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Monte Carlo versus Tensor Networks

Consider classical or quantum system in thermal
equilibrium on a d-dimensional lattice described
by partition function Z

Standard method: stochastic sampling using
Monte Carlo methods

New alternative: reformulate Z as a fully
contracted tensor network and use higher
order tensor renormalization group (HOTRG)
method to compute observables

Tensor method can be applied when action is complex and MC
simulations fail

Cost scales logarithmically with volume

Method based on singular value decomposition (SVD)

Jacques Bloch Grassmann tensor-network method for strong-coupling QCD 1 / 17



Strong-coupling QCD – action and partition function

Partition function for β = 0

Z =

∫ �∏
x

dψx dψ̄x

∏
ν

dUx ,ν

�
e−SF

Fermion action

d-dimensional action for staggered quarks with mass m and chemical potential µ

SF =
∑

x

¨
d∑
ν=1

ηx ,νγ
δν,1ψ̄x

�
eµδν,1 Ux ,νψx+ν̂ − e−µδν,1 U†

x−ν̂,νψx−ν̂
�
+ 2mψ̄xψx

«

Change to dual variables (Rossi & Wolff (1984), Karsch & Mütter (1989))

Infinite coupling limit→ integrate out SU(3) gauge fields

Grassmann variables contribute through mesonic combinations (ψ̄xψx ) and
baryonic/antibaryonic combinations Bx/B̄x of 3 quarks/antiquarks
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Tensor formulation of Z

Tensor network formulation: integrate out mesons but not baryons, as latter
would introduce non-local sign factors

Z =
∑

j

∫ ∏
x

S(x)[ jx ]G
(x)
[lx ]

with local numeric and Grassmann tensors:

S(x)[ jx ] = δx∈BwB ([lx]) +δx∈M wM ([ jx])

G(x)[lx ]
= (dBx )
∑
ν(l
−
x ,ν+l+x ,−ν)(dB̄x )

∑
ν(l
+
x ,ν+l−x ,−ν)

d∏
ν=1

(Bx B̄x+ν̂)
l−x ,ν(B̄x Bx+ν̂)

l+x ,ν

Each term in sum is characterized by its indices j = ( j1,1, . . . , jV,d )

Notation: indices: [ jx ]≡ jx ,−1 jx ,1 . . . jx ,−d jx ,d , etc.

0≤ j ≤ 5

l ≡ l( j) ∈ {−1, 0, 1} and l± = δl,±1
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Grassmann HOTRG

Extend HOTRG method to handle the baryonic Grassmann variables
(using ideas introduced by Shimizu and Y. Kuramashi (2014); Sakai et al. (2017))

Decouple B and B̄ in the Grassmann interactions by introducing one
auxiliary Grassmann variable cx ,ν on each link : (recall l±x ,ν ∈ {0,1})

(B̄x Bx+ν̂)
l+x ,ν =

�
B̄x Bx+ν̂

∫
dcx ,νcx ,ν

�l+x ,ν

=

∫
(B̄x cx ,ν)

l+x ,ν(Bx+ν̂dcx ,ν)
l+x ,ν

(Bx B̄x+ν̂)
l−x ,ν =

�
Bx B̄x+ν̂

∫
dcx ,νcx ,ν

�l−x ,ν

=

∫
(Bx cx ,ν)

l−x ,ν(B̄x+ν̂dcx ,ν)
l−x ,ν

Note: backward/forward baryon interactions are mutually exclusive on every link
→ one auxiliary Grassmann variable per link is sufficient

The factors in brackets are commuting and can be moved around freely in Z
to integrate out the (anti)baryons, without generating non-local sign factors.
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Partition function with auxiliary Grassmanns

After integrating out all Bx and B̄x

Z =
∑

j

∫ ∏
x

T (x)[ jx ]K
(x)
[ fx ]

Grassmann tensor:

K (x)[ fx ]
=
∏
ν

(cx ,ν)
fx ,ν
∐
ν

(dcx ,−ν) fx ,−ν

= (cx ,1)
fx ,1 . . . (cx ,d)

fx ,d (dcx ,−d)
fx ,−d . . . (dcx ,−1)

fx ,−1

with reverse ordered product
∐

ν and cx ,−ν ≡ cx−ν̂,ν

fx ,ν ≡ fx ,ν( jx ,ν) ∈ {0, 1} is Grassmann parity of corresponding index jx ,ν

Numeric tensor:

T (x)[ jx ] =ω[lx ]S
(x)
[ jx ]

with a local sign factor ω[lx ] coming from rearrangement of auxiliaries in K (x).

Components of T are nonzero only when K is Grassmann even
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Blocking

Evaluate the partition function with iterative blocking procedure:

the number of Grassmann variables is halved at each step

a new local sign factor is absorbed in the coarse grid numeric tensor

the coarse grid numeric tensor is truncated using HOSVD

Consider contraction in 1-direction: (x , x + 1̂)→ X∑
jx ,1

∫
cx ,1

T (x)[ jx ]T
(x+1̂)
[ jx+1̂]

K(x)[ jx ]K
(x+1̂)
[ jx+1̂]

→ T (x ,x+1̂)K (x ,x+1̂)

x,−1 x, 1 x+ 1̂, 1

x,−2

x, 2 x+ 1̂, 2

x+ 1̂,−2

X, 2

X,−2

X,−1 X, 1
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Grassmann blocking

Grassmann blocking

K (x ,x+1̂) ≡
∫

cx ,1

K(x+1̂)
[ fx+1̂]

K(x)[ fx ]

Integrate out cx ,1:

K (x ,x+1̂)

=

∫
cx ,1

∏
ν

(cx+1̂,ν)
fx+1̂,ν

d∐
ν=2

(dcx+1̂,−ν)
fx+1̂,−ν (dcx ,1)

fx ,1 (cx ,1)
fx ,1

d∏
ν=2

(cx ,ν)
fx ,ν
∐
ν

(dcx ,−ν) fx ,−ν

= σ[ fx fx+1̂]
(cx+1̂,1)

fx+1̂,1

� d∏
ν=2

(cx ,ν)
fx ,ν (cx+1̂,ν)

fx+1̂,ν

�� d∐
ν=2

(dcx+1̂,−ν)
fx+1̂,−ν (dcx ,−ν) fx ,−ν

�
(dcx ,−1)

fx ,−1

For ⊥ directions (ν≥ 2): cx ,ν and dcx ,ν are not in sameK (x ,x+1̂)

→ integration would generate non-local sign factors

Jacques Bloch Grassmann tensor-network method for strong-coupling QCD 7 / 17



Introduce coarse grid Grassmann variables

Reducing the coarse local Grassmann tensor

Integrate out all Grassmanns cx ,ν ⊥ to the contraction direction (ν≥ 2),
and replace these by new auxiliaries c̃X ,ν on the coarse lattice.
Before: V d Grassmanns, After: 1

2 V d Grassmanns

How? In everyK (X ) introduce:

d∏
ν=2

�∫
dc̃X ,−ν c̃X ,−ν
� f̃X ,−ν

= 1

with
f̃X ,−ν ≡ ( fx ,−ν + fx+1̂,−ν) mod 2

and shift the commuting combinations

(c̃X ,−ν) f̃X ,−ν(dcx+1̂,−ν) fx+1̂,−ν(dcx ,−ν) fx ,−ν

from coarse site X to X − ν̂ on the entire coarse lattice.
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Reduce the perpendicular Grassmanns

Now all pairs (cx ,ν, cx+1̂,ν) can be integrated out and are replaced by c̃X ,ν.

The coarse grid partition function is now

Z =
∑

j

∫ ∏
X

eT (X )K (X )
with Grassmann tensor

K
(X )
= (cx+1̂,1)

fx+1̂,1

�
d∏
ν=2

(c̃X ,ν)
f̃X ,ν

��
d∐
ν=2

�
dc̃X ,−ν
� f̃X ,−ν
�
(dcx ,−1)

fx ,−1

and numeric tensoreT (X )jx ,−1 jx+1̂,1( jx ,−ν , jx+1̂,−ν)( jx ,ν , jx+1̂,ν)|ν6=1
= σ[ fx fx+1̂]

∑
jx ,1

T (x)[ jx ]T
(x+1̂)
[ jx+1̂]

where a local sign factor σ[ fx fx+1̂]
was generated by reordering the Grassmann variables in

K (x ,x+1̂) to perform these integrations

Jacques Bloch Grassmann tensor-network method for strong-coupling QCD 9 / 17



Truncate numeric tensor

Perform HOSVD of eT (X )jx ,−1 jx+1̂,1( jx ,−ν, jx+1̂,−ν)( jx ,ν, jx+1̂,ν)|ν6=1
to reduce the

dimension of perpendicular directions from D2→ D
→ truncated coarse grid numeric tensor T

(X )
jx ,−1 jx+1̂,1 j̃X ,−ν j̃X ,ν|ν6=1

Grassmann-parity structure: after HOSVD the nonzero components of
truncated coarse lattice numeric tensor still have definite Grassmann
parities

After one blocking step→ shape of the (approximate) coarse-lattice
partition function is identical to fine-lattice partition function, but now
written as a function of the coarse lattice indices and Grassmann
variables.
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Blocking the complete lattice

Same procedure can be repeated to contract any other direction

Iterate until lattice is reduced to a single point→ integrate out the
remaining Grassmann variables after applying the boundary conditions,
then trace out the numeric tensor→ Z

Compute observables using (stabilized) finite differences or impurity
method

Remark on implementation

Grassmann-parity structure→ cost of GHOTRG for sQCD similar to that
of HOTRG for purely numeric tensor networks.

Without this property: cost of algorithm would increase with factor 24d−1

(27, 211, 215 in 2,3,4 dimensions)

Implementation more complex because local sign factors have to be
built-in during the contraction and truncation of the numeric tensors
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Results: sQCD GHOTRG in two dimensions

log Z/V versus µ and m – GHOTRG versus exact result
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Chiral condensate versus m and V for µ= 0

〈ψ̄ψ〉= 1
V
∂ ln Z
∂m
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Study of dynamical chiral symmetry breaking for D, V →∞
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lim
V

→
∞
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3/m
f(m)

Empirical fit:

f (m) =
amb + cm

1+ dm+ (c/3)m2

Asymptotic:

f (m)∼
�

3/m for large masses

amb for m< 0.005

Fitted parameter values:
a = 2.77, b = 0.0409
c = 1.05, d = 0.770

Chiral symmetry not dynamically broken in two-dimensional strong-coupling
QCD with (two tastes of) staggered quarks
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Number density and chiral condensate versus µ and V

number density
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Hint of first order phase transition
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Preliminary results in three dimensions on 43 lattice

number density versus µ for m= 0
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Outlook

Hierarchical tensor (HT) factorization for HOTRG

Clear need to increase the bond dimension D for d = 3

For d = 3: HOTRG and GHOTRG scale as D11

→ extend our existing HT-HOTRG, which scales like D6, to HT-GHOTRG.

More work in progress

Apply HT-GHOTRG to sQCD in three and four dimensions

Develop tensor network and GHOTRG for QCD in next-to-leading order in
β -expansion
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Supplemental material
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Change to dual variables

Integrate out the SU(3) matrices:

Z =

∫ �∏
x

dψx dψ̄x

�∏
x

e2mMx

d∏
ν=1

zx ,ν

where

zx ,ν = ηx ,νζνB̄x Bx+ν̂ −ηx ,νζ−νB̄x+ν̂Bx +
3∑

kx ,ν=0

(3− kx ,ν)!

3!kx ,ν!

�
γ2δν,1 Mx Mx+ν̂

�kx ,ν

with mesons Mx = ψ̄xψx , baryons Bx =
1
3!εi1 i2 i3ψx ,i1ψx ,i2ψx ,i3 , antibaryons

B̄x =
1
3!εi1 i2 i3ψ̄x ,i3ψ̄x ,i2ψ̄x ,i1 and

ζν =

¨
γ3 exp(±3µ) for ν= ±1 ,

1 else
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Tensor formulation of Z

Tensor network formulation: integrate out mesons but not baryons, as latter
would introduce non-local sign factors

Z =
∑

j

∫ ∏
x

S(x)[ jx ]G
(x)
[lx ]

with local numeric and Grassmann tensors:

S(x)[ jx ] = δx∈B
d∏
ν=1

η
|lx ,ν |
x ,ν

q
ξν(lx ,ν)ξν(lx ,−ν) +δx∈M h(nx )

d∏
ν=1

q
αν(kx ,ν)αν(kx ,−ν)

G(x)[lx ]
= (dBx )
∑
ν(l
−
x ,ν+l+x ,−ν)(dB̄x )

∑
ν(l
+
x ,ν+l−x ,−ν)

d∏
ν=1

(Bx B̄x+ν̂)
l−x ,ν(B̄x Bx+ν̂)

l+x ,ν

Each term in sum is characterized by its indices j = ( j1,1, . . . , jV,d)

Notation: indices: [ jx]≡ jx ,−1 jx ,1 . . . jx ,−d jx ,d and [lx]≡ lx ,−1 lx ,1 . . . lx ,−d lx ,d

j ∈ {0, 1, 2, 3, 4, 5} → (k, l) ∈ {(0, 0), (1, 0), (2, 0), (3, 0), (0,−1), (0,+1)}, l± = δl,±1
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Tensor weigths

Baryonic sites in j :
kx ,−ν = kx ,ν = 0,∀ν∑
ν(l
−
x ,ν + l+x ,−ν) = 1 ∧∑ν(l+x ,ν + l−x ,−ν) = 1

Mesonic sites in j :
lx ,−ν = lx ,ν = 0,∀ν
nx = 3−∑ν(kx ,−ν + kx ,ν)≥ 0

Weights

baryonic: ξν(lx ,ν) =

¨
γ3|lx ,ν| exp(lx ,ν3µ) if ν= 1

1 if ν 6= 1

k-mesonic: αν(kx ,ν) =
(3− kx ,ν)!

3!kx ,ν!
γ2kx ,νδν,1

mass: h(nx) =
3!
nx !
(2m)nx , nx = 3−∑

ν

(kx ,−ν + kx ,ν)
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Conserved Grassmann parity

Ready to perform HOSVD of eT (X )jx ,−1 jx+1̂,1( jx ,−ν, jx+1̂,−ν)( jx ,ν, jx+1̂,ν)|ν6=1
to reduce

the dimension of perpendicular directions from D2→ D

Matrization Mν± of coarse grid tensor is block diagonal in Grassmann parity
of the fat index→ singular vectors have definite parity→ nonzero
components of truncated coarse lattice numeric tensor have definite
Grassmann parities.

M− =





M−
00

M−
110

0

(f̃X,2 + fx,−1 + fx+1̂,−1)mod 2 = 1

(f̃X,2 + fx,−1 + fx+1̂,−1)mod 2 = 0

f̃X,−2 = 1

f̃X,−2 = 0

U =





U00

U110

0

g̃X,−2 = 0 g̃X,−2 = 1

f̃X,−2 = 1

f̃X,−2 = 0
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Applying the truncation matrices

Due to the block-diagonal nature of U :∑
jx ,−2, jx+1̂,−2

U( jx ,−2, jx+1̂,−2) j̃X ,−2
eT (X )jx ,−1 jx+1̂,1( jx ,−2, jx+1̂,−2)( jx ,2, jx+1̂,2)

K
(X )
fx ,−1 fx+1̂,1 f̃X ,−2 f̃X ,2

= K
(X )
fx ,−1 fx+1̂,1 g̃X ,−2 f̃X ,2

∑
jx ,−2, jx+1̂,−2

U( jx ,−2, jx+1̂,−2) j̃X ,−2
eT (X )jx ,−1 jx+1̂,1( jx ,−2, jx+1̂,−2)( jx ,2, jx+1̂,2)

where g̃X ,−2 ≡ g̃X ,−2( j̃X ,−2) is the Grassmann parity of the new index j̃X ,−2.

This leads to the truncated coarse grid numeric tensor T
(X )
jx ,−1 jx+1̂,1 j̃X ,−2 j̃X ,2

After one blocking step→ shape of the (approximate) coarse-lattice partition
function is identical to fine-lattice partition function, but now written as a function of
the coarse lattice indices and Grassmann variables.
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Convergence as a function of the bond dimension D

log Z/V versus 1/D
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