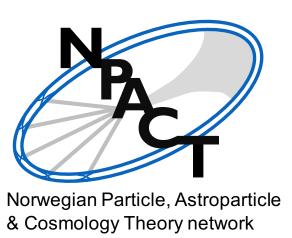
Kernel control ed real-time **Complex Langevin simulation Daniel Alvestad, University of Stavanger Collaborators: Rasmus Larsen and Alexander Rothkopf**



Introduction

- Real-time
- Complex L (Stochastic

simulation (sign-problem)
Langevin equation
$$\phi \rightarrow \phi^{R} + i\phi^{I}$$

c Differential equation)
 $\frac{d\phi}{d\tau_{L}} = i\frac{\delta S[\phi]}{\delta\phi(x)} + \eta(x, \tau_{L})$ with
 $\langle \eta(x, \tau_{L}) \rangle = 0, \quad \langle \eta(x, \tau_{L})\eta(x', \tau_{L}') \rangle = 2\delta(x - x')\delta(\tau_{L} - \tau_{L}').$
anck equation
 $\frac{\partial}{\partial t}\Phi(x, t) = \sum_{j}\frac{\delta}{\delta\phi_{j}} \left[\frac{\delta}{\delta\phi_{j}} + \frac{\delta S[\phi]}{\delta\phi_{j}}\right]\Phi(x, t) = -H_{\text{FP}}\Phi(x, t)$
any solutions
gence to the wrong solution

Fokker-Pla

simulation (sign-problem)
angevin equation
$$\phi \rightarrow \phi^{R} + i\phi^{I}$$

c Differential equation)

$$\frac{d\phi}{d\tau_{L}} = i\frac{\delta S[\phi]}{\delta\phi(x)} + \eta(x,\tau_{I}) \text{ with}$$

$$(\eta(x,\tau_{L})) = 0, \quad \langle \eta(x,\tau_{L})\eta(x',\tau'_{L}) \rangle = 2\delta(x-x')\delta(\tau_{L}-\tau'_{L}).$$
Inck equation

$$\frac{\partial}{\partial t}\Phi(x,t) = \sum_{j} \frac{\delta}{\delta\phi_{j}} \left[\frac{\delta}{\delta\phi_{j}} + \frac{\delta S[\phi]}{\delta\phi_{j}} \right] \Phi(x,t) = -H_{\text{FP}}\Phi(x,t)$$
and solutions
gence to the wrong solution

- Problems
 - Runawa
 - Converg

Problem of stability in real-time simulations

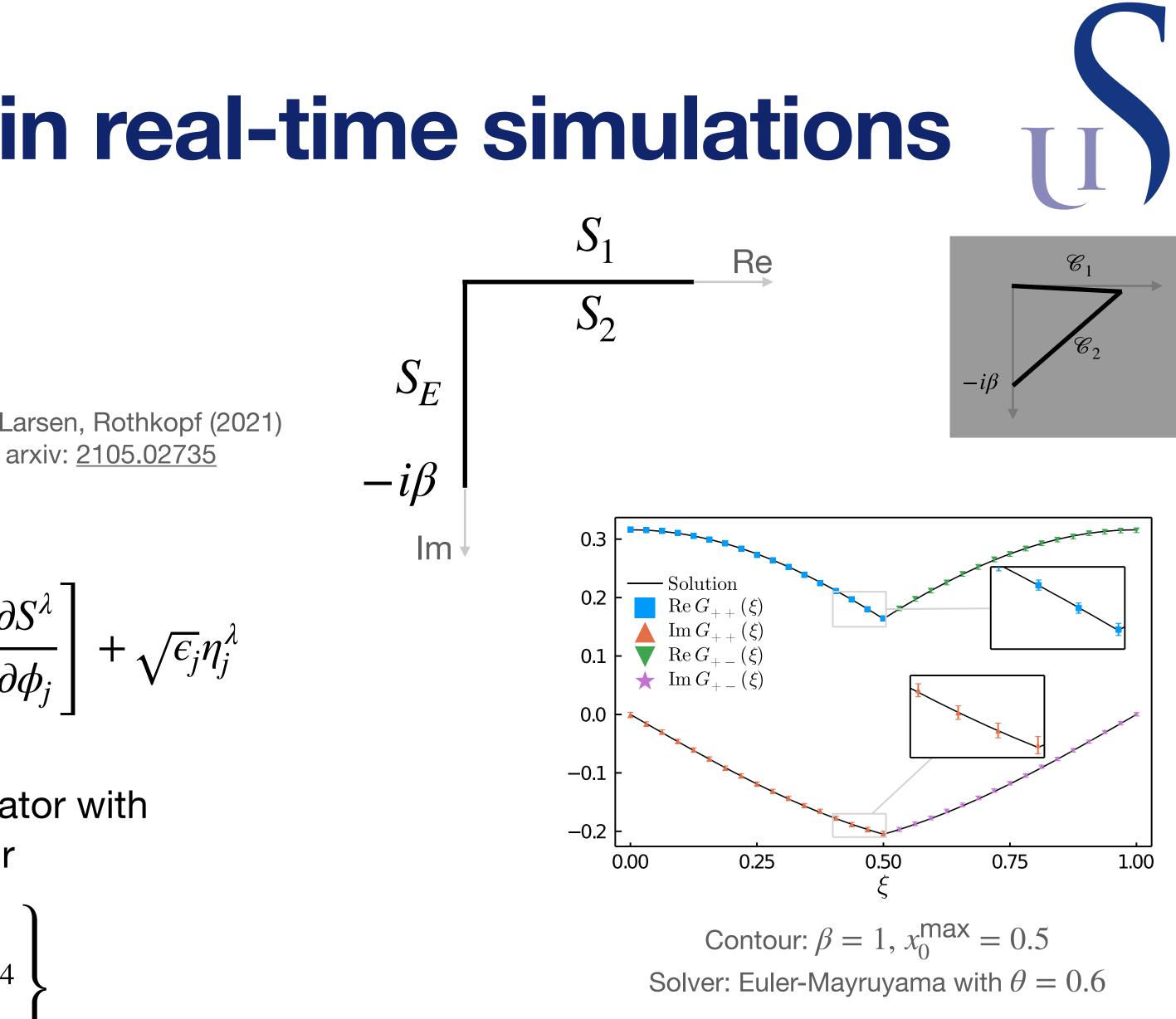
- Runaway solutions
- Adaptive step-size
- Regularisation via use of implicit scheme D.A, Larsen, Rothkopf (2021)

• General Euler-Maruyama scheme

$$\phi_j^{\lambda+1} = \phi_j^{\lambda} + i\epsilon_j \left[\theta \frac{\partial S^{\lambda+1}}{\partial \phi_j} + (1-\theta) \frac{\partial S^{\lambda}}{\partial \phi_j} \right]$$

 Strongly coupled quantum anharmonic oscillator with $\beta = 1, m = 1, \lambda = 24$ on a real-time contour

$$S = \int dx_0 \left\{ \frac{1}{2} \left(\frac{\partial \phi}{\partial x_0} \right)^2 - \frac{1}{2} m \phi^2 - \frac{\lambda}{4!} \phi^4 \right\}$$



Simulations done with the DifferentialEquations.jl library in Julia

Problem of wrong convergence

- Boundary terms Scherzer, Seiler, Sexty, Stamatescu (2018+2019)
- Gauge Cooling Seiler, Sexty, Stamatescu (2013)
- Dynamical stabilisation Attanasio, Jäger (2019)
- Modification to CLE
 - Coordinate Transformations Aarts et. al. (2013)
 - Kernels Söderberg (1988), Okamoto et. al. (1989)

Problem of wrong convergence

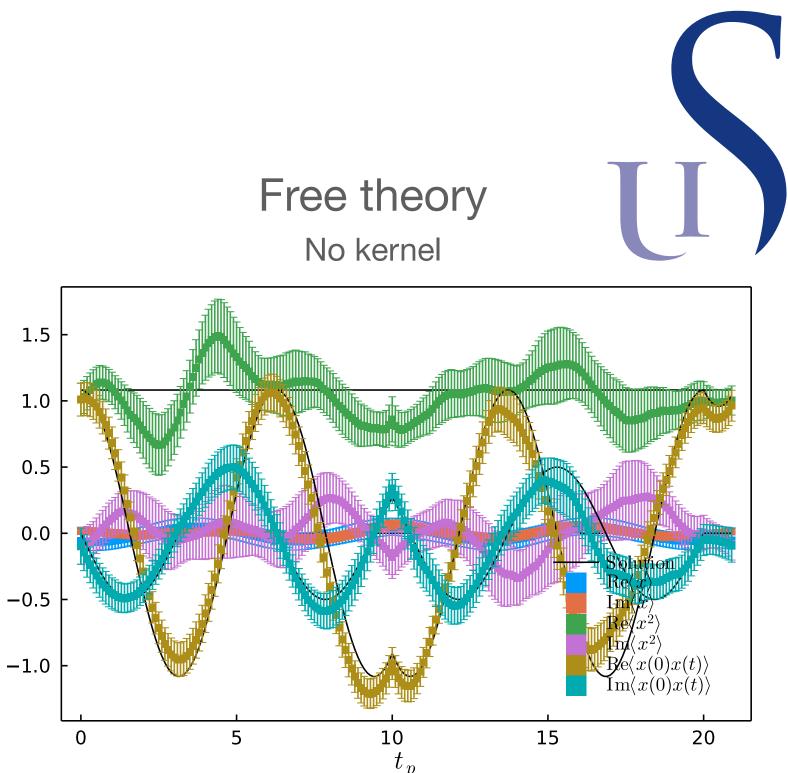
- Boundary terms Scherzer, Seiler, Sexty, Stamatescu (2018+2019)
- Gauge Cooling Seiler, Sexty, Stamatescu (2013)
- Dynamical stabilisation Attanasio, Jäger (2019)
- Modification to CLE
 - Coordinate Transformations Aarts et. al. (2013)

• Kernels Söderberg (1988), Okamoto et. al. (1989)

- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kernelled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$
- Free theory propagator: $S = \phi^{\dagger} M \phi$, $K = -M^{-1}$, $K \partial_{\phi} S[\phi] = -\phi$, $d\phi = -\phi + \sqrt{-M^{-1}}dW$

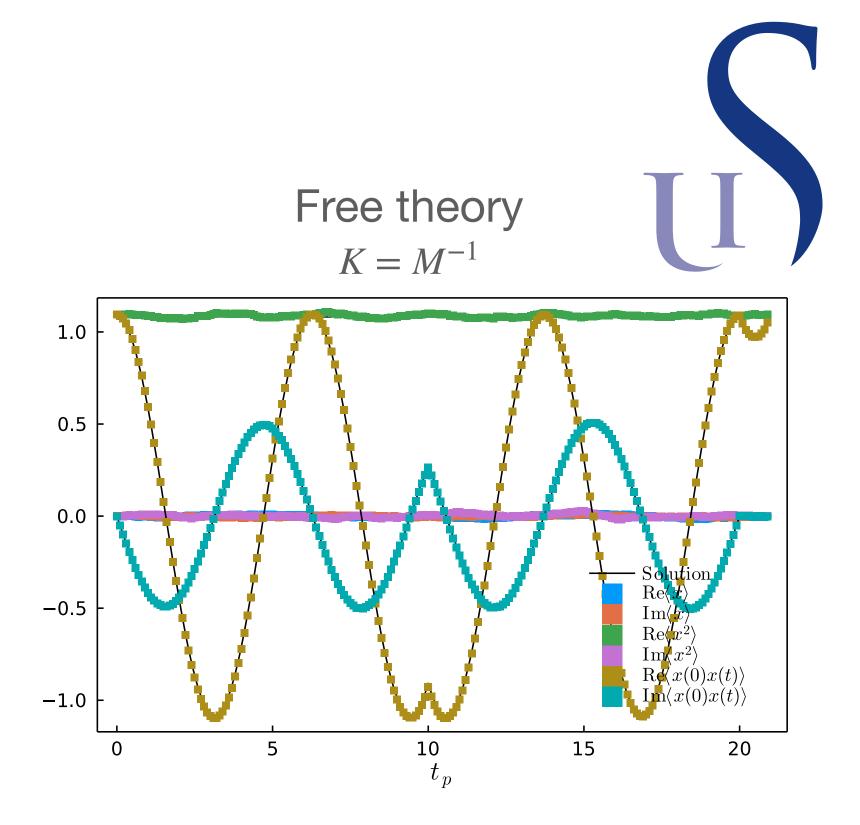
Free theory No kernel

$$d\tau_L + \sqrt{K[\phi]} dW$$

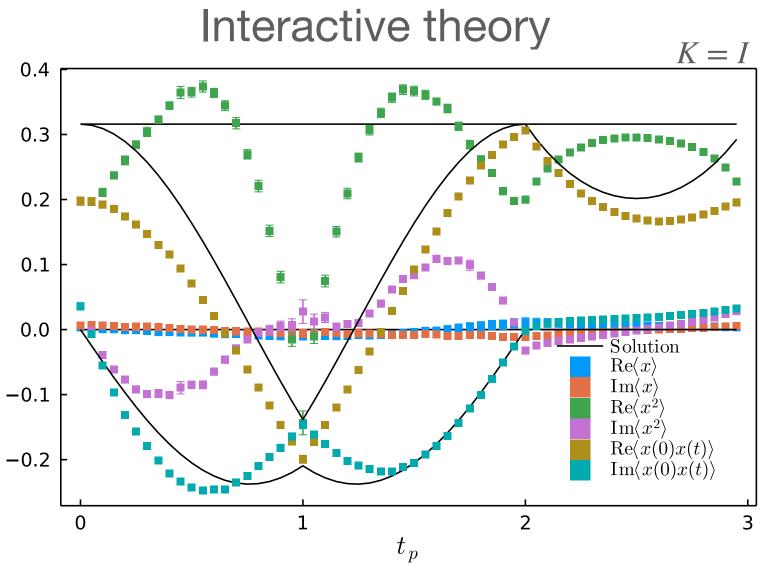


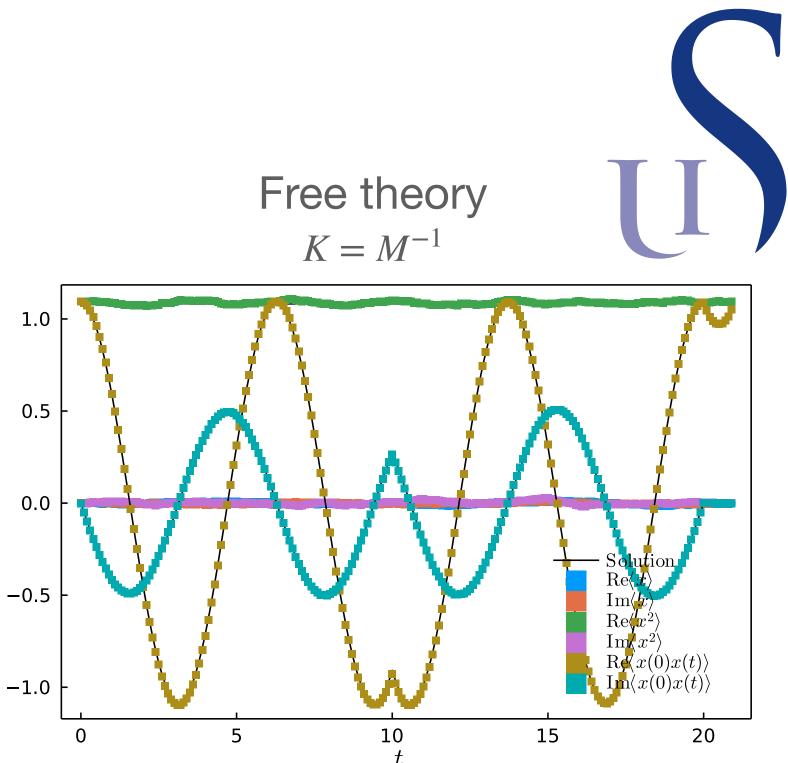
- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kernelled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)$
- Free theory propagator: $S = \phi^{\dagger} M \phi$, $K = -M^{-1}$, $K \partial_{\phi} S[\phi] = -\phi$, $d\phi = -\phi + \sqrt{-M^{-1}}dW$

$$d\tau_L + \sqrt{K[\phi]} dW$$



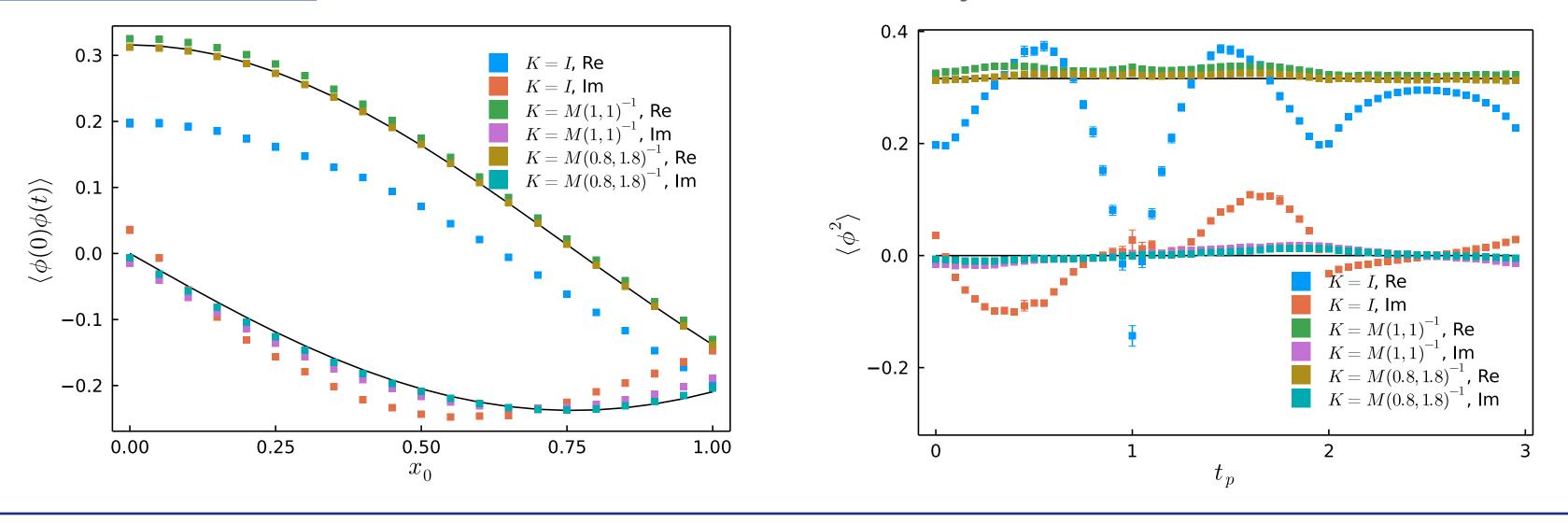
- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kernelled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)d\tau_L + \sqrt{K[\phi]}dW$
- Free theory propagator: $S = \phi^{\dagger} M \phi$, $K = -M^{-1}$, $K \partial_{\phi} S[\phi] = -\phi$, $d\phi = -\phi + \sqrt{-M^{-1}}dW$

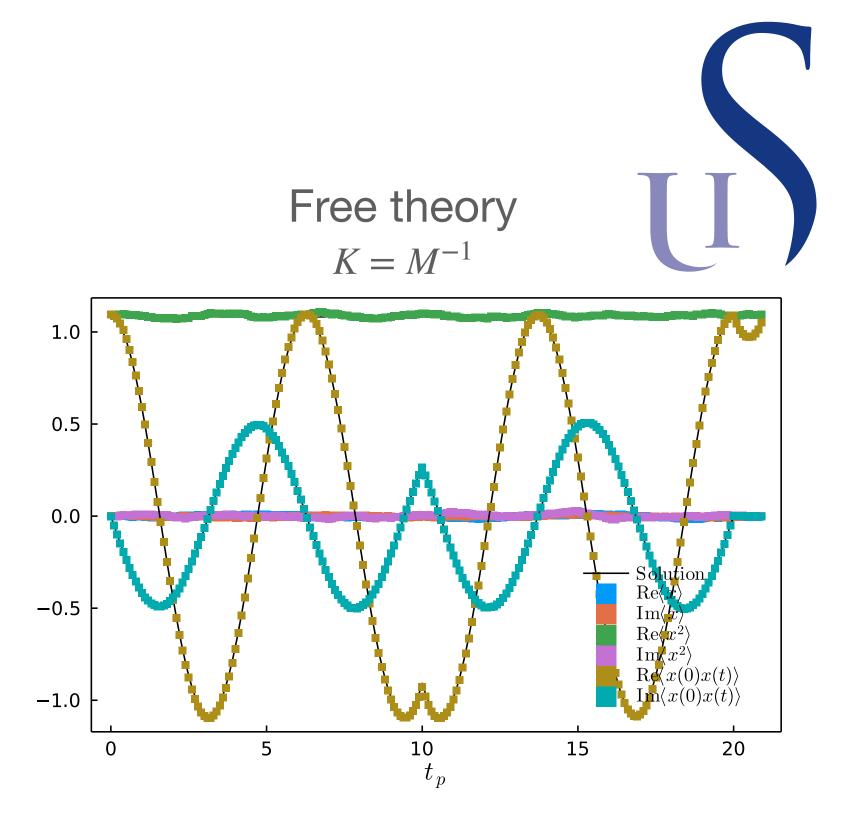




- Additional freedom in Fokker-Planck equation; regain same equilibrium distribution
- Kernelled Langevin $d\phi = \left(-K[\phi]\frac{\partial S[\phi]}{\partial \phi} + \frac{\partial K[\phi]}{\partial \phi}\right)d\tau_L + \sqrt{K[\phi]}dW$
- Free theory propagator: $S = \phi^{\dagger} M \phi$, $K = -M^{-1}$, $K \partial_{\phi} S[\phi] = -\phi$, $d\phi = -\phi + \sqrt{-M^{-1}}dW$

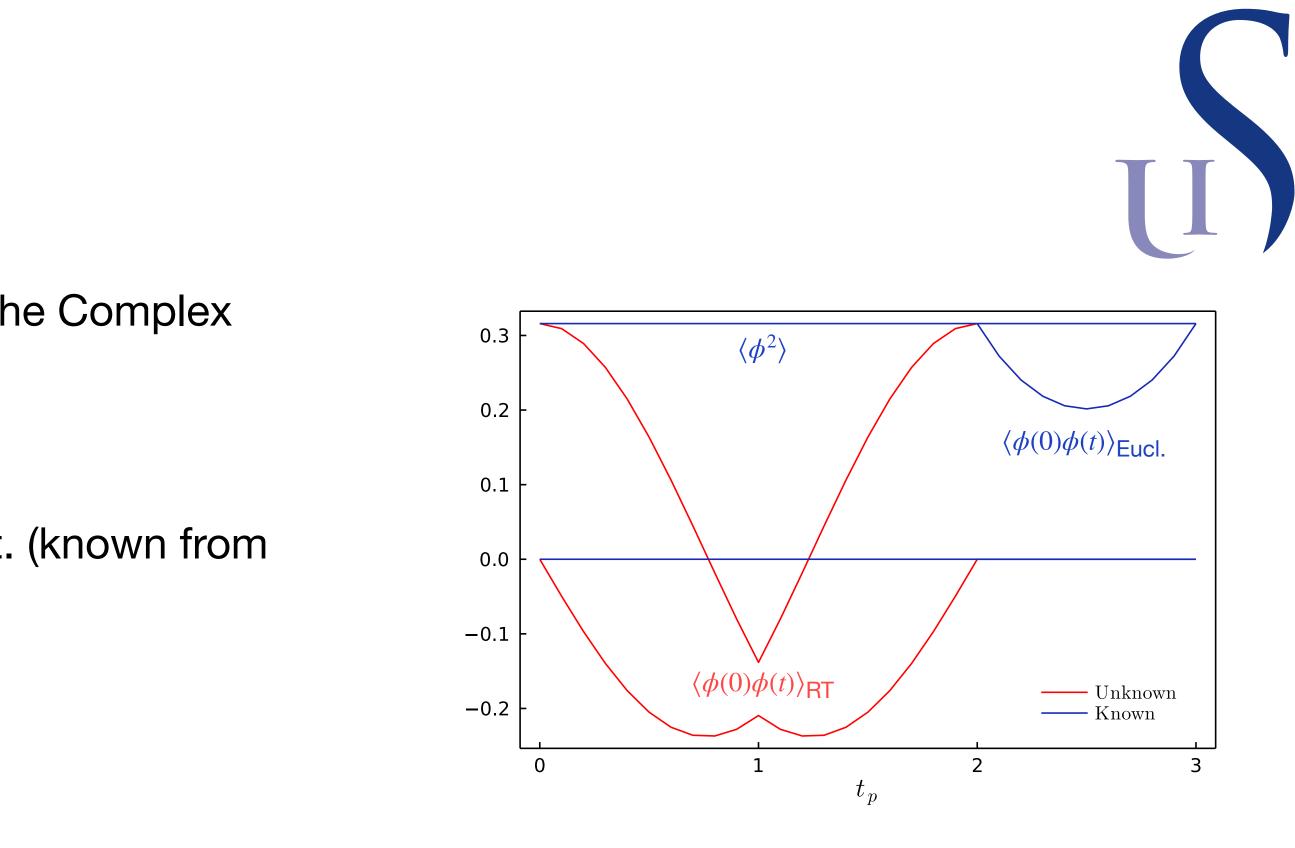
Systematic scheme to construct kernels





Construct kernel

- Can we find a kernel by using prior knowledge about the Complex • Langevin and the model
- Known information
 - L^{Sym} : Symmetries of the model, ex. $\langle \phi^n \rangle = \text{const.}$ (known from Euclidean simulation)
 - L^{Eucl}: Euclidean part of real-time contour
 - L^{BT} : There should be no boundary terms
- Minimising using the above loss functions require the which includes propagating through the whole simula
 - Possible due to auto-differentiation and sensitivity analysis
 - Currently too expensive due to highly stiff problem (real-time)



e derivative
$$\frac{d\phi}{dK}$$
 ation.

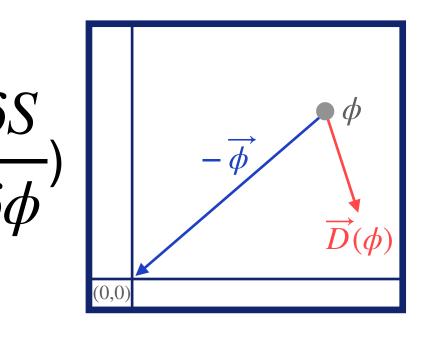
Local loss function

Boundary terms accumulate with too slow falloff in the distribution.

• Minimising the drift out from origin ($D = K \frac{\delta S}{\delta \phi}$)

$$L_{D} = \frac{1}{N} \sum_{i}^{N} \left| D(\phi_{i}) \cdot (-\phi_{i}) - |D(\phi_{i})| |\phi_{i}| \right|^{2}$$

- Evaluate the gradient $\nabla_{K} L_{D}(\{\phi\})$ using autodifferentiation
- Use L^{Sym} , L^{Eucl} , L^{BT} to test result from minimising L_D
- Minimising L_D same as minimising boundary terms: L^{BT}
- Holomorphic: Correctness criterion



Updating the kernel

Make configuration using $K_0 = I$: $\{\phi_i^0\}$ $d\phi = K_0 \,\partial_\phi S[\phi] + \sqrt{K_0} dW$

Update kernel based on gradient of the loss function $\nabla_{K} L_{D}(\{\phi^{0}\})$

Loop N times (index k)

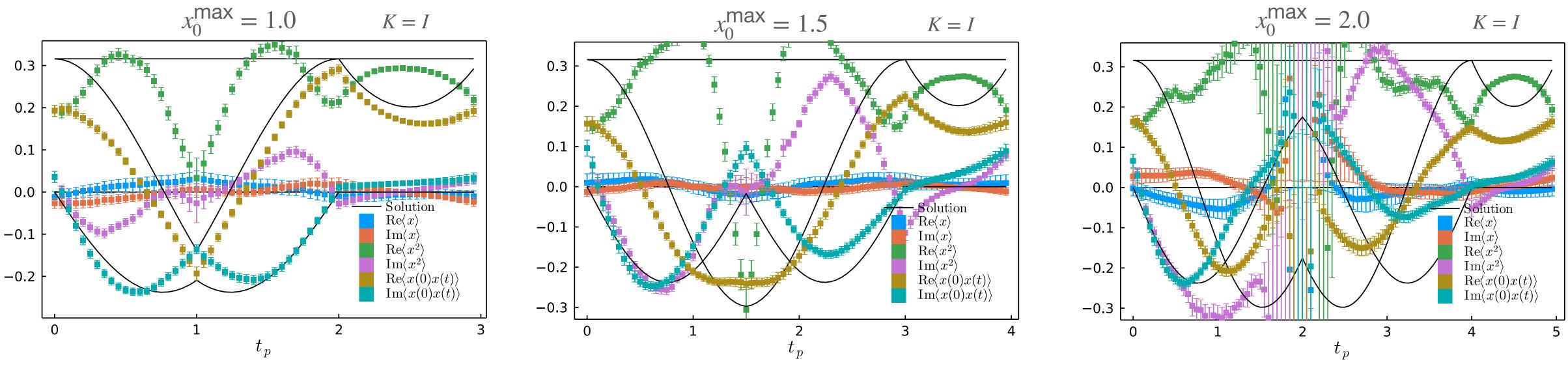
Make configuration using K_k : $\{\phi_i^k\}$ $d\phi = K_k \,\partial_\phi S[\phi] + \sqrt{K_k} dW$

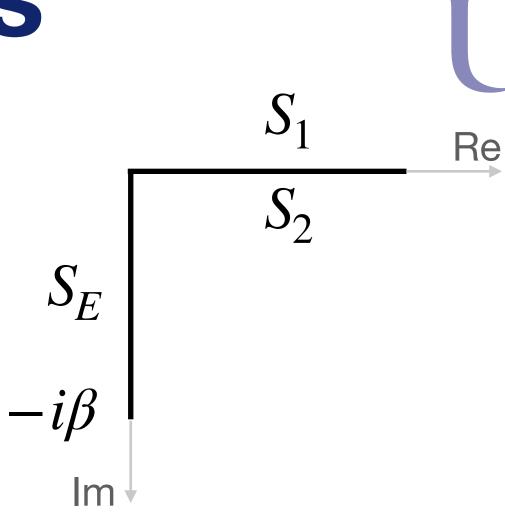
Update kernel based on gradient of the loss function $\nabla_{K} L_{D}(\{\phi^{k}\})$

Measure L^{Sym} , L^{Eucl} , L^{BT}

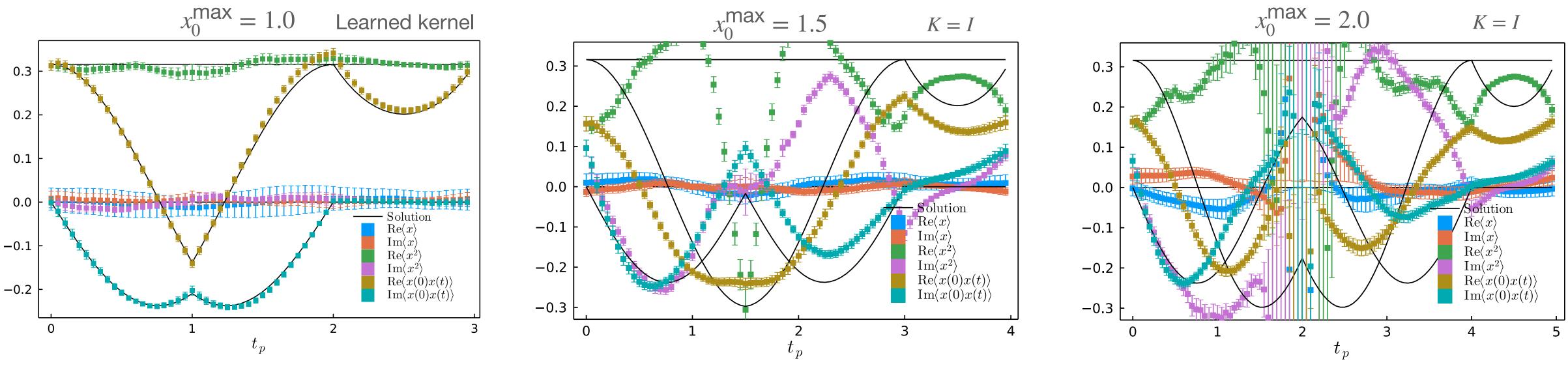
Pick out the iteration with the smallest $L^{\text{Sym}}, L^{\text{Eucl}}, L^{\text{BT}}$

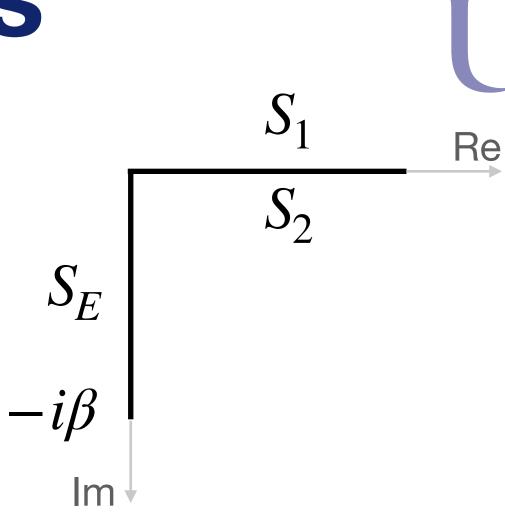
- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$



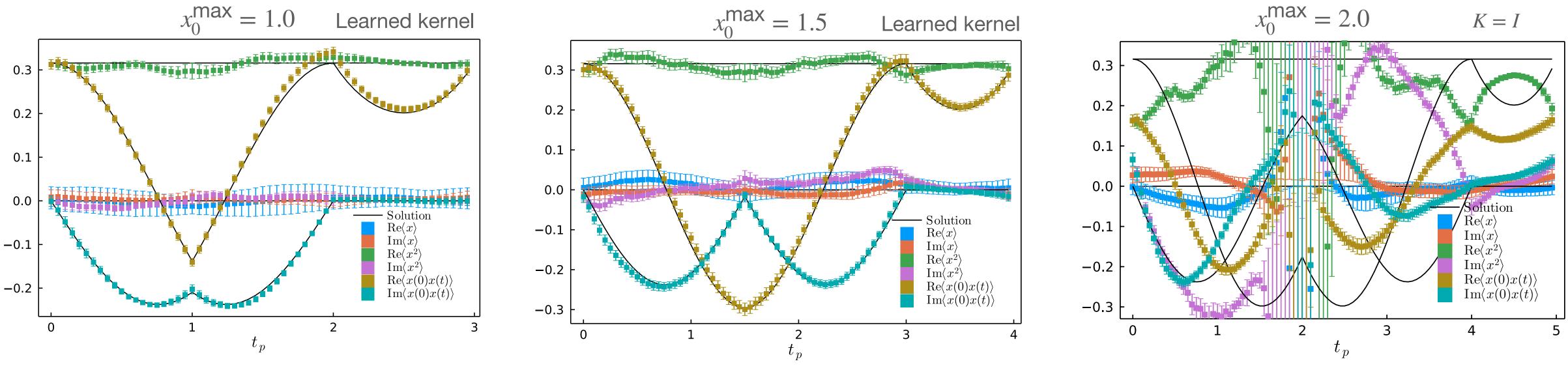


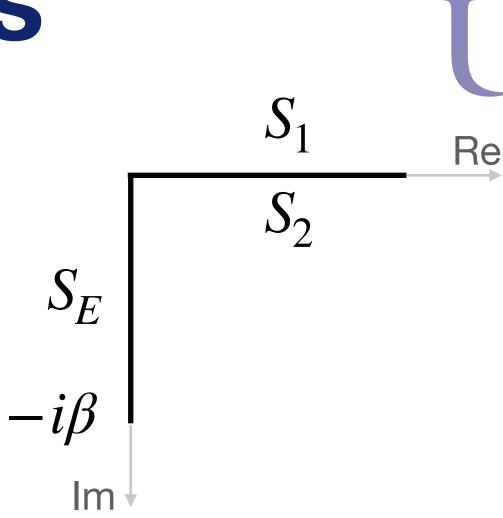
- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$



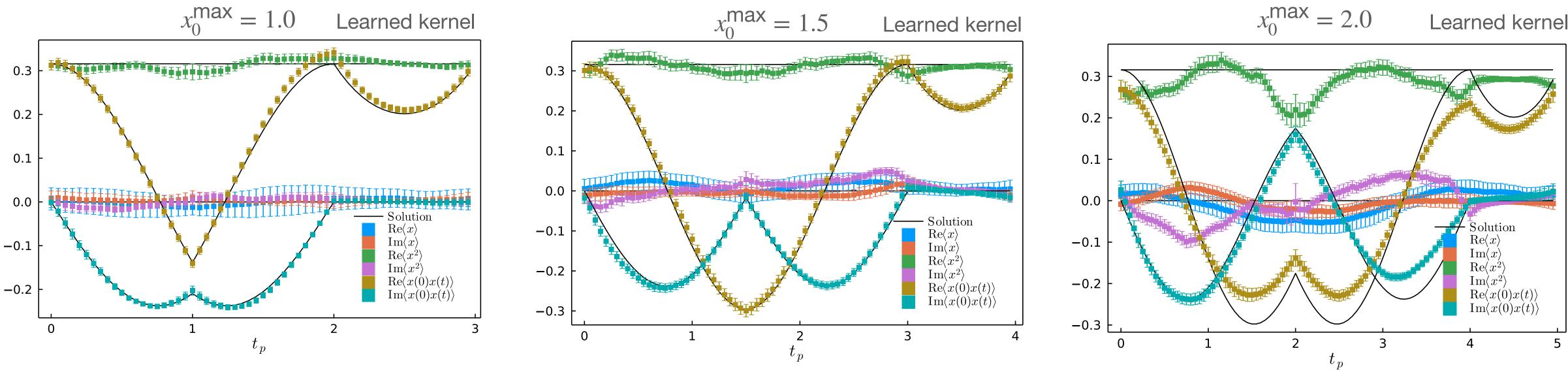


- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$





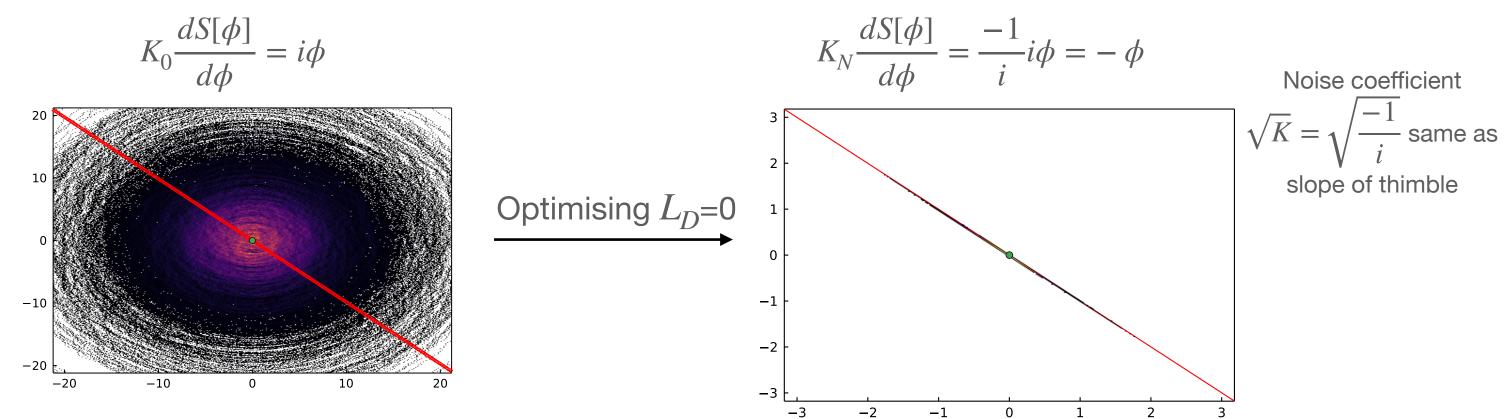
- Strongly coupled quantum AHO with m = 1, $\lambda = 24$, $\beta = 1$ on a real-time contour
- Form of the kernel $K = e^{A+iB}$ where A and B are real matrices
- Optimisation using L_D , selecting iteration with best $L^{\text{Sym}} + L^{\text{Eucl.}}$
- Critical points away from the origin: $\frac{dS[\phi]}{d\phi} = 0$





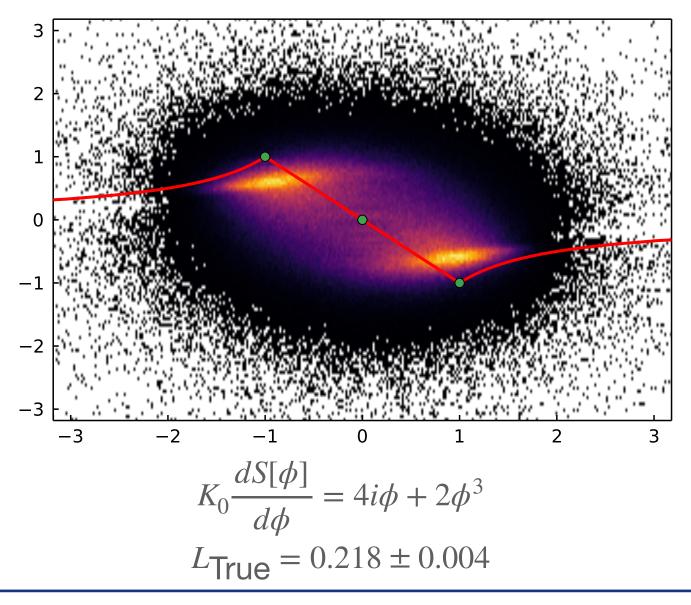
Connection with thimbles

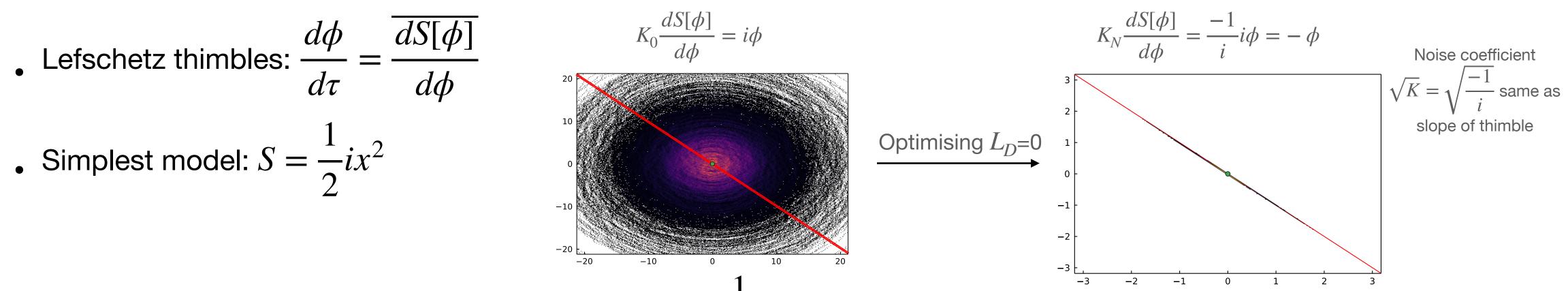
- Lefschetz thimbles: $\frac{d\phi}{d\tau} = \frac{\overline{dS[\phi]}}{d\phi}$
- Simplest model: $S = \frac{1}{2}ix^2$



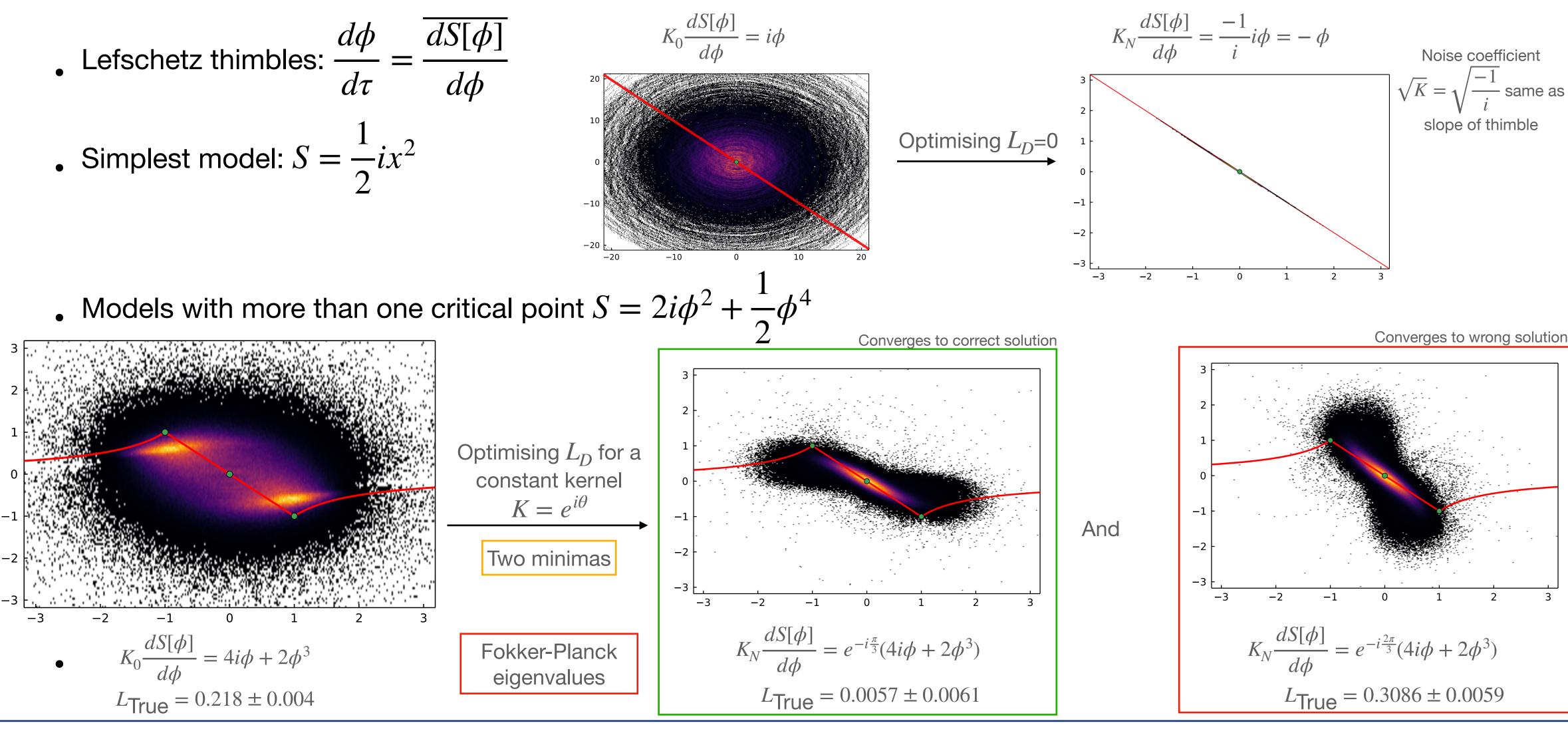
Connection with thimbles

- Simplest model: $S = \frac{1}{2}ix^2$
- Models with more than one critical point $S = 2i\phi^2 + \frac{1}{2}\phi^4$





Connection with thimbles



Daniel Alvestad

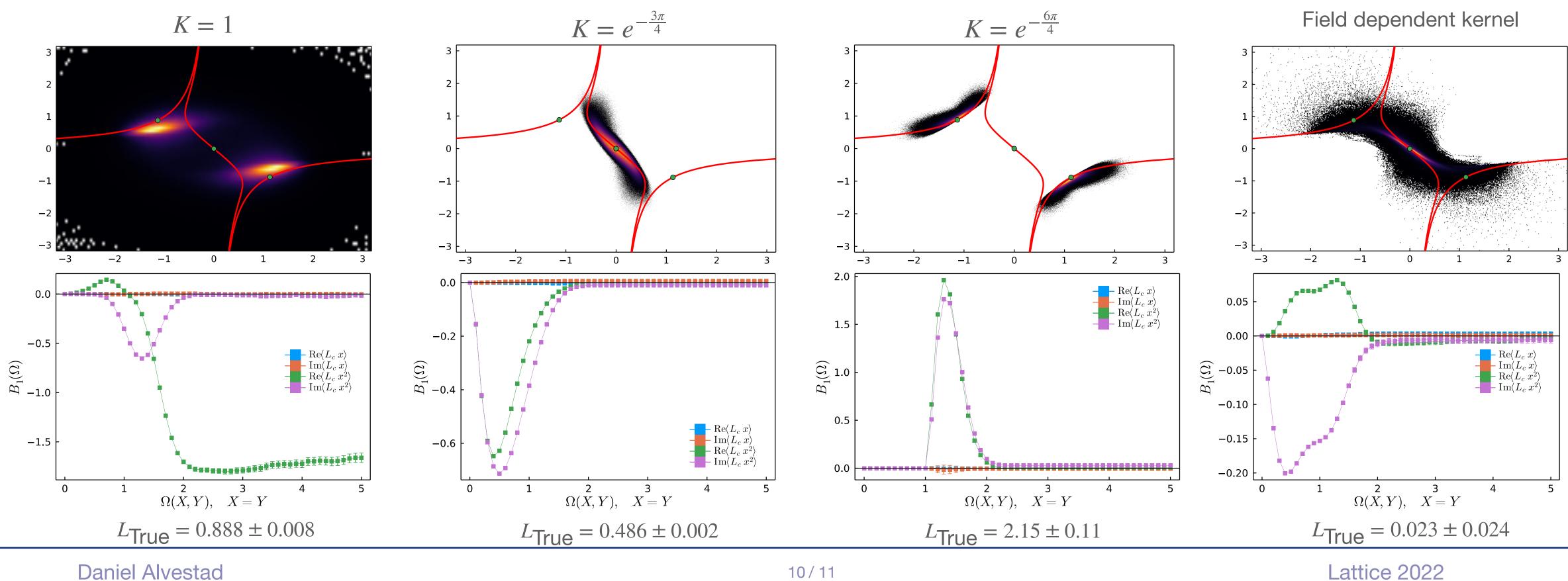
$L_{\text{True}} = |\langle x \rangle - \langle x \rangle_{\text{True}}| + |\langle x^2 \rangle - \langle x^2 \rangle_{\text{True}}|$

Lattice 2022

9 / 11

Boundary terms and kernels

- Minimising L_D minimise the boundary terms:
 - $B_1(Y) = \left\langle L_c \mathcal{O}(x+iy) \right\rangle = \left\langle (\nabla_x + \nabla S) K \nabla_x \mathcal{O}(x+iy) \right\rangle_V$
- No boundary terms \neq true solution when using a kernel?



$$S = \frac{1}{2}\sigma x^{2} + \frac{\lambda}{4!}x^{4}$$
$$\sigma = -1 + 4i, \lambda = 2$$

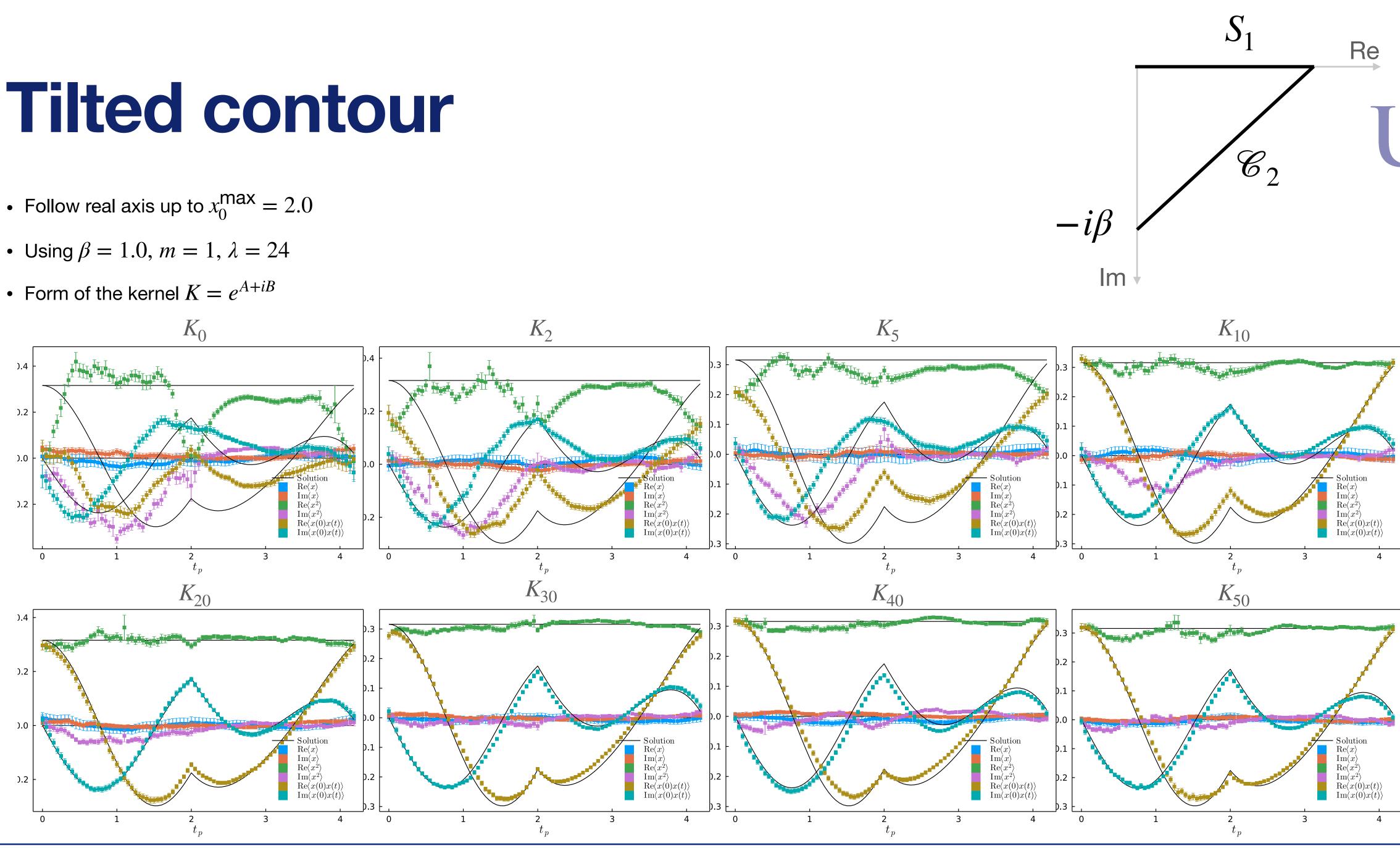
$$L_{\text{True}} = |\langle x \rangle - \langle x \rangle_{\text{True}}| + |\langle x^2 \rangle - \langle x^2 \rangle|$$

10/11

Summary and outlook

- Goal: extending real-time convergence CL
- Kernel controlled complex Langevin
 - No convergence problem for free scalar theory
 - Learning kernel in thermal ϕ^4 theory
- Kernel as appropriately parameterised function
 - Field dependent kernel
 - Generalise to any real-time
- Improved loss function including more than one of the critical points

Tilted contour



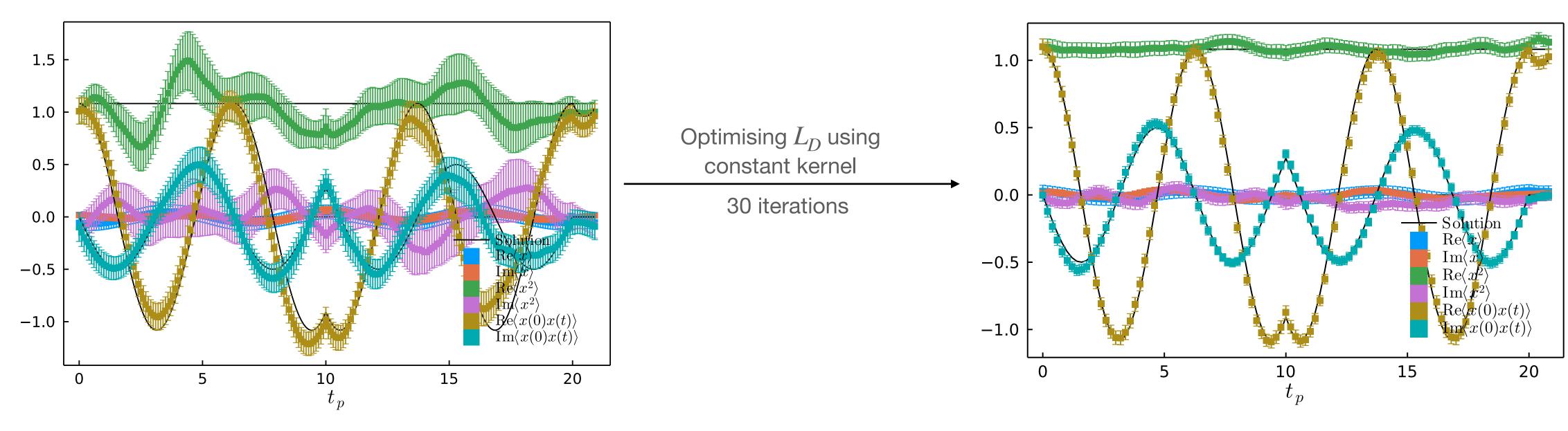
Daniel Alvestad

Lattice 2022

13/11

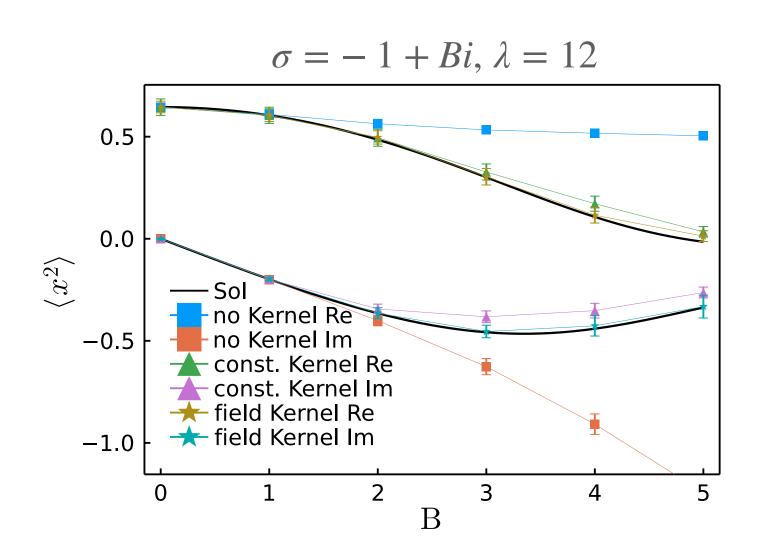
Learning free theory kernel

- Able to find kernel when only one critical point at the origin
- Kernel form $K = e^{A+iB}$

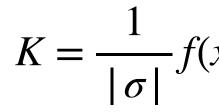


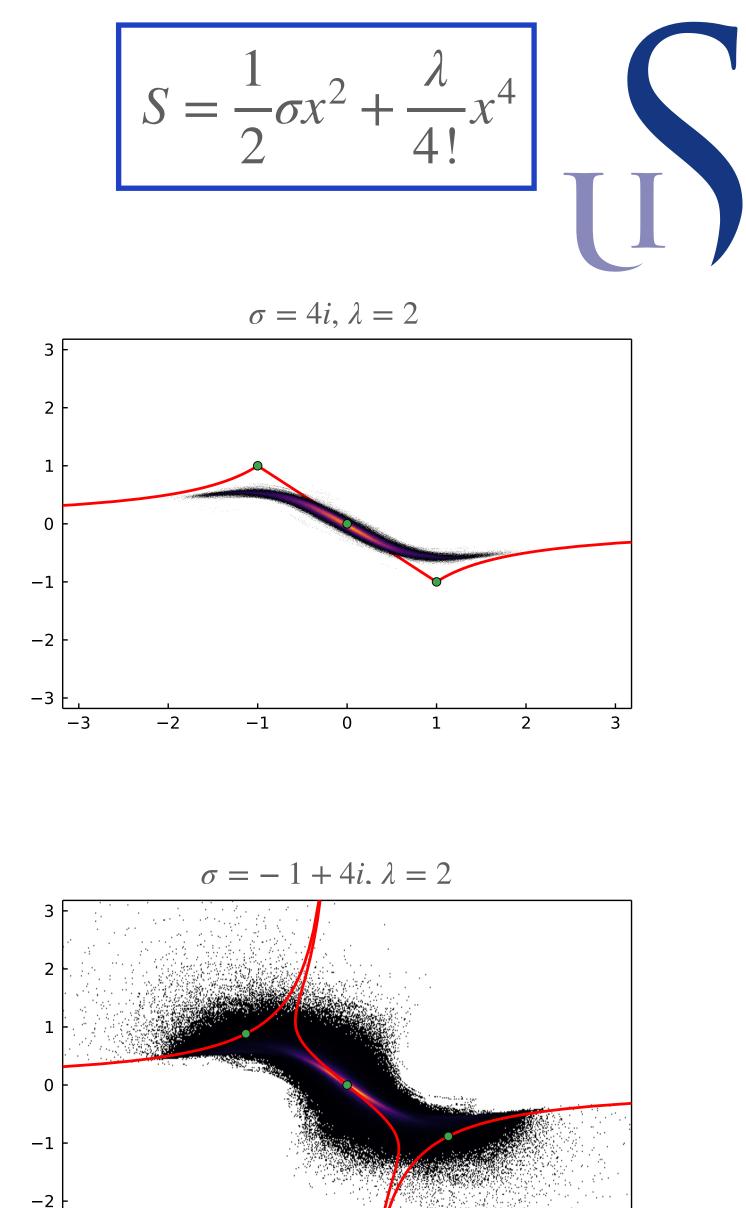
Field dependent kernel

Need to add extra derivative term



 $\frac{d\phi}{d\tau_0} = K[\phi$





$$\phi]\frac{\delta S[\phi]}{\delta \phi} + \frac{\partial K[\phi]}{\partial \phi} + \sqrt{K[\phi]}\xi$$

$$x^{2})e^{-i\theta_{\sigma}} + \frac{1}{|\lambda|}(1 - f(x^{2}))e^{-i\theta_{\lambda}}$$

 $f(x^2) = e^{-x^2(-\sigma/\lambda)}$

Lattice 2022

1

0

-3

-3

-2

-1

3

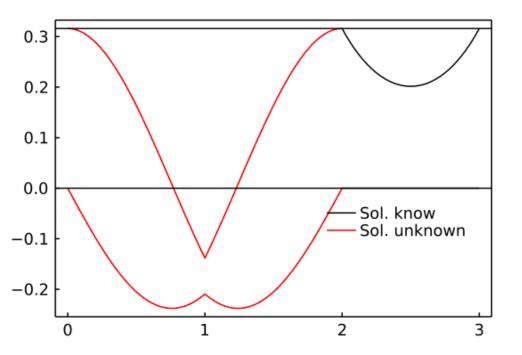
2

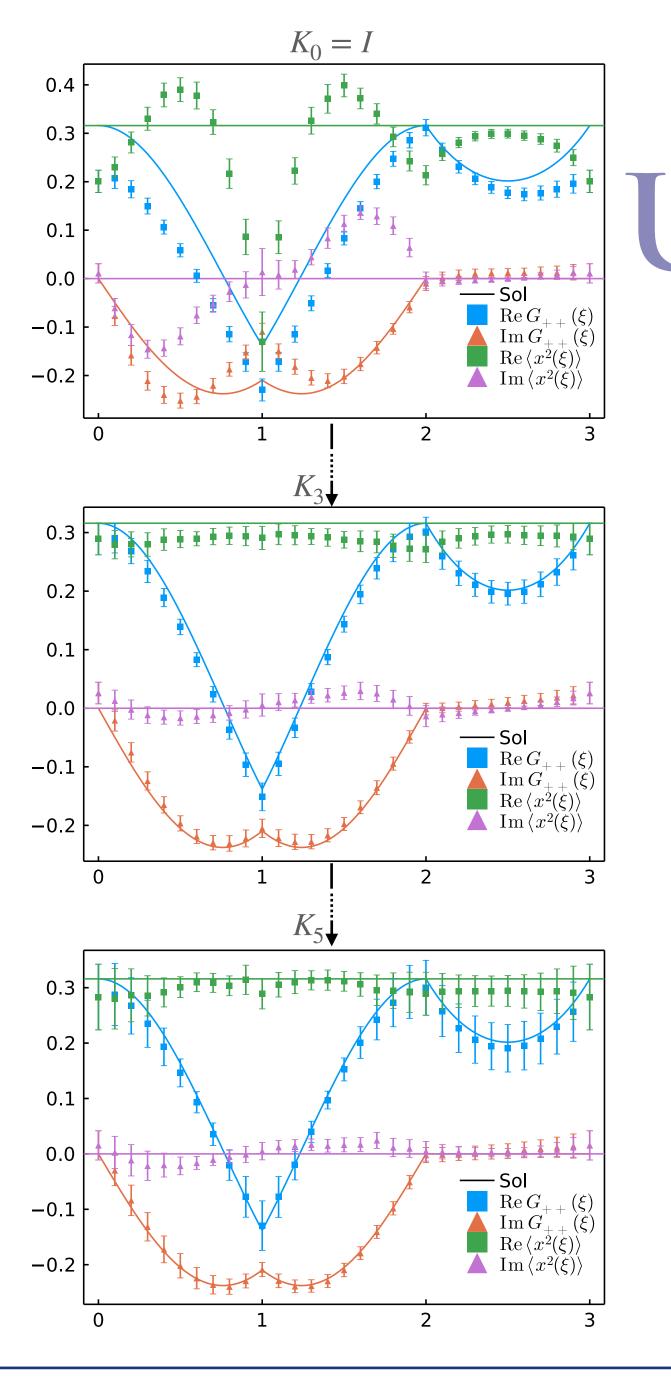
Construct kernel

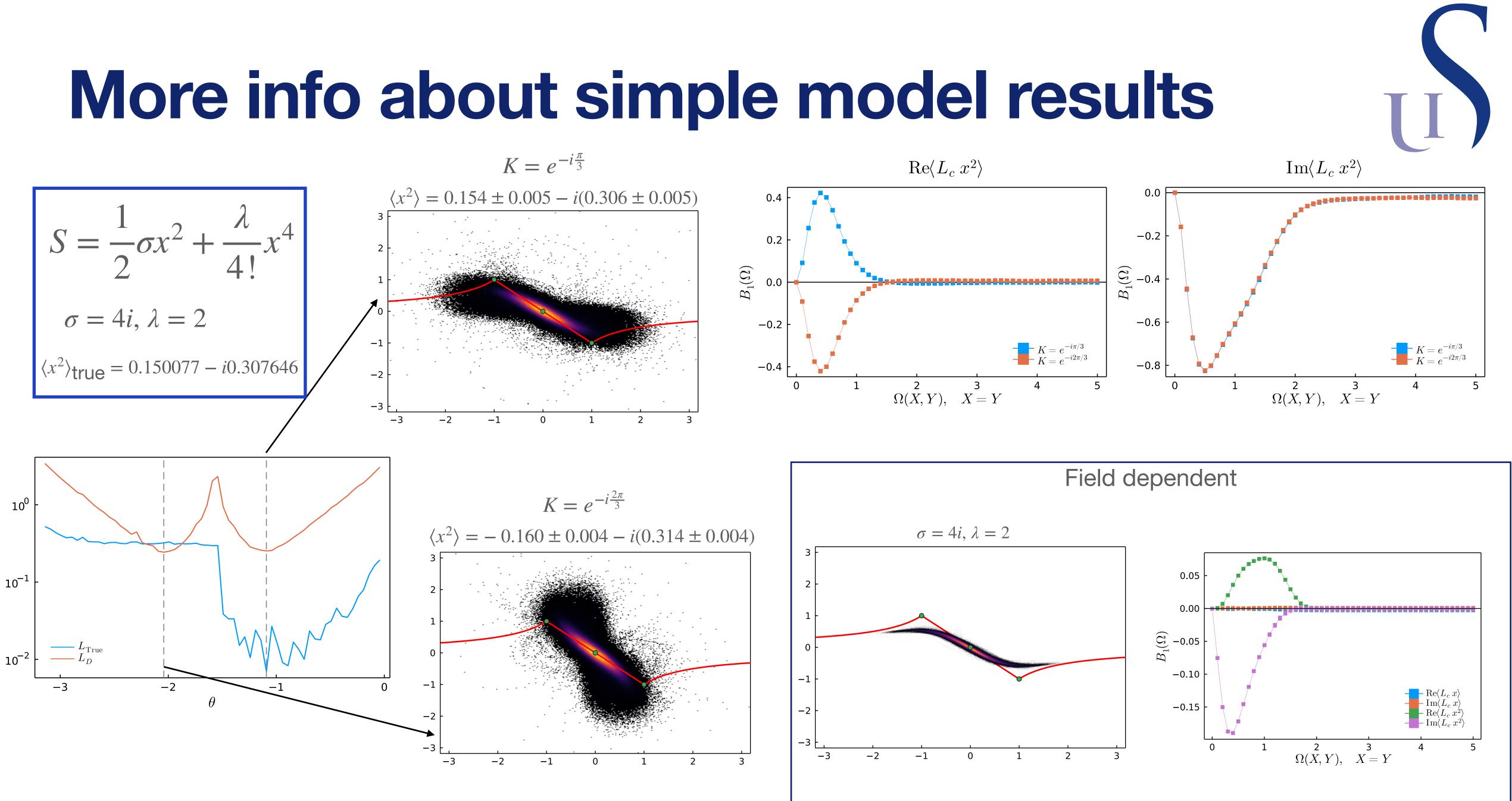
- Can we find a kernel by using prior knowledge about the Complex Langevin and the model
- In thermal ϕ^4 we know:
 - $\langle x \rangle = 0$ and $\langle x^2 \rangle = \operatorname{Re} \langle x^2 \rangle = \operatorname{const.}$
 - Euclidean correlation $G(\xi)$ for $\xi \geq 2$

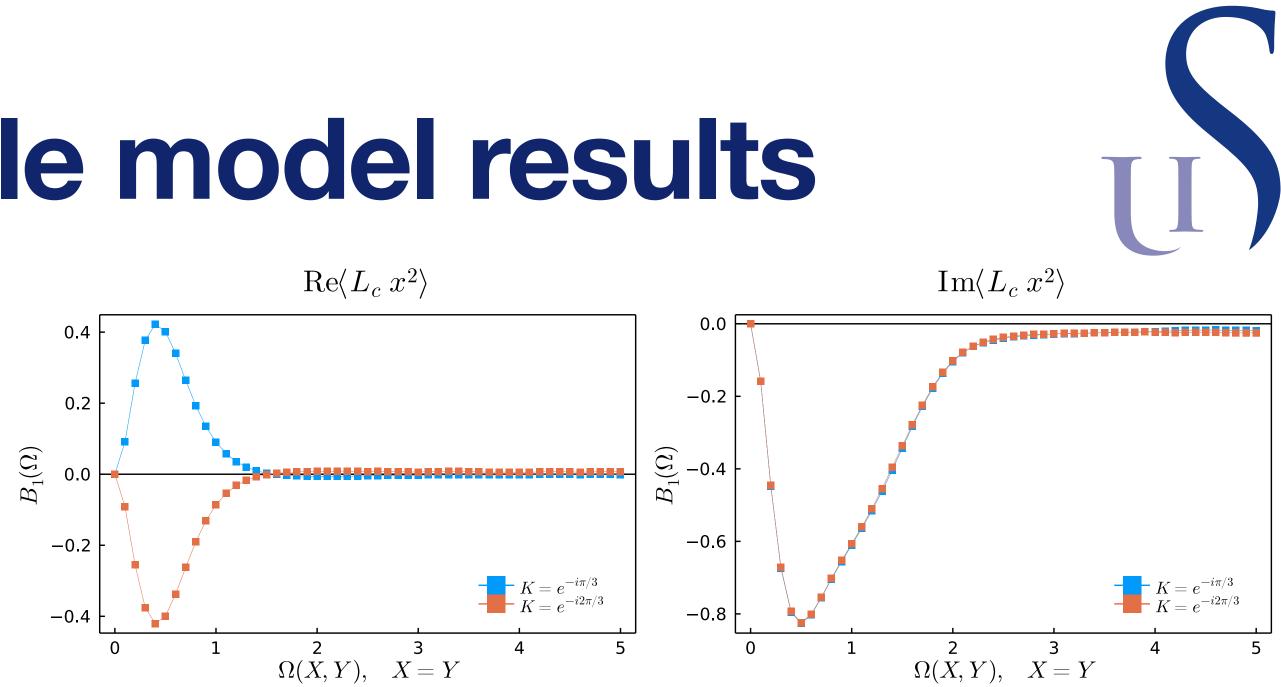
• Minimize
$$L(K) = \sum_{i} ||O_i - \langle O_i(K) \rangle||^2$$

- Matrix kernel, starting out with $K_0 = I$
- Update K_n based on $\nabla L(K_n)$
- Contour: $\beta = 1.0$, $x_0^{\text{max}} = 1.0$
- Field dependent kernel









Lattice 2022

17/11

Simple overview of SDE solver (Solution to runaway problem)

General Euler-Maruyama Scheme:

$$\phi_j^{\lambda+1} = \phi_j^{\lambda} + i\epsilon_j \left[\theta \frac{\partial \lambda}{\partial t} \right]$$

- Explicit ($\theta = 0.0$): Overshooting
- Implicit ($\theta = 1.0$): Undershooting
- Semi-implicit ($\theta = 0.5$): Stable and close to the exact solution
- For all $\theta \ge 0.5$ we get rid of runaways (Unconditionally stable)

