Stochastic normalizing flows for lattice field theory

Elia Cellini

Università degli Studi di Torino/Istituto Nazionale Fisica Nucleare

8th August 2022

Lattice 2022

Based on:

M. Caselle, E. C., A. Nada., M. Panero, JHEP 07 (2022) 015

2 Jarzynski's equality and Stochastic Normalizing Flows

Testing Stochastic Normalizing Flows

The main numerical method to compute observables ${\cal O}$ in lattice field theories is generate a (thermalized) Markov chain

$$\underbrace{\phi^{(0)} \xrightarrow{P_{p}} \phi^{(1)} \xrightarrow{P_{p}} \dots \xrightarrow{P_{p}} \phi^{(t)} \xrightarrow{P_{p}} \phi^{(t+1)} \xrightarrow{P_{p}} \dots \rightarrow \phi^{(t+n)}}_{\text{thermalization}} \underbrace{\phi^{(t)} \xrightarrow{P_{p}} \phi^{(t+1)} \xrightarrow{P_{p}} \dots \rightarrow \phi^{(t+n)}}_{\text{equilibrium}}$$

and then measure $\ensuremath{\mathcal{O}}$ on sampled equilibrium configurations

The main numerical method to compute observables \mathcal{O} in lattice field theories is generate a (thermalized) Markov chain

$$\underbrace{\phi^{(0)} \xrightarrow{P_{p}} \phi^{(1)} \xrightarrow{P_{p}} \dots \xrightarrow{P_{p}} \phi^{(t)} \xrightarrow{P_{p}} \phi^{(t+1)} \xrightarrow{P_{p}} \dots \rightarrow \phi^{(t+n)}}_{\text{thermalization}} \underbrace{\phi^{(t)} \xrightarrow{P_{p}} \phi^{(t+1)} \xrightarrow{P_{p}} \dots \rightarrow \phi^{(t+n)}}_{\text{equilibrium}}$$

and then measure $\ensuremath{\mathcal{O}}$ on sampled equilibrium configurations

The configurations sampled sequentially in a Markov Chain are autocorrelated

$$\cdots \rightarrow \phi^{(t)} \rightarrow \phi^{(t+1)} \rightarrow \cdots \rightarrow \phi^{(t+n)}$$

When a critical point is approached the autocorrelation diverges with the correlation length of the system \rightarrow critical slowing down \rightarrow drastic increase of computational cost

How can we sample uncorrelated configurations?

One way is use Normalizing flows (NFs) [Rezende and Mohamed; 2015], a class of deep generative models able to model the target $p(\phi)$ by mapping with some tractable prior distribution $q_0(z)$

How can we sample uncorrelated configurations?

One way is use Normalizing flows (NFs) [Rezende and Mohamed; 2015], a class of deep generative models able to model the target $p(\phi)$ by mapping with some tractable prior distribution $q_0(z)$

▶ successfully applied in LFTs, in particular ϕ^4 scalar field theory: [Albergo et al.; 2019], [Kanwar et al.; 2020], [Nicoli et al.; 2020], [Boyda et al.; 2020], [Del Debbio et al.; 2021], [Hackett et al.; 2021], [Yamauchi et al.; 2021], [Foreman et al.; 2021], [de Haan et al.; 2021], [Albergo et al.; 2022], [Lawrence et al.; 2022], [Gerdes et al.; 2022], [Pawlowski and Urban; 2022], [Singha et al.; 2022], [Abbott et al.; 2022], [Vaitl et al.; 2022]

NFs learn families of compositions of diffeomorphisms (i.e. <u>invertible</u> and <u>differentiable</u> transformations):

$$y_N = g_{\theta}(y_0) = (g_N \circ \cdots \circ g_1)(y_0)$$
 $y_0 \sim q_0$ θ : parameters

The maps g_i are called **bijectors**

NFs learn families of compositions of diffeomorphisms (i.e. <u>invertible</u> and <u>differentiable</u> transformations):

 $y_N = g_{\theta}(y_0) = (g_N \circ \cdots \circ g_1)(y_0)$ $y_0 \sim q_0$ θ : parameters

The maps g_i are called **bijectors**

The generated distribution for y_N is

$$q_N(y_N) = q_0(g_\theta^{-1}(y_N)) \prod_n |\det J_n(y_n)|^{-1}$$

NFs learn families of compositions of diffeomorphisms (i.e. <u>invertible</u> and <u>differentiable</u> transformations):

 $y_N = g_{\theta}(y_0) = (g_N \circ \cdots \circ g_1)(y_0)$ $y_0 \sim q_0$ heta : parameters

The maps g_i are called **bijectors**

The generated distribution for y_N is

$$q_N(y_N) = q_0(g_\theta^{-1}(y_N)) \prod_n |\det J_n(y_n)|^{-1}$$

Training of NFs is done by minimizing the Kullback-Leibler divergence:

$$D_{\mathcal{KL}}(q_{ heta}||p) = \int d\phi q_{ heta}(\phi) \log rac{q_{ heta}(\phi)}{p(\phi)} = \int d\phi q_{ heta}(\phi) \log q_{ heta}(\phi) + S[\phi] + \log Z$$

Normalizing Flows: Partition function

A trained NF g_{θ} can be used to compute <u>directly</u> the partition function of the target:

$$Z = \int D\phi e^{-S[\phi]} = \int D\phi q_{\theta}(\phi) \frac{e^{-S[\phi]}}{q_{\theta}(\phi)} = Z_0 \int D\phi q_{\theta}(\phi) \tilde{w}(\phi) \approx Z_0 \langle \tilde{w} \rangle_{\phi \sim q_{\theta}}$$

[Nicoli et al.; 2020]

Normalizing Flows: Partition function

A trained NF g_{θ} can be used to compute <u>directly</u> the partition function of the target:

$$Z = \int D\phi e^{-S[\phi]} = \int D\phi q_{\theta}(\phi) \frac{e^{-S[\phi]}}{q_{\theta}(\phi)} = Z_0 \int D\phi q_{\theta}(\phi) \tilde{w}(\phi) \approx Z_0 \langle \tilde{w} \rangle_{\phi \sim q_{\theta}}$$

[Nicoli et al.; 2020]

Unnormalized weight:

$$\tilde{w}(\phi) = \exp\left(-\left\{S[\phi] - S_0[g_{\theta}^{-1}(\phi)] - Q\right\}\right) = \frac{\exp(-S[\phi])}{Z_0q_{\theta}(\phi)}$$

with

$$q_{\theta}(\phi) = q_0(g_{\theta}^{-1}(\phi)) \exp(-Q) \qquad \underbrace{q_0(y_0) = \exp(-S_0[y_0])/Z_0}_{\text{e.g. normal distribution}}$$

Observables can be computed using a reweighting procedure or a MCMC algorithm:

Reweighting

$$\langle \mathcal{O}
angle_{\phi \sim p} = rac{1}{\hat{\mathcal{Z}}} \langle \mathcal{O} ilde{ extbf{w}}
angle_{\phi \sim q_{ heta}}$$

[Nicoli et al.; 2020]

Metropolis-Hastings

$$A(\phi^{(i-1)}, \phi') = \min\left(1, \frac{q_{\theta}(\phi)}{p(\phi)} \frac{p(\phi')}{q_{\theta}(\phi')}\right)$$

[Albergo et al.; 2019]

Multimodal-distribution

Training procedure could "pick" just one mode of the target \rightarrow equivariant normalizing flows [Nicoli et al.; 2020], [Kanwar et al.; 2020],[de Haan et al.; 2021], [Gerdes et al.; 2022], [Abbott et al.; 2022], ...

Scalability

measurements of observables are statistically independent not clear however how the training times scale when approaching the continuum limit

comprehensive discussion in [Del Debbio et al.; 2021]

Jarzynski's equality and Stochastic Normalizing Flows

Very general, intriguing relation in non-equilibrium statistical mechanics. Free-energy differences (at equilibrium) directly calculated with an average over **non-equilibrium processes [Jarzynski; 1997]**:

$$\frac{Z}{Z_0} = \left\langle \exp\left(-\frac{W}{T}\right) \right\rangle_f$$

For an MCMC:

the stochastic non-equilibrium evolution starts from a configuration sampled from the initial distribution q₀ and reaches the target (final) distribution p

$$q_0 \simeq e^{-S_{\eta_0}} \stackrel{P_{\eta_1}}{\rightarrow} e^{-S_{\eta_1}} \stackrel{P_{\eta_2}}{\rightarrow} \dots \stackrel{P_{\eta_N}}{\rightarrow} e^{-S_{\eta_N}} \simeq p$$

- the system evolves using regular Monte Carlo updates with transition probability P_{η_n}
- η_n is a **protocol** that interpolates the parameters of the theory between q₀ and p

For an MCMC:

the stochastic non-equilibrium evolution starts from a configuration sampled from the initial distribution q₀ and reaches the target (final) distribution p

$$q_0 \simeq e^{-S_{\eta_0}} \stackrel{P_{\eta_1}}{\rightarrow} e^{-S_{\eta_1}} \stackrel{P_{\eta_2}}{\rightarrow} \dots \stackrel{P_{\eta_N}}{\rightarrow} e^{-S_{\eta_N}} \simeq p$$

- the system evolves using regular Monte Carlo updates with transition probability P_{η_n}
- η_n is a **protocol** that interpolates the parameters of the theory between q₀ and p

Along the process we compute the dimensionless work

$$W = \sum_{n=0}^{N-1} \{ S_{\eta_{n+1}} [\phi_n] - S_{\eta_n} [\phi_n] \}$$

Applied in: [Chatelain et al.; 2006], [Chatelain; 2007], [Hijar et al.; 2007], [Caselle et al.; 2016], [Francesconi et al.; 2020]

SU(3) equation of state in 4 dimensions: [Caselle et al.; 2018]

Related to Annealed Importance Sampling **[Neal; 1998]**: procedure equivalent to Jarzynski's equality. Very popular in machine learning community.

A common framework

We realized that Jarzynski's relation is the same formula used to extract Z in NFs:

$$rac{Z}{Z_0} = \langle ilde{w}(\phi)
angle_{\phi \sim q_ heta} = \langle \exp(-W)
angle_{ ext{f}}$$

General dimensionless "work" :

$$W(y_0,\ldots,y_N)=S(y_N)-S_0(y_0)-Q(y_1,\ldots,y_N)=-\ln \tilde{w}(\phi)$$

while the "heat" Q depends on the type of flow:

A common framework

We realized that Jarzynski's relation is the same formula used to extract Z in NFs:

$$rac{Z}{Z_0} = \langle ilde{w}(\phi)
angle_{\phi \sim q_ heta} = \langle \exp(-W)
angle_{ ext{f}}$$

General dimensionless "work" :

$$W(y_0,\ldots,y_N)=S(y_N)-S_0(y_0)-Q(y_1,\ldots,y_N)=-\ln \tilde{w}(\phi)$$

while the "heat" Q depends on the type of flow:

normalizing flows

stochastic non-equilibrium evolutions

$$y_0 o y_1 = g_1(y_0) o \dots o y_N$$

 $Q = \sum_{n=0}^{N-1} \ln |\det J_n(y_n)|$
 $D_{KL}(q_\theta || p) = -\langle \ln \tilde{w}(\phi) \rangle_{\phi \sim q_\theta} + \ln rac{Z}{Z_0}$

$$y_0 \stackrel{P_{\eta_1}}{\to} y_1 \stackrel{P_{\eta_2}}{\to} \dots \stackrel{P_{\eta_N}}{\to} y_N$$
$$Q = \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(y_n)$$

$$D_{KL}(q_0 P_f \| p P_r) = \langle W \rangle_f + \ln \frac{z}{Z_0}$$

Stochastic Normalizing Flows (SNFs) (introduced in [Wu et al.; 2020])

$$y_0 o g_1(y_0) \stackrel{P_{\eta_1}}{\to} y_1 o g_2(y_1) \stackrel{P_{\eta_2}}{\to} \dots \stackrel{P_{\eta_N}}{\to} y_N$$
 $Q = \sum_{n=0}^{N-1} S_{\eta_{n+1}}(y_{n+1}) - S_{\eta_{n+1}}(g_n(y_n)) + \ln |\det J_n(y_n)|$

SNF idea reworked in CRAFT approach [Matthews et al.; 2022]

Testing Stochastic Normalizing Flows

Typical toy model for tests: ϕ^4 scalar field theory in 2 dimensions

$$S(\phi) = \sum_{x \in \Lambda} -2\kappa \sum_{\mu=0,1} \phi(x)\phi(x+\hat{\mu}) + (1-2\lambda)\phi(x)^2 + \lambda\phi(x)^4$$

target parameters $\kappa=0.2$ and $\lambda=0.022$ (as in [Nicoli et al.; 2020]): unbroken symmetry phase

Stochastic evolutions

 η_n interpolates between the prior (normal distribution is recovered with $\kappa = \lambda = 0$) and target parameters

- ▶ linear protocol η_n
- heatbath algorithm for the stochastic updates
- *n_{sb}* = # of stochastic updates

Normalizing Flow

- Bijector = affine coupling layers as describe in the RealNVP architecture [Dinh et al.; 2016]
- each coupling layer has two convolutional neurons with 3 × 3 kernel and 1 feature map
- Affine block = odd coupling layer + even coupling layer
- $n_{ab} = \#$ of affine blocks

Goals

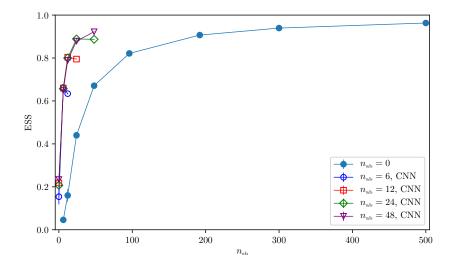
- can we train SNFs efficiently?
- can we improve both on NFs and on stochastic evolutions?

Using the Effective Sample Size as metric to evaluate architectures

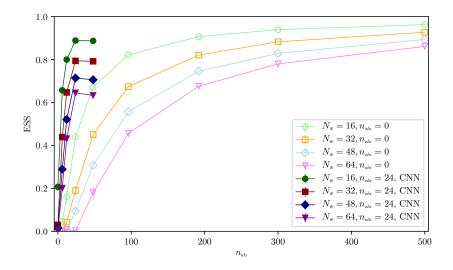
$$\mathsf{ESS} = \frac{\langle \tilde{w} \rangle_{\mathsf{f}}^2}{\langle \tilde{w}^2 \rangle_{\mathsf{f}}}$$

 $\mathsf{ESS} = \mathbf{1} \to \mathsf{perfect\ training}$

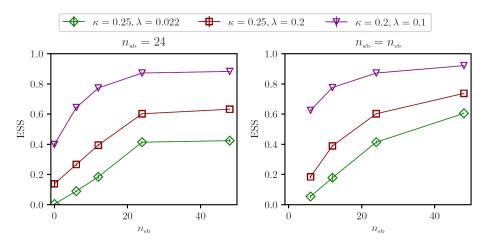
Comparing stochastic evolutions with (S)NFs on a $N_s \times N_t = 16 \times 8$ lattice,



Training length: 10⁴ epochs for all volumes. Slowly-improving regime reached fast



Test with different action parameters (unbroken symmetry phase) on a $N_s \times N_t = 16 \times 8$ lattice



Interesting behaviour for all volumes: a peak for $n_{sb} = n_{ab}$?

The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs

SNFs with CNNs and n_{sb} = n_{ab} have a promising volume scaling at fixed training length The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs

SNFs with CNNs and $n_{sb} = n_{ab}$ have a promising volume scaling at fixed training length

SNFs vs. stochastic evolutions

- SNFs might be an even better method!
- trade-off: training for less MCMC updates

The common framework between Jarzynski's equality and NFs is now explicit General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs

SNFs with CNNs and $n_{sb} = n_{ab}$ have a promising volume scaling at fixed training length

SNFs vs. stochastic evolutions

- SNFs might be an even better method!
- trade-off: training for less MCMC updates

SNFs vs. normalizing flows

- improve scalability ?
- improve interpretability?

Thank you for your attention!

- Accept/Reject step is not differentiable, we test smooth function instead of Heaviside theta with poor results
- Metropolis update:

• Accept:
$$x' = x + \epsilon \rightarrow \frac{\partial x'}{\partial x} = 1$$

• Reject:
$$x' = x \rightarrow \frac{\partial x'}{\partial x} = 1$$

Heatbath update:

• Accept:
$$x' = \epsilon + F(x) \rightarrow \frac{\partial x'}{\partial x} = \frac{\partial F(x)}{\partial x}$$

• Reject:
$$x' = x \rightarrow \frac{\partial x'}{\partial x} = 1$$

- Annealed Importance Sampling [Neal; 1998]: procedure equivalent to JE. Very popular in ML community. Used in SNF paper [Wu et al.; 2020]
- \blacktriangleright AIS \rightarrow generalized in Sequential Monte Carlo (SMC) samplers. Also well known in ML.
- SNF idea reworked in CRAFT approach [Matthews et al.; 2022]
- [Vaikuntanathan and Jarzynski; 2011]: related approach with deterministic mappings on top of non-equilibrium transformations. No neural networks.