length L

A={(no,...,na—1) €Ng|0 <m,, <L —1}
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Pure SU(2) lattice gauge action Metropolis Markov Chain Monte Carlo Sampling

S=-5 3 S T(Pun)]

n inA p<v P(u) X €xp (_S(u))

to generate link configurations {U4;}

with
Puy(n) = Up(n) Un(n + p) UL (n + 2) U (n)
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Action and Observables

Pure SU(2) lattice gauge action Metropolis Markov Chain Monte Carlo Sampling
3 to generate link configurations {U4;}
5=-2 ¥ S (P

n inA p<v P(u) X €xp (_S(u))

with Observe average Plaquette

Puy(n) = Up(n) Un(n + p) UL (n + 2) U (n) 1 &
(P)= %> PU)

on a hypercubic lattice of length L i=1

with

PU) = ﬁ Z Z ReTr P (n).

n pu<v

A={(no,...,na—1) €Ng|0 <m,, <L —1}



Action and Observables
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Action and Observables

Pure SU(2) lattice gauge action Metropolis Markov Chain Monte Carlo Sampling
3 to generate link configurations {U4;}
5=-2 ¥ S (P
n inA p<v P(u) X €xp (_S(u))
with Observe average Plaquette
Pu(n) = Uu(n) Uy (n + @) Ul (n + 0) Ul (n) 1 &
(P)= %> PU)
on a hypercubic lattice of length L i=1
A={(no,...,na_1) ENgl0 <n, < L1} i)
2
2 B 10e /2y .

= To test discretizations we restrict U, to finite subsets of SU(2)
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Off The Shelf Solutions

Finite Subgroups Asymptotically Dense Partitionings

e binary tetrahedral, octahedral and e Make use of isomorphy between SU(2) and Ss
icosahedral groups T', O and T

(24,48, 120 elements respectively) €S & ( Tot+izy @2 +izs

—x9 +irs X0 — iT1

) € SU(2)
e Discussed extensively by Petcher and
Weingarten 1980

o i TehesmEys e SU(N) and U(N) can always be expressed as a

e Sudden Drop in acceptance rates at product of spheres

higher values of 3 (Dubbed “freezing = Approaches can be generalized for other
transition”) gauge groups

o Freezing transition improves with
finer partitionings
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M

1 . )
Lm(k) = { (S()](), ey Sk]k)

k
Zji:mv Vi€ {0,...,k}: 8i€{i1},j¢€N}7 M =
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Geodesic Polyhedra

Linear Lattices

M

1 . )
Lm(k) = { (S()](), ey Sk]k)

k
> Gi=m, Vi€ {0,... k}: sie{il},jieN}, M =

1=0

o Created from subdividing the k-dimensional e Available with 8,32, 88,192,360, 608. ..
octahedron elements (for S3)

Volleyball Lattices

1 . . . .
Vin (k) = {M (sojo, .-, skjr)| (Jos--.,7k) € {all perm. of (m,a1,...,ar)},

Si € {:l:l}, a; € {O,m}}

o Created from subdividing the k-dimensional e Available with 16, 80, 240, 544, 1040, . ..
cube elements (for S3)
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Geodesic Polyhedra - Weights

e Systematic deviation caused by anisotropic
distribution of points

e Modification of Metropolis step:

AS 5 AS =Yrewag

Wold

® Wold / Wnew are proportional to the (estimated)
Voronoi cell volumes surrounding the current /
newly proposed link.
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Geodesic Polyhedra - Weights

e Systematic deviation caused by anisotropic
distribution of points

e Modification of Metropolis step:

AS = AS =Yrewag

Wold

® Wold / Wnew are proportional to the (estimated)
Voronoi cell volumes surrounding the current /
newly proposed link.
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Fibonacci Lattices

e 2D Fibonacci lattice in unit square:
Ai:{fm|0§m<n, mEN}
= t
with tm = (Tm, Ym)' = (m mod 1, m) ,
T n
= (1+V5)/2.

e Can be mapped from [0,1)? onto other manifolds such
that volume is preserved

Fibonacci Lattice with n = 256 on Sa
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Fibonacci Lattices
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Fibonacci Lattices

o Generalization for higher dimensions L1072
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Phase Transitions
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Phase Transitions
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What can we hope for

e Prediction for . from Petcher and Weingarten 1980:

B, ~ ln(1+\/§)
T 1 — cos (QW/N)

with N = # of steps along equator
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Phase Transitions
[e]e] )

What can we hope for

e Prediction for . from Petcher and Weingarten 1980:
In (1 + \/5)
1 — cos (QW/N)

with N = # of steps along equator

Be =~

e Average distance of n points for cubical packing:

d(n

Opening Angle: a(n

<Vo1< 3>/n>%

D=
) =2sin~" (d(n)/2)
=N = / a(n)

10
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Phase Transitions
[e]e] )

What can we hope for

e Prediction for . from Petcher and Weingarten 1980:
In (1 + \/5)
1 — cos (QW/N)

with N = # of steps along equator

Be =~

e Average distance of n points for cubical packing:

d(n) = <Vo1< So)/m)®
Opening Angle: a(n) = ~1(d(n)/2)
=N = /Oé(n)

e Correct for “zick-zack” path by factor \/2/3
(Ratio of side length and height of a tetrahedron)

10
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Outlook

#!TODO

e Test digitizations of other gauge
groups (e.g. SU(3))

e Figure out how to make use of
this on quantum computers
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#!TODO

e Test digitizations of other gauge
groups (e.g. SU(3))

e Figure out how to make use of
this on quantum computers

Conclusion
[ Je]

The End - Thanks for listening

Paper can be found at:
https://doi.org/10.1140/epjc/s10052-022-10192-5
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