Digitizing $\mathrm{SU}(2)$ gauge fields and what to look out for when doing so

Tobias Hartung ${ }^{12}$ Timo Jakobs ${ }^{34}$ Karl Jansen ${ }^{5}$ Johann Ostmeyer ${ }^{6}$ Carsten Urbach ${ }^{3} 4$ August 9, 2022 @ LATTICE 2022
${ }^{1}$ Department of Mathematical Sciences, University of Bath
${ }^{2}$ Computation-based Science and Technology Research Center, The Cyprus Institute
${ }^{3}$ Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn
${ }^{4}$ Bethe Center for Theoretical Physics, University of Bonn
${ }^{5}$ NIC, DESY Zeuthen
${ }^{6}$ Department of Mathematical Sciences, University of Liverpool

Action and Observables

Pure $\mathrm{SU}(2)$ lattice gauge action

$$
S=-\frac{\beta}{2} \sum_{n} \sum_{i n \Lambda} \operatorname{Tr}\left[P_{\mu \nu}(n)\right]
$$

with

$$
P_{\mu \nu}(n)=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)
$$

on a hypercubic lattice of length L

$$
\Lambda=\left\{\left(n_{0}, \ldots, n_{d-1}\right) \in \mathbb{N}_{0}^{4} \mid 0 \leq n_{\mu} \leq L-1\right\}
$$

Action and Observables

Pure $\mathrm{SU}(2)$ lattice gauge action

$$
S=-\frac{\beta}{2} \sum_{n} \sum_{i n \Lambda} \sum_{\mu<\nu} \operatorname{Tr}\left[P_{\mu \nu}(n)\right]
$$

Metropolis Markov Chain Monte Carlo Sampling to generate link configurations $\left\{\mathcal{U}_{i}\right\}$

$$
\mathbb{P}(\mathcal{U}) \propto \exp (-S(\mathcal{U}))
$$

with

$$
P_{\mu \nu}(n)=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)
$$

on a hypercubic lattice of length L

$$
\Lambda=\left\{\left(n_{0}, \ldots, n_{d-1}\right) \in \mathbb{N}_{0}^{4} \mid 0 \leq n_{\mu} \leq L-1\right\}
$$

Action and Observables

Pure $\mathrm{SU}(2)$ lattice gauge action

$$
S=-\frac{\beta}{2} \sum_{n} \sum_{\mu<\Lambda} \operatorname{Tr}\left[P_{\mu \nu}(n)\right]
$$

with

$$
P_{\mu \nu}(n)=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)
$$

on a hypercubic lattice of length L

$$
\Lambda=\left\{\left(n_{0}, \ldots, n_{d-1}\right) \in \mathbb{N}_{0}^{4} \mid 0 \leq n_{\mu} \leq L-1\right\}
$$

Metropolis Markov Chain Monte Carlo Sampling to generate link configurations $\left\{\mathcal{U}_{i}\right\}$

$$
\mathbb{P}(\mathcal{U}) \propto \exp (-S(\mathcal{U}))
$$

Observe average Plaquette

$$
\langle P\rangle=\frac{1}{N} \sum_{i=1}^{N} P\left(\mathcal{U}_{i}\right)
$$

with

$$
P(\mathcal{U})=\frac{2}{d(d-1) L^{d}} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr} P_{\mu \nu}(n)
$$

Action and Observables

Pure $\mathrm{SU}(2)$ lattice gauge action

$$
S=-\frac{\beta}{2} \sum_{n i n \Lambda} \sum_{\mu<\nu} \operatorname{Tr}\left[P_{\mu \nu}(n)\right]
$$

with

$$
P_{\mu \nu}(n)=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)
$$

on a hypercubic lattice of length L

$$
\Lambda=\left\{\left(n_{0}, \ldots, n_{d-1}\right) \in \mathbb{N}_{0}^{4} \mid 0 \leq n_{\mu} \leq L-1\right\}
$$

Metropolis Markov Chain Monte Carlo Sampling to generate link configurations $\left\{\mathcal{U}_{i}\right\}$

$$
\mathbb{P}(\mathcal{U}) \propto \exp (-S(\mathcal{U}))
$$

Observe average Plaquette

$$
\langle P\rangle=\frac{1}{N} \sum_{i=1}^{N} P\left(\mathcal{U}_{i}\right)
$$

with

$$
P(\mathcal{U})=\frac{2}{d(d-1) L^{d}} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr} P_{\mu \nu}(n)
$$

\Rightarrow To test discretizations we restrict U_{μ} to finite subsets of $\mathrm{SU}(2)$

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)
- Discussed extensively by Petcher and Weingarten 1980

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
- Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} (24, 48, 120 elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
- Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
- Freezing transition improves with finer partitionings

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
- Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
- Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

- Make use of isomorphy between $\mathrm{SU}(2)$ and S_{3}

$$
x \in S_{3} \Leftrightarrow\left(\begin{array}{cc}
x_{0}+\mathrm{i} x_{1} & x_{2}+\mathrm{i} x_{3} \\
-x_{2}+\mathrm{i} x_{3} & x_{0}-\mathrm{i} x_{1}
\end{array}\right) \in \mathrm{SU}(2)
$$

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
- Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
- Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

- Make use of isomorphy between $\mathrm{SU}(2)$ and S_{3}

$$
x \in S_{3} \Leftrightarrow\left(\begin{array}{cc}
x_{0}+\mathrm{i} x_{1} & x_{2}+\mathrm{i} x_{3} \\
-x_{2}+\mathrm{i} x_{3} & x_{0}-\mathrm{i} x_{1}
\end{array}\right) \in \mathrm{SU}(2)
$$

- $\mathrm{SU}(N)$ and $\mathrm{U}(N)$ can always be expressed as a product of spheres

Off The Shelf Solutions

Finite Subgroups

- binary tetrahedral, octahedral and icosahedral groups \bar{T}, \bar{O} and \bar{I} ($24,48,120$ elements respectively)
- Discussed extensively by Petcher and Weingarten 1980
- Main Takeaways:
- Sudden Drop in acceptance rates at higher values of β (Dubbed "freezing transition")
- Freezing transition improves with finer partitionings

Asymptotically Dense Partitionings

- Make use of isomorphy between $\mathrm{SU}(2)$ and S_{3}

$$
x \in S_{3} \Leftrightarrow\left(\begin{array}{cc}
x_{0}+\mathrm{i} x_{1} & x_{2}+\mathrm{i} x_{3} \\
-x_{2}+\mathrm{i} x_{3} & x_{0}-\mathrm{i} x_{1}
\end{array}\right) \in \mathrm{SU}(2)
$$

- $\mathrm{SU}(N)$ and $\mathrm{U}(N)$ can always be expressed as a product of spheres
\Rightarrow Approaches can be generalized for other gauge groups

Geodesic Polyhedra

Geodesic Polyhedra

Geodesic Polyhedra

Linear Lattices

$L_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\, \sum_{i=0}^{k} j_{i}=m, \forall i \in\{0, \ldots, k\}: s_{i} \in\{ \pm 1\}, j_{i} \in \mathbb{N}\right\}, \quad M \quad:=\sqrt{\sum_{i=0}^{k} j_{i}^{2}}$

Geodesic Polyhedra

Linear Lattices

$$
L_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\, \sum_{i=0}^{k} j_{i}=m, \forall i \in\{0, \ldots, k\}: s_{i} \in\{ \pm 1\}, j_{i} \in \mathbb{N}\right\}, \quad M \quad:=\sqrt{\sum_{i=0}^{k} j_{i}^{2}}
$$

- Created from subdividing the k-dimensional octahedron
- Available with $8,32,88,192,360,608 \ldots$ elements (for S_{3})

Geodesic Polyhedra

Linear Lattices

$$
L_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\, \sum_{i=0}^{k} j_{i}=m, \forall i \in\{0, \ldots, k\}: s_{i} \in\{ \pm 1\}, j_{i} \in \mathbb{N}\right\}, \quad M \quad:=\sqrt{\sum_{i=0}^{k} j_{i}^{2}}
$$

- Created from subdividing the k-dimensional octahedron
- Available with $8,32,88,192,360,608 \ldots$ elements (for S_{3})

Volleyball Lattices

$$
\begin{aligned}
& V_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\,\left(j_{0}, \ldots, j_{k}\right) \in\left\{\text { all perm. of }\left(m, a_{1}, \ldots, a_{k}\right)\right\}\right. \\
&\left.s_{i} \in\{ \pm 1\}, a_{i} \in\{0, \ldots, m\}\right\}
\end{aligned}
$$

Geodesic Polyhedra

Linear Lattices

$$
L_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\, \sum_{i=0}^{k} j_{i}=m, \forall i \in\{0, \ldots, k\}: s_{i} \in\{ \pm 1\}, j_{i} \in \mathbb{N}\right\}, \quad M \quad:=\sqrt{\sum_{i=0}^{k} j_{i}^{2}}
$$

- Created from subdividing the k-dimensional octahedron
- Available with $8,32,88,192,360,608 \ldots$ elements (for S_{3})

Volleyball Lattices

$$
\begin{aligned}
& V_{m}(k):=\left\{\left.\frac{1}{M}\left(s_{0} j_{0}, \ldots, s_{k} j_{k}\right) \right\rvert\,\left(j_{0}, \ldots, j_{k}\right) \in\left\{\text { all perm. of }\left(m, a_{1}, \ldots, a_{k}\right)\right\}\right. \\
&\left.s_{i} \in\{ \pm 1\}, a_{i} \in\{0, \ldots, m\}\right\}
\end{aligned}
$$

- Created from subdividing the k-dimensional cube
- Available with $16,80,240,544,1040, \ldots$ elements (for S_{3})

Geodesic Polyhedra - Weights

8^{4} lattice at $\beta=3$

Geodesic Polyhedra - Weights

- Systematic deviation caused by anisotropic distribution of points

8^{4} lattice at $\beta=3$

Geodesic Polyhedra - Weights

- Systematic deviation caused by anisotropic distribution of points
- Modification of Metropolis step:

$$
\Delta S \quad \rightarrow \quad \Delta S^{\prime}=\frac{w_{\text {new }}}{w_{\text {old }}} \Delta S
$$

- $w_{\text {old }} / w_{\text {new }}$ are proportional to the (estimated) Voronoi cell volumes surrounding the current / newly proposed link.

8^{4} lattice at $\beta=3$

Geodesic Polyhedra - Weights

- Systematic deviation caused by anisotropic distribution of points
- Modification of Metropolis step:

$$
\Delta S \quad \rightarrow \quad \Delta S^{\prime}=\frac{w_{\text {new }}}{w_{\text {old }}} \Delta S
$$

- $w_{\text {old }} / w_{\text {new }}$ are proportional to the (estimated) Voronoi cell volumes surrounding the current / newly proposed link.

8^{4} lattice at $\beta=3$

Fibonacci Lattices

- 2D Fibonacci lattice in unit square:

$$
\Lambda_{n}^{2}=\left\{\tilde{t}_{m} \mid 0 \leq m<n, m \in \mathbb{N}\right\}
$$

with

$$
\begin{aligned}
\tilde{t}_{m} & =\left(x_{m}, y_{m}\right)^{t}=\left(\frac{m}{\tau} \quad \bmod \quad 1, \frac{m}{n}\right)^{t} \\
\tau & =(1+\sqrt{5}) / 2
\end{aligned}
$$

- Can be mapped from $[0,1)^{2}$ onto other manifolds such that volume is preserved

Fibonacci Lattice with $n=256$ on S_{2}

Fibonacci Lattices

- Generalization for higher dimensions

$$
\begin{aligned}
& \Lambda_{n}^{k}=\left\{t_{m} \mid 0 \leq m<n, m \in \mathbb{N}\right\} \\
& t_{m}=\left(\begin{array}{c}
t_{m}^{1} \\
t_{m}^{2} \\
\vdots \\
t_{m}^{k}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m}{n} & \\
a_{1} m & \bmod & 1 \\
\vdots & & \\
a_{k-1} m & \bmod & 1
\end{array}\right)
\end{aligned}
$$

with

$$
\frac{a_{i}}{a_{j}} \notin \mathbb{Q} \quad \text { for } \quad i \neq j
$$

Fibonacci Lattices

- Generalization for higher dimensions

$$
\begin{aligned}
\Lambda_{n}^{k} & =\left\{t_{m} \mid 0 \leq m<n, m \in \mathbb{N}\right\} \\
t_{m} & =\left(\begin{array}{c}
t_{m}^{1} \\
t_{m}^{2} \\
\vdots \\
t_{m}^{k}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m}{n} & & \\
a_{1} m & \bmod & 1 \\
\vdots & & \\
a_{k-1} m & \bmod & 1
\end{array}\right)
\end{aligned}
$$

with

$$
\frac{a_{i}}{a_{j}} \notin \mathbb{Q} \quad \text { for } \quad i \neq j
$$

- Map to $\mathrm{SU}(2)$ is constructed from metric tensor of S_{3}

Fibonacci Lattices

- Generalization for higher dimensions

$$
\begin{aligned}
& \Lambda_{n}^{k}=\left\{t_{m} \mid 0 \leq m<n, m \in \mathbb{N}\right\} \\
& t_{m}=\left(\begin{array}{c}
t_{m}^{1} \\
t_{m}^{2} \\
\vdots \\
t_{m}^{k}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m}{n} & \\
a_{1} m & \bmod & 1 \\
\vdots & & \\
a_{k-1} m & \bmod & 1
\end{array}\right)
\end{aligned}
$$

with

$$
\frac{a_{i}}{a_{j}} \notin \mathbb{Q} \quad \text { for } \quad i \neq j
$$

- Map to $\mathrm{SU}(2)$ is constructed from metric tensor of S_{3}

$$
8^{4} \text { lattice at } \beta=1.0
$$

8^{4} lattice at $\beta=3.0$

Fibonacci Lattices

- Generalization for higher dimensions

$$
\begin{aligned}
& \Lambda_{n}^{k}=\left\{t_{m} \mid 0 \leq m<n, m \in \mathbb{N}\right\} \\
& t_{m}=\left(\begin{array}{c}
t_{m}^{1} \\
t_{m}^{2} \\
\vdots \\
t_{m}^{k}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m}{n} & \\
a_{1} m & \bmod & 1 \\
\vdots & & \\
a_{k-1} m & \bmod & 1
\end{array}\right)
\end{aligned}
$$

with

$$
\frac{a_{i}}{a_{j}} \notin \mathbb{Q} \quad \text { for } \quad i \neq j
$$

- Map to $\mathrm{SU}(2)$ is constructed from metric tensor of S_{3}
- Deviations due to the "chaotic" nature get smaller for larger sets

$$
8^{4} \text { lattice at } \beta=1.0
$$

8^{4} lattice at $\beta=3.0$

Phase Transitions

Phase Transitions I

What can we hope for

- Prediction for β_{c} from Petcher and Weingarten 1980:

$$
\begin{aligned}
\beta_{c} & \approx \frac{\ln (1+\sqrt{2})}{1-\cos (2 \pi / \tilde{N})} \\
\text { with } \quad \tilde{N} & =\# \text { of steps along equator }
\end{aligned}
$$

What can we hope for

- Prediction for β_{c} from Petcher and Weingarten 1980:

$$
\begin{aligned}
\beta_{c} & \approx \frac{\ln (1+\sqrt{2})}{1-\cos (2 \pi / \tilde{N})} \\
\text { with } \quad \tilde{N} & =\# \text { of steps along equator }
\end{aligned}
$$

- Average distance of n points for cubical packing:

$$
\begin{aligned}
& d(n)=\left(\operatorname{Vol}\left(\mathrm{S}_{3}\right) / n\right)^{\frac{1}{3}} \\
& \text { Opening Angle: } \quad \alpha(n)=2 \sin ^{-1}(d(n) / 2) \\
& \Rightarrow \tilde{N}=2 \pi / \alpha(n)
\end{aligned}
$$

What can we hope for

What can we hope for

- Prediction for β_{c} from Petcher and Weingarten 1980:

$$
\begin{aligned}
\beta_{c} & \approx \frac{\ln (1+\sqrt{2})}{1-\cos (2 \pi / \tilde{N})} \\
\text { with } \quad \tilde{N} & =\# \text { of steps along equator }
\end{aligned}
$$

- Average distance of n points for cubical packing:

$$
\begin{aligned}
& d(n)=\left(\operatorname{Vol}\left(\mathrm{S}_{3}\right) / n\right)^{\frac{1}{3}} \\
& \text { Opening Angle: } \quad \alpha(n)=2 \sin ^{-1}(d(n) / 2) \\
& \Rightarrow \tilde{N}=2 \pi / \alpha(n)
\end{aligned}
$$

- Correct for "zick-zack" path by factor $\sqrt{2 / 3}$
(Ratio of side length and height of a tetrahedron)

What can we hope for

Outlook

\#!TODO

- Test digitizations of other gauge groups (e.g. SU(3))
- Figure out how to make use of this on quantum computers

Outlook

\#!TODO

- Test digitizations of other gauge groups (e.g. SU(3))
- Figure out how to make use of this on quantum computers

The End - Thanks for listening

Paper can be found at:
https://doi.org/10.1140/epjc/s10052-022-10192-5

References

Petcher, D. and D. H. Weingarten (1980). "Monte Carlo Calculations and a Model of the Phase Structure for Gauge Theories on Discrete Subgroups of SU(2)". In: Phys. Rev. D 22, p. 2465. Doi: 10.1103/PhysRevD.22.2465.

