Defining Canonical Momenta for Discretised SU(2) Gauge Fields

Marco Garofalo, Tobias Hartung, Karl Jansen, Johann Ostmeyer, Simone Romiti, Carsten Urbach

HISKP, University of Bonn

Lattice 22, Bonn, August 2022

Motivation: Hamiltonian Formulation of Lattice Gauge Theories

Hamiltonian for a non-Abelian Lattice Gauge Theory

$$H = \frac{1}{2} \sum_{x} \sum_{a} \left(L_a^2(x) + R_a^2(x) \right) + \sum_{x} \operatorname{Tr}_{\text{colour}} \operatorname{Re} U_p(x)$$

suppressing coefficients.

[Kogut and Susskind, Phys.Rev.D 11 (1975)]

- requires discretisation in the group for implementation in practice
- wanted: most efficient formulation

[see e.g. Davoudi et al. Phys.Rev.D 104 (2021) 7, 074505]

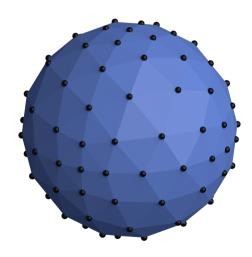
• we explore here a basis where the \hat{U} are diagonal

Linear Discretisation

- we have proposed a list of partitionings of SU(2)
 - generalisable to SU(3)
 - asymptotically isotropic in the group
 - freely adjustable number of elements
- → see the talk of Timo Jakobs

IT. Hartung et al., Eur.Phys.J.C 82 (2022) 3, 237, arXiv:2201.09625]

- Here: so-called linear partitioning:
 - control parameter $M \in \mathbb{N}, M \to \infty$ continuous group
 - mean distance between elements $\propto 1/M$
 - number of elements grow roughly like M^3



Hilbert Space and Operators

- states $|U\rangle \in \mathcal{H}$ in Hilbert space \mathcal{H}
- SU(2) matrix parametrised by three real valued parameters x_0, x_1, x_2

$$\begin{pmatrix} x_0 + ix_1 & x_2 + ix_3 \\ -x_2 + ix_3 & x_0 - ix_1 \end{pmatrix} \in SU(2), \qquad x_3^2 = 1 - \sum_{i=0}^2 x_i^2$$

• define operators \hat{x}_i with

$$\hat{x}_i |U\rangle = x_i |U\rangle$$
, and e.g. $\hat{u}_{00} = \hat{x}_0 + i\hat{x}_1$

this defines the action

$$\hat{U}|U\rangle = \begin{pmatrix} \hat{u}_{00} & \hat{u}_{01} \\ \hat{u}_{10} & \hat{u}_{11} \end{pmatrix} |U\rangle$$

ullet with a partitioning ${\cal H}$ is finite dimensional

Commutation Relations

• need to find operators L_a and R_a as follows

$$[\hat{L}_a, \hat{U}_{jl}] = (t_a)_{ji} \, \hat{U}_{il} \,, \qquad [\hat{R}_a, \hat{U}_{jl}] = \hat{U}_{ji} \, (t_a)_{il}$$

with t_a the generators of SU(2), a = 1, 2, 3

and

$$[\hat{L}_a, \hat{L}_b] = -2 i \epsilon_{abc} \, \hat{L}_c$$

• in the continuum this is fulfilled by the operators

$$L_a f(U) = -i \frac{\mathrm{d}}{\mathrm{d}\alpha} f\left(e^{\mathrm{i}\alpha t_a} U\right)|_{\alpha=0}, \qquad R_a f(U) = -i \frac{\mathrm{d}}{\mathrm{d}\alpha} f\left(U e^{\mathrm{i}\alpha t_a}\right)|_{\alpha=0}$$

• how to construct \hat{L}_a and \hat{R}_a for the discrete case?

Discretisation of \hat{L}_a

in direction a use the finite difference

$$\frac{1}{\alpha} \left(e^{i\alpha t_a} U - U \right) = \frac{1}{\alpha} \left(U + \alpha i t_a U - U + O(\alpha^2) \right)$$
$$= i t_a U + O(\alpha).$$

- however, $e^{i\alpha t_a}$ U not neccessarily in our set of elements!
- need to construct the directional derivative from existing neighbours
- ⇒ choose three neighbors and project onto the desired direction

Discrete Directional Derivative \hat{L}_a

1 find 3 neighbours V_i of element U_j , then there are 3 $W_i \in SU(2)$

$$V_i(j) = W_i U$$
 \Leftrightarrow $W_i = V_i U_j^{-1} = \exp(\mathrm{i} \alpha_b^i t_b)$

2 solve

$$e_a = \gamma \cdot (\alpha^1 \alpha^2 \alpha^3)$$

for vector γ with e_a unit vector in direction a

3 the elements of the discrete operator \hat{L}_a are then given by

$$(L_a)_{j \# V_i(j)} = \gamma_i, \qquad (L_a)_{jj} = -\sum_i \gamma_i$$

with $\#V_i(j)$ the index of neighbour $V_i(j)$

This leads to the desired result up to $O(\alpha)$

$$\begin{split} -\left(\sum_{i=1}^n \gamma_i\right) U_j + \gamma_1 V_1 + \gamma_2 V_2 + \gamma_3 V_3 \\ &= -\left(\sum \gamma_i\right) U_j + \gamma_1 W_1 U_j + \gamma_2 W_2 U_j + \gamma_3 W_3 U_j \\ &\approx \left(-\sum_i \gamma_i + \gamma_1 (1 + \mathrm{i}\alpha_b^1 t_b) + \gamma_2 (1 + \mathrm{i}\alpha_b^2 t_b) + \gamma_3 (1 + \mathrm{i}\alpha_b^3 t_b)\right) U_j \\ &= \mathrm{i}\left(\gamma_1 \alpha_b^1 t_b + \gamma_2 \alpha_b^2 t_b + \gamma_3 \alpha_b^3 t_b\right) U_j \\ &= \mathrm{i}t_a U_j \,. \end{split}$$

Numerical Test of Commutation Relations

we compute first

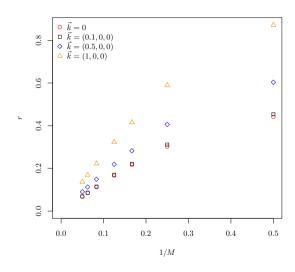
$$z = \left([\hat{L}_a, \hat{U}_{jl}] - (t_a)_{ji} \hat{U}_{il} \right) \cdot v(\vec{k})$$

with $v(\vec{k})$ a Fourier mode in the algebra

- for each element expected convergence is $O(\alpha)$
- thus compute

$$r = \frac{1}{N} \sum_{i} |z_i|$$

with N the number of elements



Numerical Test of Commutation Relations

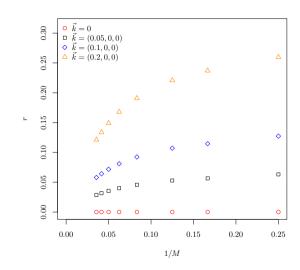
similarly

$$z = ([L_a, L_b] + 2i \epsilon_{abc} L_c) \cdot v(\vec{k})$$

• and again

$$r = \frac{1}{N} \sum_{i} |z_i|$$

ullet convergence slower in 1/M



Spectrum of the Free Theory

Free Hamiltonian

$$H = \frac{1}{2} \sum_{a} \left(L_a^2 + R_a^2 \right)$$

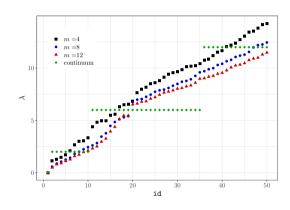
- the discrete L_a and R_a no longer hermitian
- we resort to $L^{\dagger} \cdot L$ instead
- we expect smallest deviations for small eigenvalues
- continuum spectrum

$$\lambda_{\ell} = \ell(\ell+1), \qquad (2\ell+1)^2 \text{ degenerate}$$

with
$$\ell = 0, 1, \dots$$

Spectrum of the Free Theory

- numerically determine lowest lying spectrum
- agreement not breathtaking...
- possible reasons:
 - slow convergence
 - not consistently defined forward derivative



Summary

- work in a basis where \hat{U} is diagonal
- defined discretised operators L_a , R_a based on SU(2) partitionings
- commutation relations converge in the SU(2) limit
- the free spectrum is not yet reproduced