Overcoming exponential volume scaling in quantum simulations of lattice gauge theories

Speaker: Christopher Kane ${ }^{1}$
In collaboration with: Dorota Grabowska², Benjamin Nachman ${ }^{3}$, Christian Bauer ${ }^{3}$
Lattice 2022
Date: August 9, 2022
${ }^{1}$ University of Arizona
${ }^{2}$ CERN
${ }^{3}$ Lawrence Berkeley National Lab

Scaling of Gate Count for Simulations of pure $\mathbf{U (1)}$ gauge theory in $2+1$ Dimensions using Suzuki-Trotter methods

Main Take-Away Point 1: Naive implementation using only physical states has exponential volume scaling in gate count

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied change of operator basis

> (for more details: D. Grabowska, C. Kane, B. Nachman, C. Bauer, arXiv:[2208.03333])

Gauge Invariance and Gauss' Law

Continuum theory: Integral over electric and magnetic fields

$$
H=\int d^{2} x\left[\vec{E}(x)^{2}+B(x)\right]
$$

Need to impose additional constraints

$$
\underbrace{\vec{\nabla} \cdot \vec{E}(x)=0}_{\text {constraint }}, \quad \underbrace{\nabla \cdot B(x)=0}_{\text {constraint }}
$$

Hilbert Space

Lattice U(1) Gauge Theory

Hilbert space does allow gauge violating transitions

Lattice U(1) Gauge Theory

Hilbert space does allow gauge violating transitions

Dual Basis

Hilbert space does not allow charge violating transitions

Dual Basis (Rotor) Formulation

General idea: Work with "gauge-redundancy free" formulation

Dual Basis

- Work with plaquette variables: electric rotors and magnetic plaquettes
- Rotors R defined through $\vec{E}=\vec{\nabla} \times R$
\rightarrow Gauss' law automatically satisfied
- $\left[R_{p}, B_{p^{\prime}}\right]=i \delta_{p p^{\prime}}$
- Formulation works for all values of the gauge coupling

$$
H=\underbrace{2 g^{2} \sum_{p=1}^{N_{x} N_{y}}\left(\vec{\nabla} \times R_{p}\right)^{2}}_{H_{E}}+\underbrace{\frac{1}{g^{2}} \sum_{p=1}^{N_{x} N_{y}} \cos \left(B_{p}\right)}_{H_{B}}
$$

Magnetic Plaquette

Global Constraints in Rotor Formulation

General idea: Locally imposed constraints automatically satisfied, but not global

Seeing the global constraint:

- Basis is over-complete: number of DOF's in rotor formulation too large *
- Product of plaquettes around closed surface must be identity
\rightarrow lattice version of $\int d^{2} x B=0$

Global Constraints in Rotor Formulation

General idea: Locally imposed constraints automatically satisfied, but not global

Seeing the global constraint:

- Basis is over-complete: number of DOF's in rotor formulation too large *
- Product of plaquettes around closed surface must be identity \rightarrow lattice version of $\int d^{2} \times B=0$

Work-around: remove redundant DOF by enforcing constraint

$$
R_{N_{x} N_{y}}=0, \quad B_{N_{x} N_{y}}=-\sum_{p=1}^{N_{x} N_{y}-1} B_{p}
$$

Magnetic Hamiltonian becomes (up to overall constant)

$$
H_{B}=-\frac{1}{a g^{2}}\left[\sum_{p=1}^{N_{p}} \cos B_{p}+\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right], \quad N_{p} \equiv N_{x} N_{y}-1
$$

Time evolution strategy + Digitization Scheme

Suzuki-Trotter: $U(t)=\left(e^{-i \delta t H_{E}} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
1 Implement diagonal operator $e^{-i \delta t H_{B}}$
2 Switch to electric basis using Fourier transform
3 Implement diagonal operator $e^{-i \delta t H_{E}}$

$$
\text { (remember } \left.\left[R_{p}, B_{p^{\prime}}\right]=i \delta_{p p^{\prime}}\right)
$$

4 Switch to magnetic basis using Fourier transform

Time evolution strategy + Digitization Scheme

Suzuki-Trotter: $U(t)=\left(e^{-i \delta t H_{E}} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
1 Implement diagonal operator $e^{-i \delta t H_{B}}$
2 Switch to electric basis using Fourier transform
3 Implement diagonal operator $e^{-i \delta t H_{E}}$

4 Switch to magnetic basis using Fourier transform

Digitization of operators R_{p} / B_{p} [C. Bauer, D. Grabowska, arXiv: 2111.08015]

- Diagonal operators with evenly spaced eigenvalues
- Each lattice site represented by n_{q} qubits
- $b_{\text {max }}$ function of coupling to minimize digitization errors $\rightarrow n_{q}=3$ achieves per-mille accuracy of low-lying spectrum

$$
\begin{aligned}
& R=\frac{r_{\max }}{2^{n_{q}}-1} \sum_{j=1}^{n_{q}} 2^{j} \sigma_{j}^{z} \\
& B=\frac{b_{\max }}{2^{n_{q}}-1} \sum_{j=1}^{n_{q}} 2^{j} \sigma_{j}^{z}
\end{aligned}
$$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E} \mathrm{FT}} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Magnetic Hamiltonian:

- $B \sim \sum_{i=1}^{n_{q}} \sigma_{i}^{z}$

$$
\exp \left(i H_{B}\right) \sim \exp \left(i \sum_{p=1}^{N_{p}} \cos B_{p}\right) \times \exp \left(i \cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right)
$$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Magnetic Hamiltonian:

- $B \sim \sum_{i=1}^{n_{q}} \sigma_{i}^{z}$
- $\cos \left(B_{p}\right) \sim \cos \left(\sum_{i=1}^{n_{q}} \sigma_{i}^{z}\right)$ using Taylor series \rightarrow sum over $2^{n_{q}}$ Pauli terms

$$
\exp \left(i H_{B}\right) \sim \exp \left(i \sum_{p=1}^{N_{p}} \cos B_{p}\right) \times \exp \left(i \cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right)
$$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Magnetic Hamiltonian:

- $B \sim \sum_{i=1}^{n_{q}} \sigma_{i}^{z}$
- $\cos \left(B_{p}\right) \sim \cos \left(\sum_{i=1}^{n_{q}} \sigma_{i}^{z}\right)$ using Taylor series \rightarrow sum over $2^{n_{q}}$ Pauli terms

$$
\exp \left(i H_{B}\right) \sim \underbrace{\exp \left(i \sum_{p=1}^{N_{p}} \cos B_{p}\right)}_{\mathcal{O}\left(N_{p} 2^{n q}\right) \text { gates }} \times \exp \left(i \cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right)
$$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Magnetic Hamiltonian:

- $B \sim \sum_{i=1}^{n_{q}} \sigma_{i}^{z}$
- $\cos \left(B_{p}\right) \sim \cos \left(\sum_{i=1}^{n_{q}} \sigma_{i}^{z}\right)$ using Taylor series \rightarrow sum over $2^{n_{q}}$ Pauli terms
- $\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)$ using Taylor series \rightarrow sum over $2^{n_{q} N_{p}}$ Pauli terms

$$
\exp \left(i H_{B}\right) \sim \underbrace{\exp \left(i \sum_{p=1}^{N_{p}} \cos B_{p}\right)}_{\mathcal{O}\left(N_{p} 2^{n q}\right) \text { gates }} \times \exp \left(i \cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right)
$$

Gate Count for Suzuki-Trotter methods

Suzuki-Trotter: $U(t)=\left(\mathrm{FT}^{\dagger} e^{-i \delta t H_{E}} \mathrm{FT} e^{-i \delta t H_{B}}\right)^{N_{\text {steps }}}+\mathcal{O}(\delta t), \quad \delta t \equiv t / N_{\text {steps }}$
Fourier Transform: Using Quantum FT algorithm $\rightarrow \mathrm{FT} / \mathrm{FT}^{\dagger}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$

Electric Hamiltonian:

- Bilinear structure, $R^{2} \sim \sum_{i, j=1}^{n_{q}} \sigma_{i}^{z} \sigma_{j}^{z} \rightarrow e^{-i \delta t H_{E}}$ requires $\mathcal{O}\left(n_{q}^{2} N_{p}\right)$ gates

Magnetic Hamiltonian:

- $B \sim \sum_{i=1}^{n_{q}} \sigma_{i}^{z}$
- $\cos \left(B_{p}\right) \sim \cos \left(\sum_{i=1}^{n_{q}} \sigma_{i}^{z}\right)$ using Taylor series \rightarrow sum over $2^{n_{q}}$ Pauli terms
- $\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)$ using Taylor series \rightarrow sum over $2^{n_{q} N_{p}}$ Pauli terms

$$
\exp \left(i H_{B}\right) \sim \underbrace{\exp \left(i \sum_{p=1}^{N_{p}} \cos B_{p}\right)}_{\mathcal{O}\left(N_{p} 2^{n_{q}}\right) \text { gates }} \times \exp (i \underbrace{\left.\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)\right)}_{\mathcal{O}\left(2^{n_{q} N_{p}}\right) \text { gates }}
$$

Exponential volume scaling

$$
H_{B} \sim \underbrace{\sum_{p=1}^{N_{p}} \cos B_{p}}_{\mathcal{O}\left(N_{p} 2^{n_{q}}\right) \text { gates }}+\underbrace{\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)}_{\mathcal{O}\left(2^{n_{q} N_{p}}\right) \text { gates }}
$$

Exponential volume scaling $\mathcal{O}\left(2^{n_{q} N_{p}}\right)$ comes from maximally coupled term \rightarrow simulating realistic values of $N_{p} \sim 400$ requires $\mathcal{O}\left(2^{400 n_{q}}\right)$ gates

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

Basis Change

 $B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}$$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

Basis Change

 $B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}$$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

Basis Change

 $B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}$$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

$$
\begin{aligned}
& \text { Basis Change } \\
& B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}
\end{aligned}
$$

$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

$$
\begin{aligned}
& \text { Basis Change } \\
& B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}
\end{aligned}
$$

$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow Maximally non-local term now requires $N_{p}{ }^{n_{q}}$ gates
W_{d} : "Weaved" matrix of dimension d

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

$$
\begin{aligned}
& \text { Basis Change } \\
& B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}
\end{aligned}
$$

$\mathcal{W}=\left(\begin{array}{cccc}W_{d_{(1)}} & 0 & 0 & 0 \\ 0 & W_{d_{(2)}} & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}\end{array}\right)$
W_{d} : "Weaved" matrix of dimension d

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow Maximally non-local term now requires $N_{p}{ }^{n_{q}}$ gates
- Each row of W_{d} has no more than $\left\lceil\log _{2} d\right\rceil+1$ non-zero entries

Reducing degree of coupling

Requirement: perform orthonormal operator basis change such that no single term in the Hamiltonian acts on more than $\mathcal{O}\left(\log _{2} N_{p}\right)$ qubits

$$
\begin{aligned}
& \text { Basis Change } \\
& B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} B_{p^{\prime}}
\end{aligned}
$$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{d_{(1)}} & 0 & 0 & 0 \\
0 & W_{d_{(2)}} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & W_{d_{\left(N_{s}\right)}}
\end{array}\right)
$$

W_{d} : "Weaved" matrix of dimension d

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow Maximally non-local term now requires $N_{p}{ }^{n_{q}}$ gates
- Each row of W_{d} has no more than $\left\lceil\log _{2} d\right\rceil+1$ non-zero entries
\rightarrow Previously local terms now require $\left(N_{p} / \log _{2} N_{p}\right)^{n_{q}}$ gates

Breaking of exponential volume scaling

Implementing new "Weaved" magnetic Hamiltonian requires $\mathcal{O}\left(N_{p}{ }^{n_{q}}\right)$ gates
(n_{q} number of qubits used to represent each lattice site, volume independent)

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
\rightarrow choose $N_{s}=4$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{d_{1}} & 0 & 0 & 0 \\
0 & W_{d_{2}} & 0 & 0 \\
0 & 0 & W_{d_{3}} & 0 \\
0 & 0 & 0 & W_{d_{4}}
\end{array}\right)
$$

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks \rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{d_{1}} & 0 & 0 & 0 \\
0 & W_{d_{2}} & 0 & 0 \\
0 & 0 & W_{d_{3}} & 0 \\
0 & 0 & 0 & W_{d_{4}}
\end{array}\right)
$$

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks
\rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension
$d \sim N_{p} / \log _{2} N_{p}$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{4} & 0 & 0 & 0 \\
0 & W_{4} & 0 & 0 \\
0 & 0 & W_{4} & 0 \\
0 & 0 & 0 & W_{4}
\end{array}\right)
$$

\rightarrow choose $d=4$ for all $W_{d_{(i)}}$'s

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks \rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{4} & 0 & 0 & 0 \\
0 & W_{4} & 0 & 0 \\
0 & 0 & W_{4} & 0 \\
0 & 0 & 0 & W_{4}
\end{array}\right)
$$

\rightarrow choose $d=4$ for all $W_{d_{(i)}}$'s

- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks \rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension
$d \sim N_{p} / \log _{2} N_{p}$
\rightarrow choose $d=4$ for all $W_{d_{(i)}}$'s
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow set first column to $\frac{1}{2}$

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{4} & 0 & 0 & 0 \\
0 & W_{4} & 0 & 0 \\
0 & 0 & W_{4} & 0 \\
0 & 0 & 0 & W_{4}
\end{array}\right)
$$

$$
W_{4}=\left(\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right.
$$

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks \rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension $d \sim N_{p} / \log _{2} N_{p}$
\rightarrow choose $d=4$ for all $W_{d_{(i)}}$'s
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow set first column to $\frac{1}{2}$
- Each row of W_{d} has no more than $\left\lceil\log _{2} d\right\rceil+1$ non-zero entries

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{4} & 0 & 0 & 0 \\
0 & W_{4} & 0 & 0 \\
0 & 0 & W_{4} & 0 \\
0 & 0 & 0 & W_{4}
\end{array}\right)
$$

$$
W_{4}=\left(\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right.
$$

Basis change example: $N_{p}=16$

Properties of \mathcal{W} and W_{d}

- \mathcal{W} is block diagonal with $N_{s} \sim \log _{2} N_{p}$ sub-blocks \rightarrow choose $N_{s}=4$
- Each sub-block W_{d} has dimension
$d \sim N_{p} / \log _{2} N_{p}$
\rightarrow choose $d=4$ for all $W_{d_{(i)}}$'s
- First column of any W_{d} has entries all equal to $1 / \sqrt{d}$
\rightarrow set first column to $\frac{1}{2}$
- Each row of W_{d} has no more than $\left\lceil\log _{2} d\right\rceil+1$ non-zero entries
\rightarrow max number of non-zero entries in a given row is 3

$$
\mathcal{W}=\left(\begin{array}{cccc}
W_{4} & 0 & 0 & 0 \\
0 & W_{4} & 0 & 0 \\
0 & 0 & W_{4} & 0 \\
0 & 0 & 0 & W_{4}
\end{array}\right)
$$

$$
W_{4}=\left(\begin{array}{cccc}
\frac{1}{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Basis change example: $N_{p}=16$

	\cos	cos	$\left.B_{p}\right)$	tically	\cos	$3_{p}+c c$	$\left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right)$
. ${ }^{\text {7 }}$. \mathcal{O}_{6}	. \mathcal{O}_{4}	. \mathcal{O}_{3}	. ${ }^{\text {7 }}$. ${ }^{6}$. ${ }^{4}$. \mathcal{O}_{3}
. ${ }^{(} 8$.${ }^{O_{5}}$. ${ }^{1}$. \mathcal{O}_{2}	. \mathcal{O}_{8}	. \mathcal{O}_{5}	. \mathcal{O}_{1}	. ${ }^{2}$
.${ }^{(10}$. ${ }^{(} 9$. \mathcal{O}_{13}	. \mathcal{O}_{16}	. \mathcal{O}_{10}	. ${ }^{9}$. ${ }^{13}$. \mathcal{O}_{16}
. ${ }^{11}$. \mathcal{O}_{12}	.${ }^{(14}$.$^{(15}$. ${ }^{(11}$. \mathcal{O}_{12}	. ${ }^{14}$. \mathcal{O}_{15}

Basis change example: $N_{p}=16$

$$
H_{B} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos B_{p}}+\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right) \quad \longrightarrow \quad H_{B}^{\text {(schematically) }} \sim \sum_{p=1}^{N_{p}} \cos \sum_{p=1}^{3} \tilde{B}_{p}+\cos \left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right)
$$

---	--	(1)	
	101	101	
\mathcal{O}_{7}	\mathcal{O}_{6}	\mathcal{O}_{4}	\mathcal{O}_{3}
$1 \cdot 1$	$1 \cdot 1$	$1{ }^{\circ}$ -	$1 \cdot 1$
-----1	1-----1	-----1	---1

\rightarrow

$$
\begin{array}{lll}
._{7} \quad . \mathcal{O}_{6} & .^{\mathcal{O}_{4}}
\end{array}
$$

$$
. \mathcal{O}_{10}
$$

.${ }^{\mathcal{O}_{13}}$

$$
. \mathcal{O}_{16}
$$

$$
.^{\mathcal{O}_{11}}
$$

$$
. \mathcal{O}_{12}
$$

$$
.{ }^{\mathcal{O}_{14}}
$$

$$
.^{\mathcal{O}_{15}}
$$

Basis change example: $N_{p}=16$

$$
\begin{aligned}
& H_{B} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos B_{p}}+\overbrace{\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)} \quad \begin{array}{c}
H_{B}^{\text {(schemedted }}
\end{array} \sum_{p=1}^{N_{p}} \cos \sum_{p=1}^{3} \tilde{B}_{p}+\cos \left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right) \\
& B_{p} \rightarrow \mathcal{W}_{p p^{\prime}} \tilde{B}_{p^{\prime}}
\end{aligned}
$$

Basis change example: $N_{p}=16$

$$
H_{B} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos B_{p}}+\overbrace{\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)} \quad \begin{gathered}
\text { (schematically) } \\
H_{B}^{\text {Heveaded }}
\end{gathered} \sum_{p=1}^{N_{p}} \cos \sum_{p=1}^{3} \tilde{B}_{p}+\cos \left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right)
$$

Basis change example: $N_{p}=16$

$\operatorname{Gates}\left(n_{q}=2\right) \sim \mathcal{O}\left(2^{n_{q} N_{p}}\right) \sim \mathcal{O}\left(2^{32}\right) \sim \mathcal{O}\left(10^{9}\right)$

Basis change example: $N_{p}=16$

$$
H_{B} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos B_{p}}+\overbrace{\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)}^{\text {(schematically) }} \quad H_{B}^{\text {weaved }^{N_{p}} \sim \overbrace{\sum_{p=1}}^{\cos \sum_{p=1}^{3} \tilde{B}_{p}+} \overbrace{\cos \left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right)}{ }^{2})}
$$

$\operatorname{Gates}\left(n_{q}=2\right) \sim \mathcal{O}\left(2^{n_{q} N_{p}}\right) \sim \mathcal{O}\left(2^{32}\right) \sim \mathcal{O}\left(10^{9}\right)$

Basis change example: $N_{p}=16$

$$
H_{B} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos B_{p}}+\overbrace{\cos \left(\sum_{p=1}^{N_{p}} B_{p}\right)}^{\text {(schematically) }} \quad \rightarrow \quad H_{B}^{\text {weaved }} \sim \sum_{p=1}^{N_{p}} \overbrace{\cos \sum_{p=1}^{3} \tilde{B}_{p}+}+\overbrace{\cos \left(\sum_{p=1}^{4} \tilde{B}_{p^{\prime}}\right)}
$$

Conslusions

Quantum computers have a fundamentally different computational strategy and provide novel probes of fundamental questions in particle and nuclear physics

It is important to carefully study the scaling of quantum computing resources for simulating gauge theories on quantum computers

Main Take-Away Point 1: Naive implementation using only physical states has exponential volume scaling in gate count

Main Take-Away Point 2: Scaling can be made polynomial with carefully applied change of operator basis

> (for more details: D. Grabowska, C. Kane, B. Nachman, C. Bauer, arXiv:[2208.03333]) (Implementation of this method is in progress)

Backup slides

Diagonal operators on a quantum comptuer

Implementing n qubit diagonal operators without ancillary qubits $\rightarrow 2^{n+1}-3$ gates

Certain class of simple operators require less than $2^{n+1}-3$ gates [J. Welch, et. al., arXiv:1306.3991]

