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Multi-flavor Schwinger model

Lattice multi-flavor Schwinger model
Lattice formulation with Kogut-Susskind staggered fermions
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Kinetic part + Coupling to gauge field Mass term Chemical potential Electric energy

Gauss Law: Ln − Ln−1 = Qn =
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ϕ†n,f ϕn,f −

1
2

(
1 − (−1)n

)]

Use open boundary conditions and Gauss Law to integrate out the gauge field
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Multi-flavor Schwinger model

Lattice Hamiltonian formulation
Applying a residual gauge transformation allows for removing the link operators e iθn

Dimensionless formulation on the gauge invariant subspace
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Multi-flavor Schwinger model

Zero temperature phase structure
Analytical/numerical results are available for F = 2, 3

Phases are characterized by ∆Nf =
∑

n

(
ϕ†n,f ϕn,f − ϕ†n,kϕn,k

)
, f ̸= k

Phases with different ∆Nf first-order phase transitions
Sign problem for Monte Carlo simulations if

∑
f νf ̸= 0

F = 2

0 0.125 0.25 0.5
0

1

2

3

4
µf = 0, F = 3

R. Narayanan, Phys. Rev. D , 86, 125008 (2012)
R. Lohmayer,R. Narayanan, Phys. Rev. D 88, 105030 (2013)

M.C. Bañuls et al., Phys. Rev. Lett. 118, 071601 (2017)
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Variational Quantum Eigensolver

Variational Quantum Eigensolver (VQE)
Hybrid quantum-classical algorithm for finding ground states of Hamiltonians W

Define the cost function to be minimized

C(θ⃗) = ⟨ψ(θ⃗)|W |ψ(θ⃗)⟩

Realize a parametric ansatz |ψ(θ⃗)⟩ by a parametric quantum circuit
Measure the cost function C(θ⃗) on the quantum device
Optimize the parameters classically to minimize C(θ⃗)

A. Peruzzo et al., Nat. Commun. 5, 1 (2014)
J. R. McClean et al., New J. Phys. 18, 023023 (2016)
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Variational Quantum Eigensolver

VQE approach for the Schwinger model with 3 fermion flavors
Translate the fermions to spins using a Jordan-Wigner transformation
⇒ Spin Hamiltonian with long-range interactions

Incorporate the symmetries of the model
▶ Conservation of the total charge

∑
n Qn

▶ For antisymmetric chemical potentials ν1 = −ν3,ν2 = 0:
flipping all spins and reflecting around the center of the system
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Variational Quantum Eigensolver

Ansatz suitable for the Schwinger model with 3 flavors of fermions

Use a layered structure consisting of
▶ Entangling gates

UXY (θ) = exp
(
−i θ2 (XX + YY )

)
▶ Single-qubit rotations RZ (θ) = exp

(
−i θ2Z

)
Enforcing the symmetries for ν1 = −ν3,
ν2 = 0: special choice of parameters within
one layer
▶ Entangling gates: θk = θ3N−k ,

k = 1, ...,N/2 − 1
▶ Single-qubit rotations: θk = −θ3N−k+1 ,

k = 1, ...,N/2 − 1

N = 2

For the general case we choose all parameters independently
Initial state: Neel state for the sites

|ψ0⟩ = |111⟩ ⊗ |000⟩ ⊗ |111⟩ ⊗ |000⟩ ...
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Preliminary results

Classical simulation of the VQE
Simulate the VQE classically for N = 2, 4, 6 corresponding to 6, 12, 18 qubits
Assume a perfect quantum computer (no errors, no shot noise)
Use up to 5 layers of the ansatz

Explore various regimes to see if the ansatz allows for capturing the physics
1 Antisymmetric case for vanishing mass: ν1 = −ν3, ν2 = 0, µf = 0

⇒ Analytical results available
2 Antisymmetric case for nonvanishing mass: ν1 = −ν3, ν2 = 0, µf ̸= 0

⇒ Accessible with Monte Carlo methods
3 Nonvanishing sum of chemical potentials: ν1 + ν2 + ν3 ̸= 0

⇒ Sign problem for Monte Carlo methods
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Classical simulation for vanishing bare fermion mass and ν1 = −ν3, ν2 = 0
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Classical simulation of the VQE for x = 16 and vanishing bare fermion mass µf = 0

N = 2

N = 4
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Classical simulation of the VQE for x = 16 and vanishing bare fermion mass µf = 0

N = 6

Good agreement of the VQS results with the exact solution for most cases
VQS wave function has high overlap with the exact one for most cases
Characteristic discontinuities in ∆N3 indicate the first-order phase transitions
Outliers can be well identified by the experimentally accessible observables energy
and ∆N3 values
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Classical simulation for µf ̸= 0 and ν1 = −ν3, ν2 = 0

?
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Preliminary results

Classical simulation of the VQE for x = 16 and bare fermion mass µf = 0.8

N = 6

Similar results as for vanishing bare fermion mass
Good agreement of the VQS results and high overlap of the VQS wave function
with the exact solution for most cases
Characteristic discontinuities in ∆N3 indicate the first-order phase transitions
Outliers can again be well identified by the energy and ∆N3 values
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Preliminary results

Classical simulation of the VQE for x = 16, vanishing bare fermion mass, and ν2 = 3

N = 4

Ansatz also works for the case ν2 ̸= 0 where the symmetry is no longer present and
Monte Carlo encounters a sign problem
More parameters in the ansatz make the classical optimization more challenging,
nevertheless good agreement with exact results
Some of the outliers might still be improved by running the VQE for a larger
number of iterations



dummy

Preliminary results

Classical simulation of the VQE for x = 16, vanishing bare fermion mass, and ν2 = 3

N = 4

Ansatz also works for the case ν2 ̸= 0 where the symmetry is no longer present and
Monte Carlo encounters a sign problem
More parameters in the ansatz make the classical optimization more challenging,
nevertheless good agreement with exact results
Some of the outliers might still be improved by running the VQE for a larger
number of iterations



dummy

4.

1 Multi-flavor Schwinger model on the lattice

2 Variational Quantum Eigensolver

3 Preliminary results

4 Summary & Outlook



dummy

Summary & Outlook

Summary
Ansatz circuit for VQE allows for capturing the relevant physics of the model
Good results in regimes where Monte Carlo approach suffers from the sign problem
Classical simulations demonstrate high overlap with exact solution
Symmetries of the model for antisymmetric choice of the chemical potentials can
be easily incorporated in the ansatz to reduce the number of parameters

Outlook
Explore improved optimization techniques
Study the effects of noise (shot noise, gate errors, measurement errors)
Implementation on quantum hardware
Ansatz circuit is suitable for measurement-based quantum computing
⇒ Opens up the possibility for implementation on alternative platforms
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Thank you for your attention!

Questions?
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Appendix A. Measurement-based quantum computing

Measurement-based quantum computing
Equivalent to the circuit model
Unitary gate operations are implemented via single-qubit measurements
Based on the single-qubit teleportation protocol

|ψ⟩ • RZ (θ) H m

|+⟩ • XmHRZ (θ) |ψ⟩

Measuring the upper qubit in the basis |θ±⟩ = RZ (−θ) |±⟩ realizes the operation
HRZ (θ) |ψ⟩ in the lower qubit
Pauli operator is depended on the measurement result and has to be compensated
at the end
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Appendix A. Measurement-based quantum computing

Measurement-based quantum computing
Successive application allows for realizing a sequence of single qubit gates

|ψ⟩ •
|α±⟩

m

|+⟩ • •
|β±⟩

n

|+⟩ • X nHRZ (β)X
mHRZ (α)

In order to commute the unwanted Pauli gates to the left an adaptive choice of
sign in the next measurement basis is required

X nHRZ (β)X
mHRZ (α) = X nZm HRZ ((−1)mβ)HRz(α) |ψ⟩

Notation as a graph
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Appendix A. Measurement-based quantum computing

Measurement-based quantum computing
Implementing an algorithm

1 Rewrite Unitary operations in the gate set {RZ (θ),H,CZ}
2 Express these unitaries using the teleportation protocol
3 Create the graph representation

Graph representation of a VQE layer for N = 2
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