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Motivation: Hamiltonian Formulation of Lattice Gauge Theories

• Hamiltonian for a non-Abelian Lattice Gauge Theory

H =
1

2

∑
x

∑
a

(
L2
a(x) +R2

a(x)
)
+
∑
x

Trcolour ReUp(x)

suppressing coefficients.
[Kogut and Susskind, Phys.Rev.D 11 (1975)]

• requires discretisation in the group for implementation in practice
• wanted: most efficient formulation

[see e.g. Davoudi et al. Phys.Rev.D 104 (2021) 7, 074505]

• we explore here a basis where the Û are diagonal
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Linear Discretisation

• we have proposed a list of partitionings
of SU(2)

• generalisable to SU(3)
• asymptotically isotropic in the group
• freely adjustable number of elements

→ see the talk of Timo Jakobs
[T. Hartung et al., Eur.Phys.J.C 82 (2022) 3, 237, arXiv:2201.09625]

• Here: so-called linear partitioning:
• control parameter M ∈ N, M → ∞

continuous group
• mean distance between elements

∝ 1/M
• number of elements grow roughly like

M3
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Hilbert Space and Operators

• states |U⟩ ∈ H in Hilbert space H
• SU(2) matrix parametrised by three real valued parameters x0, x1, x2(

x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
∈ SU(2) , x2

3 = 1−
2∑

i=0

x2
i

• define operators x̂i with

x̂i |U⟩ = xi|U⟩ , and e.g. û00 = x̂0 + ix̂1

• this defines the action

Û |U⟩ =
(
û00 û01

û10 û11

)
|U⟩

• with a partitioning H is finite dimensional
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Commutation Relations

• need to find operators La and Ra as follows

[L̂a, Ûjl] = (ta)ji Ûil , [R̂a, Ûjl] = Ûji (ta)il

with ta the generators of SU(2), a = 1, 2, 3

• and
[L̂a, L̂b] = −2 i ϵabc L̂c

• in the continuum this is fulfilled by the operators

La f(U) = −i
d

dα
f
(
eiαta U

)
|α=0 , Ra f(U) = −i

d

dα
f
(
U eiαta

)
|α=0

• how to construct L̂a and R̂a for the discrete case?
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Discretisation of L̂a

• in direction a use the finite difference

1

α

(
eiαta U − U)

)
=

1

α

(
U + αi taU − U +O(α2)

)
= i taU +O(α) .

• however, eiαta U not neccessarily in our set of elements!

• need to construct the directional derivative from existing neighbours

⇒ choose three neighbors and project onto the desired direction
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Discrete Directional Derivative L̂a

1 find 3 neighbours Vi of element Uj , then there are 3 Wi ∈ SU(2)

Vi(j) = Wi U ⇔ Wi = ViU
−1
j = exp(iαi

btb)

2 solve
ea = γ · (α1α2α3)

for vector γ with ea unit vector in direction a

3 the elements of the discrete operator L̂a are then given by

(La)j #Vi(j) = γi , (La)jj = −
∑
i

γi

with #Vi(j) the index of neighbour Vi(j)

C. Urbach: Defining Canonical Momenta for Discretised SU(2) Gauge Fields page 7/13



Proof

This leads to the desired result up to O(α)

−

(
n∑

i=1

γi

)
Uj + γ1V1 + γ2V2 + γ3V3

= −
(∑

γi

)
Uj + γ1W1Uj + γ2W2Uj + γ3W3Uj

≈

(
−
∑
i

γi + γ1(1 + iα1
btb) + γ2(1 + iα2

btb) + γ3(1 + iα3
btb)

)
Uj

= i
(
γ1α

1
btb + γ2α

2
btb + γ3α

3
btb
)
Uj

= itaUj .
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Numerical Test of Commutation Relations

• we compute first

z =
(
[L̂a, Ûjl]− (ta)jiÛil

)
· v(k⃗)

with v(k⃗) a Fourier mode in the algebra
• for each element expected convergence

is O(α)

• thus compute

r =
1

N

∑
i

|zi|

with N the number of elements
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Numerical Test of Commutation Relations

• similarly

z = ([La, Lb] + 2i ϵabc Lc) · v(k⃗)

• and again

r =
1

N

∑
i

|zi|

• convergence slower in 1/M
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Spectrum of the Free Theory

Free Hamiltonian
H =

1

2

∑
a

(
L2
a +R2

a

)
• the discrete La and Ra no longer hermitian

• we resort to L† · L instead

• we expect smallest deviations for small eigenvalues

• continuum spectrum
λℓ = ℓ(ℓ+ 1) , (2ℓ+ 1)2 degenerate

with ℓ = 0, 1, . . .
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Spectrum of the Free Theory

• numerically determine lowest lying
spectrum

• agreement not breathtaking...

• possible reasons:
• slow convergence

• not consistently defined forward
derivative
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Summary

• work in a basis where Û is diagonal

• defined discretised operators La, Ra based on SU(2) partitionings

• commutation relations converge in the SU(2) limit

• the free spectrum is not yet reproduced

C. Urbach: Defining Canonical Momenta for Discretised SU(2) Gauge Fields page 13/13


