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Critical slowing down

The main numerical method to compute observables O in lattice field theories is
generate a (thermalized) Markov chain

ϕ(0) Pp→ ϕ(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

ϕ(t) Pp→ ϕ(t+1) Pp→ · · · → ϕ(t+n)︸ ︷︷ ︸
equilibrium

and then measure O on sampled equilibrium configurations

The configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → ϕ(t) → ϕ(t+1) → · · · → ϕ(t+n)

When a critical point is approached the autocorrelation diverges with the
correlation length of the system → critical slowing down → drastic increase of
computational cost

Elia Cellini (UniTo/INFN) Stochastic normalizing flows 8/8/2022 3



Critical slowing down

The main numerical method to compute observables O in lattice field theories is
generate a (thermalized) Markov chain

ϕ(0) Pp→ ϕ(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

ϕ(t) Pp→ ϕ(t+1) Pp→ · · · → ϕ(t+n)︸ ︷︷ ︸
equilibrium

and then measure O on sampled equilibrium configurations

The configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → ϕ(t) → ϕ(t+1) → · · · → ϕ(t+n)

When a critical point is approached the autocorrelation diverges with the
correlation length of the system → critical slowing down → drastic increase of
computational cost

Elia Cellini (UniTo/INFN) Stochastic normalizing flows 8/8/2022 3



Deep Generative Models: Normalizing Flows

How can we sample uncorrelated configurations?

One way is use Normalizing flows (NFs) [Rezende and Mohamed; 2015], a class of
deep generative models able to model the target p(ϕ) by mapping with some
tractable prior distribution q0(z)

▶ successfully applied in LFTs, in particular ϕ4 scalar field theory: [Albergo et

al.; 2019], [Kanwar et al.; 2020], [Nicoli et al.; 2020], [Boyda et al.; 2020],
[Del Debbio et al.; 2021],[Hackett et al.; 2021], [Yamauchi et al.; 2021],
[Foreman et al.; 2021], [de Haan et al.; 2021], [Albergo et al.; 2022],
[Lawrence et al.; 2022], [Gerdes et al.; 2022], [Pawlowski and Urban; 2022],
[Singha et al.; 2022], [Abbott et al.; 2022], [Vaitl et al.; 2022]
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Normalizing Flows: structure

NFs learn families of compositions of diffeomorphisms (i.e. invertible and
differentiable transformations):

yN = gθ(y0) = (gN ◦ · · · ◦ g1)(y0) y0 ∼ q0 θ : parameters

The maps gi are called bijectors

The generated distribution for yN is

qN(yN) = q0(g
−1
θ (yN))

∏
n

|det Jn(yn)|−1

Training of NFs is done by minimizing the Kullback-Leibler divergence:

DKL(qθ||p) =
∫

dϕqθ(ϕ) log
qθ(ϕ)

p(ϕ)
=

∫
dϕqθ(ϕ) log qθ(ϕ) + S [ϕ] + logZ
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Normalizing Flows: Partition function

A trained NF gθ can be used to compute directly the partition function of the
target:

Z =

∫
Dϕe−S[ϕ] =

∫
Dϕqθ(ϕ)

e−S[ϕ]

qθ(ϕ)
= Z0

∫
Dϕqθ(ϕ)w̃(ϕ) ≈ Z0⟨w̃⟩ϕ∼qθ

[Nicoli et al.; 2020]

Unnormalized weight:

w̃(ϕ) = exp
(
−
{
S [ϕ]− S0[g

−1
θ (ϕ)]− Q

})
=

exp(−S [ϕ])

Z0qθ(ϕ)

with
qθ(ϕ) = q0(g

−1
θ (ϕ)) exp(−Q) q0(y0) = exp(−S0[y0])/Z0︸ ︷︷ ︸

e.g. normal distribution
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Normalizing Flows: Observables

Observables can be computed using a reweighting procedure or a MCMC
algorithm:

Reweighting

⟨O⟩ϕ∼p =
1

Ẑ
⟨Ow̃⟩ϕ∼qθ

[Nicoli et al.; 2020]

Metropolis-Hastings

A(ϕ(i−1), ϕ′) = min

(
1,

qθ(ϕ)

p(ϕ)

p(ϕ′)

qθ(ϕ′)

)
[Albergo et al.; 2019]
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Normalizing Flows: Weakness

▶ Multimodal-distribution
Training procedure could ”pick” just one mode of the target

→ equivariant normalizing flows [Nicoli et al.; 2020], [Kanwar et al.;

2020],[de Haan et al.; 2021], [Gerdes et al.; 2022], [Abbott et al.; 2022], . . .

▶ Scalability
measurements of observables are statistically independent
not clear however how the training times scale when approaching the
continuum limit

comprehensive discussion in [Del Debbio et al.; 2021]
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Jarzynski’s equality and Stochastic Normalizing Flows



Jarzynski’s equality

Very general, intriguing relation in non-equilibrium statistical mechanics.
Free-energy differences (at equilibrium) directly calculated with an average over
non-equilibrium processes [Jarzynski; 1997]:

Z

Z0
=

〈
exp

(
−W

T

)〉
f
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Stochastic non-equilibrium evolutions

For an MCMC:

▶ the stochastic non-equilibrium evolution starts from a configuration sampled
from the initial distribution q0 and reaches the target (final) distribution p

q0 ≃ e−Sη0
Pη1→ e−Sη1

Pη2→ . . .
PηN→ e−SηN ≃ p

▶ the system evolves using regular Monte Carlo updates with transition
probability Pηn

▶ ηn is a protocol that interpolates the parameters of the theory between q0
and p

Along the process we compute the dimensionless work

W =
N−1∑
n=0

{Sηn+1 [ϕn]− Sηn [ϕn]}
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Stochastic non-equilibrium evolutions for LFTs

Applied in: [Chatelain et al.; 2006], [ Chatelain; 2007], [Hijar et al.; 2007], [Caselle
et al.; 2016], [Francesconi et al.; 2020]

SU(3) equation of state in 4 dimensions: [Caselle et al.; 2018]

Related to Annealed Importance Sampling [Neal; 1998]: procedure equivalent to
Jarzynski’s equality. Very popular in machine learning community.
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A common framework

We realized that Jarzynski’s relation is the same formula used to extract Z in NFs:

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼qθ = ⟨exp(−W )⟩f

General dimensionless “work” :

W (y0, . . . , yN) = S(yN)− S0(y0)− Q(y1, . . . , yN) = − ln w̃(ϕ)

while the “heat” Q depends on the type of flow:

normalizing flows

y0 → y1 = g1(y0) → · · · → yN

Q =
N−1∑
n=0

ln |det Jn(yn)|

DKL(qθ∥p) = −⟨ln w̃(ϕ)⟩ϕ∼qθ + ln
Z

Z0

stochastic non-equilibrium evolutions

y0
Pη1→ y1

Pη2→ . . .
PηN→ yN

Q =
N−1∑
n=0

Sηn+1(yn+1)− Sηn+1(yn)

DKL(q0Pf∥pPr) = ⟨W ⟩f + ln
Z

Z0
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Stochastic Normalizing flow

Stochastic Normalizing Flows (SNFs) (introduced in [Wu et al.; 2020])

y0 → g1(y0)
Pη1→ y1 → g2(y1)

Pη2→ . . .
PηN→ yN

Q =
N−1∑
n=0

Sηn+1(yn+1)− Sηn+1(gn(yn)) + ln |det Jn(yn)|

SNF idea reworked in CRAFT approach [Matthews et al.; 2022]
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Testing Stochastic Normalizing Flows



SNFs for the ϕ4 2d model

Typical toy model for tests: ϕ4 scalar field theory in 2 dimensions

S(ϕ) =
∑
x∈Λ

−2κ
∑
µ=0,1

ϕ(x)ϕ(x + µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4

target parameters κ = 0.2 and λ = 0.022 (as in [Nicoli et al.; 2020]): unbroken
symmetry phase

Elia Cellini (UniTo/INFN) Stochastic normalizing flows 8/8/2022 14



SNFs architecture

Stochastic evolutions

ηn interpolates between the prior (normal distribution is recovered with
κ = λ = 0) and target parameters

▶ linear protocol ηn
▶ heatbath algorithm for the stochastic updates

▶ nsb = # of stochastic updates

Normalizing Flow

▶ Bijector = affine coupling layers as describe in the RealNVP architecture
[Dinh et al.; 2016]

▶ each coupling layer has two convolutional neurons with 3× 3 kernel and 1
feature map

▶ Affine block = odd coupling layer + even coupling layer

▶ nab = # of affine blocks
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Testing SNFs

Goals

▶ can we train SNFs efficiently?

▶ can we improve both on NFs and on stochastic evolutions?

Using the Effective Sample Size as metric to evaluate architectures

ESS =
⟨w̃⟩2f
⟨w̃2⟩f

ESS = 1 → perfect training
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Comparing stochastic evolutions with (S)NFs on a Ns × Nt = 16× 8 lattice,
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Training length: 104 epochs for all volumes. Slowly-improving regime reached fast
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Test with different action parameters (unbroken symmetry phase) on a
Ns × Nt = 16× 8 lattice

Interesting behaviour for all volumes: a peak for nsb = nab?
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Conclusions

The common framework between Jarzynski’s equality and NFs is now explicit

General idea: use knowledge from non-equilibrium SM to create efficient SNFs

SNFs

▶ SNFs with CNNs and nsb = nab have a promising volume scaling at fixed
training length

SNFs vs. stochastic evolutions

▶ SNFs might be an even better method!

▶ trade-off: training for less MCMC updates

SNFs vs. normalizing flows

▶ improve scalability ?

▶ improve interpretability?
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Thank you for your attention!

Elia Cellini (UniTo/INFN) Stochastic normalizing flows 8/8/2022 21



SNF backpropagation

▶ Accept/Reject step is not differentiable, we test smooth function instead of
Heaviside theta with poor results

▶ Metropolis update:

▶ Accept: x ′ = x + ϵ → ∂x′

∂x
= 1

▶ Reject: x ′ = x → ∂x′

∂x
= 1

▶ Heatbath update:

▶ Accept: x ′ = ϵ+ F (x) → ∂x′

∂x
= ∂F (x)

∂x

▶ Reject: x ′ = x → ∂x′

∂x
= 1
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Related works

▶ Annealed Importance Sampling [Neal; 1998]: procedure equivalent to JE.
Very popular in ML community. Used in SNF paper [Wu et al.; 2020]

▶ AIS → generalized in Sequential Monte Carlo (SMC) samplers. Also well
known in ML.

▶ SNF idea reworked in CRAFT approach [Matthews et al.; 2022]

▶ [Vaikuntanathan and Jarzynski; 2011]: related approach with deterministic
mappings on top of non-equilibrium transformations. No neural networks.
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