Grassmann tensor-network method for strong-coupling QCD

Jacques Bloch¹ & Robert Lohmayer^{1,2}

¹University of Regensburg ²Leibniz Institute for Immunotherapy

Lattice 2022, Bonn, 8 - 13 August 2022

Monte Carlo versus Tensor Networks

Consider classical or quantum system in thermal equilibrium on a d-dimensional lattice described by partition function Z

- Standard method: stochastic sampling using Monte Carlo methods
- New alternative: reformulate Z as a fully contracted tensor network and use higher order tensor renormalization group (HOTRG) method to compute observables

- Tensor method can be applied when action is complex and MC simulations fail
- Cost scales logarithmically with volume
- Method based on singular value decomposition (SVD)

Strong-coupling QCD – action and partition function

Partition function for $\beta = 0$

$$Z = \int \left[\prod_{x} d\psi_{x} d\bar{\psi}_{x} \prod_{v} dU_{x,v} \right] e^{-S_{F}}$$

Fermion action

d-dimensional action for staggered quarks with mass *m* and chemical potential μ $S_F = \sum_{x} \left\{ \sum_{\nu=1}^{d} \eta_{x,\nu} \gamma^{\delta_{\nu,1}} \bar{\psi}_x \left[e^{\mu \delta_{\nu,1}} U_{x,\nu} \psi_{x+\hat{\nu}} - e^{-\mu \delta_{\nu,1}} U_{x-\hat{\nu},\nu}^{\dagger} \psi_{x-\hat{\nu}} \right] + 2m \bar{\psi}_x \psi_x \right\}$

Change to dual variables (Rossi & Wolff (1984), Karsch & Mütter (1989))

- Infinite coupling limit → integrate out SU(3) gauge fields
- Grassmann variables contribute through mesonic combinations ($\bar{\psi}_x \psi_x$) and baryonic/antibaryonic combinations B_x/\bar{B}_x of 3 quarks/antiquarks

Tensor formulation of \boldsymbol{Z}

Tensor network formulation: integrate out mesons but not baryons, as latter would introduce non-local sign factors

$$Z = \sum_{j} \int \prod_{x} S_{[j_{x}]}^{(x)} G_{[l_{x}]}^{(x)}$$

with local numeric and Grassmann tensors:

$$S_{[j_x]}^{(x)} = \delta_{x \in \mathscr{B}} w_{\mathscr{B}}([l_x]) + \delta_{x \in \mathscr{M}} w_{\mathscr{M}}([j_x])$$

$$G_{[l_x]}^{(x)} = (dB_x)^{\sum_{\nu} (l_{x,\nu}^- + l_{x,-\nu}^+)} (d\bar{B}_x)^{\sum_{\nu} (l_{x,\nu}^+ + l_{x,-\nu}^-)} \prod_{\nu=1}^d (B_x \bar{B}_{x+\hat{\nu}})^{l_{x,\nu}^-} (\bar{B}_x B_{x+\hat{\nu}})^{l_{x,\nu}^+}$$

Each term in sum is characterized by its indices j = (j_{1,1},..., j_{V,d})

•
$$l \equiv l(j) \in \{-1, 0, 1\}$$
 and $l^{\pm} = \delta_{l, \pm 1}$

Grassmann HOTRG

Extend HOTRG method to handle the baryonic Grassmann variables (using ideas introduced by Shimizu and Y. Kuramashi (2014); Sakai et al. (2017))

Decouple *B* and \overline{B} in the Grassmann interactions by introducing one auxiliary Grassmann variable $c_{x,y}$ on *each link*: (recall $l_{x,y}^{\pm} \in \{0,1\}$)

$$(\bar{B}_{x}B_{x+\hat{\nu}})^{l_{x,\nu}^{+}} = \left(\bar{B}_{x}B_{x+\hat{\nu}}\int dc_{x,\nu}c_{x,\nu}\right)^{l_{x,\nu}^{+}} = \int (\bar{B}_{x}c_{x,\nu})^{l_{x,\nu}^{+}} (B_{x+\hat{\nu}}dc_{x,\nu})^{l_{x,\nu}^{+}}$$
$$(B_{x}\bar{B}_{x+\hat{\nu}})^{l_{x,\nu}^{-}} = \left(B_{x}\bar{B}_{x+\hat{\nu}}\int dc_{x,\nu}c_{x,\nu}\right)^{l_{x,\nu}^{-}} = \int (B_{x}c_{x,\nu})^{l_{x,\nu}^{-}} (\bar{B}_{x+\hat{\nu}}dc_{x,\nu})^{l_{x,\nu}^{-}}$$

Note: backward/forward baryon interactions are mutually exclusive on every link \rightarrow one auxiliary Grassmann variable per link is sufficient

The factors in brackets are commuting and can be moved around freely in Z to integrate out the (anti)baryons, without generating non-local sign factors.

Jacques Bloch

Partition function with auxiliary Grassmanns

After integrating out all B_x and \bar{B}_x

$$Z = \sum_{j} \int \prod_{x} T^{(x)}_{[j_x]} K^{(x)}_{[f_x]}$$

Grassmann tensor:

$$K_{[f_x]}^{(x)} = \prod_{\nu} (c_{x,\nu})^{f_{x,\nu}} \prod_{\nu} (dc_{x,-\nu})^{f_{x,-\nu}}$$
$$= (c_{x,1})^{f_{x,1}} \dots (c_{x,d})^{f_{x,d}} (dc_{x,-d})^{f_{x,-d}} \dots (dc_{x,-1})^{f_{x,-1}}$$

with reverse ordered product \coprod_{ν} and $c_{x,-\nu}\equiv c_{x-\hat{\nu},\nu}$

 $f_{x,\nu} \equiv f_{x,\nu}(j_{x,\nu}) \in \{0,1\}$ is Grassmann parity of corresponding index $j_{x,\nu}$

• Numeric tensor:

$$T_{[j_x]}^{(x)} = \omega_{[l_x]} S_{[j_x]}^{(x)}$$

with a local sign factor $\omega_{[l_x]}$ coming from rearrangement of auxiliaries in $K^{(x)}$.

• Components of T are nonzero only when K is Grassmann even

Blocking

Evaluate the partition function with iterative blocking procedure:

- the number of Grassmann variables is halved at each step
- a new local sign factor is absorbed in the coarse grid numeric tensor
- the coarse grid numeric tensor is truncated using HOSVD

Consider contraction in 1-direction: $(x, x + \hat{1}) \rightarrow X$

$$\sum_{j_{x,1}} \int_{c_{x,1}} T^{(x)}_{[j_x]} T^{(x+\hat{1})}_{[j_{x+\hat{1}}]} K^{(x)}_{[j_x]} K^{(x+\hat{1})}_{[j_{x+\hat{1}}]} \rightarrow \mathscr{T}^{(x,x+\hat{1})} \mathscr{K}^{(x,x+\hat{1})}$$

$$x, 2 \qquad x + \hat{1}, 2 \qquad x + \hat{1}, 2 \qquad x + \hat{1}, -2 \qquad x, -1 \qquad x, -1 \qquad x, -2 \qquad x, -1 \qquad x, -2 \qquad x,$$

Grassmann tensor-network method for strong-coupling QCD

Grassmann blocking

Grassmann blocking

$$\mathscr{K}^{(x,x+\hat{1})} \equiv \int_{c_{x,1}} K^{(x+\hat{1})}_{[f_{x+\hat{1}}]} K^{(x)}_{[f_x]}$$

Integrate out
$$c_{x,1}$$
:

 $\mathcal{K}^{(x,x+\hat{1})}$

$$= \int_{c_{x,1}} \prod_{\nu} (c_{x+\hat{1},\nu})^{f_{x+\hat{1},\nu}} \prod_{\nu=2}^{d} (dc_{x+\hat{1},-\nu})^{f_{x+\hat{1},-\nu}} (\underline{dc_{x,1}})^{f_{x,1}} (c_{x,1})^{f_{x,1}} \prod_{\nu=2}^{d} (c_{x,\nu})^{f_{x,\nu}} \prod_{\nu} (dc_{x,-\nu})^{f_{x,-\nu}} = \sigma_{[f_x f_{x+\hat{1}}]} (c_{x+\hat{1},1})^{f_{x+\hat{1},1}} \left[\prod_{\nu=2}^{d} (c_{x,\nu})^{f_{x,\nu}} (c_{x+\hat{1},\nu})^{f_{x+\hat{1},\nu}} \right] \left[\prod_{\nu=2}^{d} (dc_{x+\hat{1},-\nu})^{f_{x+\hat{1},-\nu}} (dc_{x,-\nu})^{f_{x,-\nu}} \right] (dc_{x,-1})^{f_{x,-1}}$$

For \perp directions ($\nu \ge 2$): $c_{x,\nu}$ and $dc_{x,\nu}$ are not in same $\mathscr{K}^{(x,x+\hat{1})}$ \rightarrow integration would generate non-local sign factors

Reducing the coarse local Grassmann tensor

Integrate out <u>all</u> Grassmanns $c_{x,\nu} \perp$ to the contraction direction ($\nu \geq 2$), and replace these by new auxiliaries $\tilde{c}_{X,\nu}$ on the coarse lattice. Before: Vd Grassmanns, After: $\frac{1}{2}Vd$ Grassmanns

How? In every $\mathscr{K}^{(X)}$ introduce:

$$\prod_{\nu=2}^d \left(\int d\tilde{c}_{X,-\nu} \tilde{c}_{X,-\nu} \right)^{\tilde{f}_{X,-\nu}} = 1$$

with

$$\tilde{f}_{X,-\nu} \equiv (f_{x,-\nu} + f_{x+\hat{1},-\nu}) \mod 2$$

and shift the commuting combinations

$$(\tilde{c}_{X,-\nu})^{\tilde{f}_{X,-\nu}}(dc_{x+\hat{1},-\nu})^{f_{x+\hat{1},-\nu}}(dc_{x,-\nu})^{f_{x,-\nu}}$$

from coarse site *X* to $X - \hat{\nu}$ on the entire coarse lattice.

Reduce the perpendicular Grassmanns

Now all pairs $(c_{x,\nu}, c_{x+\hat{1},\nu})$ can be integrated out and are replaced by $\tilde{c}_{X,\nu}$.

The coarse grid partition function is now

$$Z = \sum_{j} \int \prod_{X} \widetilde{\mathscr{T}}^{(X)} \overline{K}^{(X)}$$

with Grassmann tensor

$$\overline{K}^{(X)} = (c_{x+\hat{1},1})^{f_{x+\hat{1},1}} \left[\prod_{\nu=2}^{d} (\tilde{c}_{X,\nu})^{\tilde{f}_{X,\nu}} \right] \left[\prod_{\nu=2}^{d} (d\tilde{c}_{X,-\nu})^{\tilde{f}_{X,-\nu}} \right] (dc_{x,-1})^{f_{x,-1}}$$

and numeric tensor

$$\widetilde{\mathcal{T}}_{j_{x,-1}j_{x+\hat{1},1}(j_{x,-\nu},j_{x+\hat{1},-\nu})(j_{x,\nu},j_{x+\hat{1},\nu})|_{\nu\neq 1}} = \sigma_{[f_x f_{x+\hat{1}}]} \sum_{j_{x,1}} T_{[j_x]}^{(x)} T_{[j_{x+\hat{1}}]}^{(x+\hat{1})}$$

where a local sign factor $\sigma_{[f_x f_{x+1}]}$ was generated by reordering the Grassmann variables in $\mathscr{K}^{(x,x+\hat{1})}$ to perform these integrations

Jacques Bloch

Grassmann tensor-network method for strong-coupling QCD

Truncate numeric tensor

- Perform HOSVD of $\widetilde{\mathscr{T}}_{j_{x,-1}j_{x+\hat{1},1}(j_{x,-\nu},j_{x+\hat{1},-\nu})(j_{x,\nu},j_{x+\hat{1},\nu})|_{\nu\neq 1}}$ to reduce the dimension of perpendicular directions from $D^2 \rightarrow D$ \rightarrow truncated coarse grid numeric tensor $\overline{T}_{j_{x,-1}j_{x+\hat{1},1}\tilde{j}_{x,-\nu}\tilde{j}_{x,\nu}|_{\nu\neq 1}}$
- Grassmann-parity structure: after HOSVD the nonzero components of truncated coarse lattice numeric tensor still have definite Grassmann parities
- After one blocking step → shape of the (approximate) coarse-lattice partition function is identical to fine-lattice partition function, but now written as a function of the coarse lattice indices and Grassmann variables.

Blocking the complete lattice

- Same procedure can be repeated to contract any other direction
- Iterate until lattice is reduced to a single point → integrate out the remaining Grassmann variables after applying the boundary conditions, then trace out the numeric tensor → Z
- Compute observables using (stabilized) finite differences or impurity method

Remark on implementation

- Grassmann-parity structure → cost of GHOTRG for sQCD similar to that of HOTRG for purely numeric tensor networks.
- Without this property: cost of algorithm would increase with factor 2^{4d-1} (2^7 , 2^{11} , 2^{15} in 2,3,4 dimensions)
- Implementation more complex because local sign factors have to be built-in during the contraction and truncation of the numeric tensors

Results: sQCD GHOTRG in two dimensions

Chiral condensate versus m and V for $\mu = 0$

Study of dynamical chiral symmetry breaking for $D, V \rightarrow \infty$

Chiral symmetry not dynamically broken in two-dimensional strong-coupling QCD with (two tastes of) staggered quarks

Number density and chiral condensate versus μ and V

Hint of first order phase transition

Preliminary results in three dimensions on 4³ lattice

Outlook

Hierarchical tensor (HT) factorization for HOTRG

- Clear need to increase the bond dimension D for d = 3
- For d = 3: HOTRG and GHOTRG scale as D¹¹
 → extend our existing HT-HOTRG, which scales like D⁶, to HT-GHOTRG.

More work in progress

- Apply HT-GHOTRG to sQCD in three and four dimensions
- Develop tensor network and GHOTRG for QCD in next-to-leading order in $\beta\text{-expansion}$

Supplemental material

Change to dual variables

Integrate out the SU(3) matrices:

$$Z = \int \left[\prod_{x} d\psi_{x} d\bar{\psi}_{x} \right] \prod_{x} e^{2mM_{x}} \prod_{\nu=1}^{d} z_{x,\nu}$$

where

$$z_{x,\nu} = \eta_{x,\nu} \zeta_{\nu} \bar{B}_{x} B_{x+\hat{\nu}} - \eta_{x,\nu} \zeta_{-\nu} \bar{B}_{x+\hat{\nu}} B_{x} + \sum_{k_{x,\nu}=0}^{3} \frac{(3-k_{x,\nu})!}{3!k_{x,\nu}!} \left(\gamma^{2\delta_{\nu,1}} M_{x} M_{x+\hat{\nu}}\right)^{k_{x,\nu}}$$

with mesons $M_x = \bar{\psi}_x \psi_x$, baryons $B_x = \frac{1}{3!} \epsilon_{i_1 i_2 i_3} \psi_{x,i_1} \psi_{x,i_2} \psi_{x,i_3}$, antibaryons $\bar{B}_x = \frac{1}{3!} \epsilon_{i_1 i_2 i_3} \bar{\psi}_{x,i_3} \bar{\psi}_{x,i_2} \bar{\psi}_{x,i_1}$ and

$$\zeta_{\nu} = \begin{cases} \gamma^3 \exp(\pm 3\mu) & \text{for } \nu = \pm 1, \\ 1 & \text{else} \end{cases}$$

Tensor formulation of Z

Tensor network formulation: integrate out mesons but not baryons, as latter would introduce non-local sign factors

$$Z = \sum_{j} \int \prod_{x} S^{(x)}_{[j_x]} G^{(x)}_{[l_x]}$$

with local numeric and Grassmann tensors:

$$S_{[j_{x}]}^{(x)} = \delta_{x \in \mathscr{B}} \prod_{\nu=1}^{d} \eta_{x,\nu}^{|l_{x,\nu}|} \sqrt{\xi_{\nu}(l_{x,\nu})\xi_{\nu}(l_{x,-\nu})} + \delta_{x \in \mathscr{M}} h(n_{x}) \prod_{\nu=1}^{d} \sqrt{\alpha_{\nu}(k_{x,\nu})\alpha_{\nu}(k_{x,-\nu})}$$
$$G_{[l_{x}]}^{(x)} = (dB_{x})^{\sum_{\nu}(l_{x,\nu}^{-}+l_{x,-\nu}^{+})} (d\bar{B}_{x})^{\sum_{\nu}(l_{x,\nu}^{+}+l_{x,-\nu}^{-})} \prod_{\nu=1}^{d} (B_{x}\bar{B}_{x+\hat{\nu}})^{l_{x,\nu}^{-}} (\bar{B}_{x}B_{x+\hat{\nu}})^{l_{x,\nu}^{+}}$$

- Each term in sum is characterized by its indices $j = (j_{1,1}, \dots, j_{V,d})$
- Notation: indices: $[j_x] \equiv j_{x,-1}j_{x,1} \dots j_{x,-d}j_{x,d}$ and $[l_x] \equiv l_{x,-1}l_{x,1} \dots l_{x,-d}l_{x,d}$
- $j \in \{0, 1, 2, 3, 4, 5\} \rightarrow (k, l) \in \{(0, 0), (1, 0), (2, 0), (3, 0), (0, -1), (0, +1)\}, l^{\pm} = \delta_{l, \pm 1}$

Tensor weigths

• Baryonic sites in *j*: $k_{x,-\nu} = k_{x,\nu} = 0, \forall \nu$ $\sum_{\nu} (l_{x,\nu}^- + l_{x,-\nu}^+) = 1 \land \sum_{\nu} (l_{x,\nu}^+ + l_{x,-\nu}^-) = 1$ • Mesonic sites in *j*: $l_{x,-\nu} = l_{x,\nu} = 0, \forall \nu$

$$n_x = 3 - \sum_{\nu} (k_{x,-\nu} + k_{x,\nu}) \ge 0$$

Weights

baryonic:
$$\xi_{\nu}(l_{x,\nu}) = \begin{cases} \gamma^{3|l_{x,\nu}|} \exp(l_{x,\nu}3\mu) & \text{if } \nu = 1\\ 1 & \text{if } \nu \neq 1 \end{cases}$$

k-mesonic:
$$\alpha_{\nu}(k_{x,\nu}) = \frac{(3-k_{x,\nu})!}{3!k_{x,\nu}!} \gamma^{2k_{x,\nu}\delta_{\nu,1}}$$

mass:
$$h(n_{x}) = \frac{3!}{n_{x}!} (2m)^{n_{x}}, \qquad n_{x} = 3 - \sum_{\nu} (k_{x,-\nu} + k_{x,\nu})$$

Conserved Grassmann parity

Ready to perform HOSVD of $\widetilde{\mathscr{T}}_{j_{x,-1}j_{x+\hat{1},1}(j_{x,-\nu},j_{x+\hat{1},-\nu})(j_{x,\nu},j_{x+\hat{1},\nu})|_{\nu\neq 1}}$ to reduce the dimension of perpendicular directions from $D^2 \to D$

Matrization $M^{\nu_{\pm}}$ of coarse grid tensor is block diagonal in Grassmann parity of the fat index \rightarrow singular vectors have definite parity \rightarrow nonzero components of truncated coarse lattice numeric tensor have definite Grassmann parities.

Grassmann tensor-network method for strong-coupling QCD

Applying the truncation matrices

• Due to the block-diagonal nature of U:

$$\sum_{x,-2,j_{x+\hat{1},-2}} U_{(j_{x,-2},j_{x+\hat{1},-2})\tilde{j}_{x,-2}} \widetilde{\mathscr{T}}_{j_{x,-1}j_{x+\hat{1},1}(j_{x,-2},j_{x+\hat{1},-2})(j_{x,2},j_{x+\hat{1},2})} \overline{K}_{f_{x,-1}f_{x+\hat{1},1}\tilde{f}_{x,-2}\tilde{f}_{x,2}}^{(X)} \\ = \overline{K}_{f_{x,-1}f_{x+\hat{1},1}\tilde{g}_{x,-2}\tilde{f}_{x,2}}^{(X)} \sum_{j_{x,-2},j_{x+\hat{1},-2}} U_{(j_{x,-2},j_{x+\hat{1},-2})\tilde{j}_{x,-2}} \widetilde{\mathscr{T}}_{j_{x,-1}j_{x+\hat{1},1}(j_{x,-2},j_{x+\hat{1},-2})(j_{x,2},j_{x+\hat{1},2})}$$

where $\tilde{g}_{X,-2} \equiv \tilde{g}_{X,-2}(\tilde{j}_{X,-2})$ is the Grassmann parity of the new index $\tilde{j}_{X,-2}$.

• This leads to the truncated coarse grid numeric tensor $\overline{T}_{j_{x,-1}j_{x+\hat{1},\hat{1}},\tilde{j}_{x,-2},\tilde{j}_{x,2}}^{(X)}$

After one blocking step \rightarrow shape of the (approximate) coarse-lattice partition function is identical to fine-lattice partition function, but now written as a function of the coarse lattice indices and Grassmann variables.

Convergence as a function of the bond dimension D

