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1 Main message

• For path optimization in a gauge theory,

”it is efficient to employ a neural network
which respects the gauge symmetry”

ex. gauge invariant input / gauge covariant
neural network
cf. similar idea is used as a part of gauge equivariant convolutional neural network

Favoni et al.(2020)

♦ Gauge variant neural network works but costs a lot
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2 Motivation

Path optimization method(POM) Mori et al.(2017),Alexandru et al.(2018),Bursa,Kroyter(2018)

• POM is a method which complexifies dynamical variables and deforms
the integration path using machine learning to minimize sign problem

• POM has been successful in models with small redundant degrees of
freedom, but is not efficient with large gauge degrees of freedom

♦ One solution is gauge fixing but costs a lot Mori et al.(2019),...

♦ We found gauge invariant input / gauge covariant neural network
works well
→ This talk

〈O〉 :=
1

Z

∫

R
DUOe

−S[U]
=

1

Z

∫

C
DU Oe

−S[U]

O : observable, Z : partition func, S : action, U : link variable

Ux,µ := e
igAµ(x+µ̂/2)

→ U, Aµ(x) ∈ R → Aµ(x) ∈ C

NB. Cauchy’s integral theorem ensures this equality
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[Gauge variant neural network]

Ux,µ
︸︷︷︸

input layer

→ hidden layer→ Ux,µ
︸︷︷︸

output layer

• Machine learning chooses best path which enhances phase factor
eiθ := Je−S/|Je−S |, J := det(∂U/∂U)

♦ Averaged phase factor | 〈exp(iθ)〉 | is an indicator of sign problem:
| 〈exp(iθ)〉 | = 1 for mild, | 〈exp(iθ)〉 | = 0 for severe
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F (x) := tanh(x), activation func
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[Gauge invariant neural network] YN et al.(2021)

Ux,µ→ Px,µν
︸ ︷︷ ︸

input layer

→ hidden layer→ Ux,µ
︸︷︷︸

output layer

• We adopt gauge invariant plaquette in the input layer

Px,12 := Ux,1 Ux+1̂,2 U
−1

x+2̂,1
U−1
x,2

♦ Similar idea is used as a part of gauge equivariant convolutional neural network
Favoni et al.(2020)
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[Gauge covariant neural network] Tomiya,Nagai(2021)

Ux,µ
︸︷︷︸

input layer

→ Ũ (1)
x,µ → · · ·

︸ ︷︷ ︸

hidden layer

→ Ux,µ
︸︷︷︸

output layer

Ũ (l)
x,µ = exp[iW (l)

x,µ], W (l)
x,µ :=

∑

ν 6=µ

(

ρ
(l)
+ P(l)

x,µν + ρ
(l)
− P(l)

x,µν

−1
)

ρ
(l)
± : parameters in neural network, (l) : number of smearing

• The hidden layer is constructed by Stout-like smearing, which is gauge
covariant

• We use Nstout = 2 in this work
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3 Application to 2-dim U(1) gauge theory

• Sign problem is originated from the complex coupling β = 1/(ga)2 ∈ R → C

• Analytic result has been obtained
→ Good testbed for new approach Kashiwa,Mori(2020),Pawlowski et al.(2021)

cf. 2-dim U(1)+θ-term, another type of sign problem, is investigated by tensor renormalization

Kuramashi and Yoshimura(2019) and complex Langevin Hirasawa et al.(2020)

S = −
β

2

∑

x

(

Px,12 + P−1
x,12

)

β = 1/(ga)2 ∈ R → C

Px,12 := Ux,1 Ux+1̂,2 U
−1

x+2̂,1
U−1
x,2

[Analytic result] Wiese(1988),...

Z :=

∫

dUe−S =

+∞
∑

n=−∞

In(β)
V

In(β) :=
1

2π

∫ π

−π

dφ eβ cosφ−inφ

Yusuke Namekawa(Hiroshima U) – 7 / 11 – Lattice 2022



[Neural network iteration dependence of average phase factor]

• Neural network with gauge invariant/covariant input successfully
enhances averaged phase factor | 〈exp(iθ)〉 |

• Naive link-variable input does not enhance the averaged phase factor
by 5000 neural network iteration with Nuni = 16 hidden layer units
→ Naive link-variable input with much larger neural network iterations

and larger hidden layer units enhances the averaged phase factor
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[Volume dependence]

• Enhancement of the averaged phase factor is confirmed

♦ Gauge invariant input / gauge covariant neural network shows
milder volume dependence than that of naive reweighting
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[Test approximated Jacobian in neural network]

• Calculation of Jacobian is O(N3
dof), which is the main bottleneck

• We test J = 1 approximation in the neural network
← We still need the exact Jacobian for final output and measurement
cf. worldvolume Lefschetz thimble method removes explicit Jacobian in Monte-Carlo update

Fukuma,Matsumoto(2020); Fukuma’s talk

♦ POM using J = 1 approximated neural network can enhance the
averaged phase factor with a slightly larger error by 1%
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4 Summary

We explored efficient ways for the path optimization method, which reduces
sign problem by complexification of path using machine learning

• Gauge invariant input / gauge covariant neural network successfully
enhances the average phase factor
← Gauge variant neural network can also enhance the average phase

factor with much larger cost

• J = 1 approximated neural network still leads to enhancement of the
average phase factor at least in our setup

[Future direction]

• Test other types of sign problem, such as finite density QCD and θ-
term
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Appendix
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[Sign problem (overlap problem)]

• Direct Monte Carlo is not possible, because complex part cannot be
regarded as probability

• Naive reweighting suffers from sever cancellation between denominator
and numerator
→ Required #data blows up exponentially as the system size with the
degrees of freedom Ndof increases

〈O〉 =
〈
Oe−iImS

〉

pq

〈e−iImS〉pq
, 〈f(z)〉pq := (1/ZR)

∫

dUf(z)e−ReS

≈ e−O(Ndof) ±O(1/
√
Ndata)

e−O(Ndof) ±O(1/
√
Ndata)

∴ e−O(Ndof) ≫ O(1/
√
Ndata) i.e., Ndata ≫ eO(Ndof)
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