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Introduction
• Real-time simulation (sign-problem)


• Complex Langevin equation  
(Stochastic Differential equation)


• Fokker-Planck equation


• Problems


• Runaway solutions


• Convergence to the wrong solution

ϕ → ϕR + iϕI

2

dϕ
dτL

= i
δS[ϕ]
δϕ(x) + η(x, τL) with

⟨η(x, τL)⟩ = 0, ⟨η(x, τL)η(x′ , τ′ L)⟩ = 2δ(x − x′ )δ(τL − τ′ L) .

Evolution of the Langevin equation

∂
∂t

Φ(x, t) = ∑
j

δ
δϕj [ δ

δϕj
+ δS[ϕ]

δϕj ] Φ(x, t) = − HFPΦ(x, t)

Fokker-Planck evolution

Langevin time τL

x
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Problem of stability in real-time simulations
• Runaway solutions


• Adaptive step-size


• Regularisation via use of implicit scheme


• General Euler-Maruyama scheme


• Strongly coupled quantum anharmonic oscillator with 
 on a real-time contourβ = 1, m = 1, λ = 24

3

SE

−iβ

S1
S2

Im

Re

S = ∫ dx0
1
2 ( ∂ϕ

∂x0 )
2

− 1
2 mϕ2 − λ

4! ϕ4

ϕλ+1
j = ϕλ

j + iϵj [θ
∂Sλ+1

∂ϕj
+ (1 − θ) ∂Sλ

∂ϕj ] + ϵjηλ
j

Simulations done with the DifferentialEquations.jl library in Julia

−iβ

(1

(2

D.A, Larsen, Rothkopf (2021) 

arxiv: 2105.02735

Contour: 

Solver: Euler-Mayruyama with 

β = 1, xmax
0 = 0.5

θ = 0.6

https://diffeq.sciml.ai/stable/tutorials/sde_example/
https://arxiv.org/abs/2105.02735
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Problem of wrong convergence
• Boundary terms


• Gauge Cooling


• Dynamical stabilisation


• Modification to CLE


• Coordinate Transformations


• Kernels 

4

Scherzer, Seiler, Sexty, Stamatescu (2018+2019)

Attanasio, Jäger (2019)

Aarts et. al. (2013)

Söderberg (1988), Okamoto et. al. (1989)

Seiler, Sexty, Stamatescu (2013)
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Kernelled complex Langevin
• Additional freedom in Fokker-Planck equation; regain same equilibrium 

distribution


• Kernelled Langevin 


• Free theory propagator: ,       S = ϕ†Mϕ, K = − M−1, K ∂ϕS[ϕ] = − ϕ
dϕ = − ϕ + −M−1dW

5

dϕ = (−K[ϕ] ∂S[ϕ]
∂ϕ

+ ∂K[ϕ]
∂ϕ ) dτL + K[ϕ]dW

No kernel
Free theory
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dϕ = (−K[ϕ] ∂S[ϕ]
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∂ϕ ) dτL + K[ϕ]dW

K = M−1

Interactive theory

Free theory

K = I
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Kernelled complex Langevin
• Additional freedom in Fokker-Planck equation; regain same equilibrium 

distribution


• Kernelled Langevin 


• Free theory propagator: ,       S = ϕ†Mϕ, K = − M−1, K ∂ϕS[ϕ] = − ϕ
dϕ = − ϕ + −M−1dW

5

dϕ = (−K[ϕ] ∂S[ϕ]
∂ϕ

+ ∂K[ϕ]
∂ϕ ) dτL + K[ϕ]dW

K = M−1

Interactive theorySystematic scheme to construct kernels

Free theory
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Construct kernel
• Can we find a kernel by using prior knowledge about the Complex 

Langevin and the model


• Known information


• : Symmetries of the model, ex.  (known from 
Euclidean simulation)


• : Euclidean part of real-time contour


• : There should be no boundary terms


• Minimising using the above loss functions require the derivative  
which includes propagating through the whole simulation.


• Possible due to auto-differentiation and sensitivity analysis


• Currently too expensive due to highly stiff problem (real-time)

LSym ⟨ϕn⟩ = const.

LEucl

LBT

dϕ
dK

6

⟨ϕ(0)ϕ(t)⟩RT

⟨ϕ(0)ϕ(t)⟩Eucl.

⟨ϕ2⟩
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Local loss function
• Boundary terms accumulate with too slow falloff in the 

distribution. 


• Minimising the drift out from origin ( )


• Evaluate the gradient  using auto-
differentiation


• Use  to test result from minimising 


• Minimising  same as minimising boundary terms: 


• Holomorphic: Correctness criterion

D = K
δS
δϕ

∇K LD({ϕ})

LSym, LEucl, LBT LD

LD LBT

7

LD = 1
N

N

∑
i

D(ϕi) ⋅ (−ϕi) − |D(ϕi) | |ϕi |
2

Make configuration using : K0 = I {ϕ0
i }

Update kernel based on gradient of the loss 
function ∇K LD ({ϕ0})

dϕ = K0 ∂ϕS[ϕ] + K0dW

Make configuration using : Kk {ϕk
i }

Update kernel based on gradient of the loss 
function ∇K LD ({ϕk})

dϕ = Kk ∂ϕS[ϕ] + KkdW

Loop  times (index )N k

Measure  LSym, LEucl, LBT

Pick out the iteration with the smallest 
LSym, LEucl, LBT

Updating the kernel

ϕ
− ⃗ϕ

(0,0)

⃗D(ϕ)
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Real-time interactive theory results
• Strongly coupled quantum AHO with ,  on a real-time contour


• Form of the kernel  where  and  are real matrices


• Optimisation using , selecting iteration with best 


• Critical points away from the origin:

m = 1, λ = 24 β = 1
K = eA+iB A B

LD LSym + LEucl.

8

xmax
0 = 1.5 xmax

0 = 2.0

SE

−iβ

S1
S2

Im

Re

xmax
0 = 1.0 K = I K = I K = I

dS[ϕ]
dϕ

= 0
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8

xmax
0 = 1.5 xmax

0 = 2.0

SE

−iβ

S1
S2

Im

Re

xmax
0 = 1.0 Learned kernel K = I K = I

dS[ϕ]
dϕ

= 0
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−iβ
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8

xmax
0 = 1.5 xmax

0 = 2.0

SE

−iβ

S1
S2

Im

Re

xmax
0 = 1.0 Learned kernel Learned kernel Learned kernel

dS[ϕ]
dϕ

= 0
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Connection with thimbles
• Lefschetz thimbles: 

dϕ
dτ

= dS[ϕ]
dϕ

• Simplest model: S = 1
2 ix2

9

Optimising =0LD

K0
dS[ϕ]

dϕ
= iϕ KN

dS[ϕ]
dϕ

= −1
i

iϕ = − ϕ
Noise coefficient 

 same as 

slope of thimble

K = −1
i
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Connection with thimbles
• Lefschetz thimbles: 

dϕ
dτ

= dS[ϕ]
dϕ

• Simplest model: S = 1
2 ix2

• Models with more than one critical point S = 2iϕ2 + 1
2 ϕ4

9

Optimising =0LD

K0
dS[ϕ]

dϕ
= iϕ KN

dS[ϕ]
dϕ

= −1
i

iϕ = − ϕ
Noise coefficient 

 same as 

slope of thimble

K = −1
i

K0
dS[ϕ]

dϕ
= 4iϕ + 2ϕ3

LTrue = 0.218 ± 0.004
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Connection with thimbles
• Lefschetz thimbles: 

dϕ
dτ

= dS[ϕ]
dϕ

• Simplest model: S = 1
2 ix2

• Models with more than one critical point S = 2iϕ2 + 1
2 ϕ4

••

9

Optimising =0LD

K0
dS[ϕ]

dϕ
= iϕ KN

dS[ϕ]
dϕ

= −1
i

iϕ = − ϕ
Noise coefficient 

 same as 

slope of thimble

K = −1
i

Optimising  for a 
constant kernel 

LD

K = eiθ

KN
dS[ϕ]

dϕ
= e−i π

3 (4iϕ + 2ϕ3)

Two minimas

KN
dS[ϕ]

dϕ
= e−i 2π

3 (4iϕ + 2ϕ3)

And

Converges to correct solution Converges to wrong solution

K0
dS[ϕ]

dϕ
= 4iϕ + 2ϕ3

LTrue = 0.218 ± 0.004 LTrue = 0.0057 ± 0.0061 LTrue = 0.3086 ± 0.0059

LTrue = |⟨x⟩ − ⟨x⟩True | + |⟨x2⟩ − ⟨x2⟩True |

Fokker-Planck 
eigenvalues
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Boundary terms and kernels
• Minimising  minimise the boundary terms:


•  


• No boundary terms  true solution when using a kernel?

LD

B1(Y ) = ⟨Lc+(x + iy)⟩ = ⟨(∇x + ∇S)K ∇x+(x + iy)⟩Y

≠

10

K = e− 3π
4K = 1 Field dependent kernel

S = 1
2 σx2 + λ

4! x4

σ = − 1 + 4i, λ = 2

LTrue = |⟨x⟩ − ⟨x⟩True | + |⟨x2⟩ − ⟨x2⟩ |

LTrue = 2.15 ± 0.11

K = e− 6π
4

LTrue = 0.486 ± 0.002LTrue = 0.888 ± 0.008 LTrue = 0.023 ± 0.024
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Summary and outlook
• Goal: extending real-time convergence CL


• Kernel controlled complex Langevin


• No convergence problem for free scalar theory


• Learning kernel in thermal  theory


• Kernel as appropriately parameterised function


• Field dependent kernel


• Generalise to any real-time


• Improved loss function including more than one of the critical points

ϕ4

11
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Tilted contour
• Follow real axis up to 


• Using 


• Form of the kernel 

xmax
0 = 2.0

β = 1.0, m = 1, λ = 24
K = eA+iB

13

−iβ

S1

(2

Im

Re

K0 K2 K5 K10

K20 K30 K40 K50
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Learning free theory kernel
• Able to find kernel when only one critical point at the origin


• Kernel form K = eA+iB

14

Optimising  using 
constant kernel

LD

30 iterations
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Field dependent kernel
• Need to add extra derivative term

15

dϕ
dτ0

= K[ϕ] δS[ϕ]
δϕ

+ ∂K[ϕ]
∂ϕ

+ K[ϕ]ξ

σ = 4i, λ = 2

σ = − 1 + Bi, λ = 12

S = 1
2 σx2 + λ

4! x4

K = 1
|σ |

f(x2)e−iθσ + 1
|λ |

(1 − f(x2))e−iθλ

f(x2) = e−x2(−σ/λ)
σ = − 1 + 4i, λ = 2
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Construct kernel
• Can we find a kernel by using prior knowledge about the Complex Langevin 

and the model

• In thermal  we know:


•   and 


• Euclidean correlation  for 

ϕ4

⟨x⟩ = 0 ⟨x2⟩ = Re⟨x2⟩ = const.

G(ξ) ξ ≥ 2

• Minimize L(K) = ∑
i

| |Oi − ⟨Oi(K)⟩ | |2

• Matrix kernel, starting out with K0 = I

• Update  based on Kn ∇L(Kn)

• Contour: , β = 1.0 xmax
0 = 1.0

• Field dependent kernel

16

K0 = I

K5

K3
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More info about simple model results

17

σ = 4i, λ = 2

K = e−i π
3

K = e−i 2π
3

Field dependent

⟨x2⟩ = 0.154 ± 0.005 − i(0.306 ± 0.005)

S = 1
2 σx2 + λ

4! x4

σ = 4i, λ = 2
⟨x2⟩true = 0.150077 − i0.307646

⟨x2⟩ = − 0.160 ± 0.004 − i(0.314 ± 0.004)
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Simple overview of SDE solver (Solution to runaway problem)

• General Euler-Maruyama Scheme:


• Explicit ( ): Overshooting


• Implicit ( ): Undershooting


• Semi-implicit ( ): Stable and close to the 
exact solution


• For all  we get rid of runaways 
(Unconditionally stable)

θ = 0.0

θ = 1.0

θ = 0.5

θ ≥ 0.5

18

ϕλ+1
j = ϕλ

j + iϵj [θ
∂Sλ+1

∂ϕj
+ (1 − θ) ∂Sλ

∂ϕj ] + ϵjηλ
j

CLE:
 dϕ

dτL
= i

δS[ϕ]
δϕ(x) + η(x, τL)

Simulations done with the DifferentialEquations.jl library in Julia

https://diffeq.sciml.ai/stable/tutorials/sde_example/

