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Introductory remarks

• Worldline representations are a powerful tool (finite density, topological terms ...).

• Useful and elegant properties. E.g.: particle number = winding number.

• Fermion worldlines have remnant signs from Grassmann nature and Dirac algebra.

• Can we take care of this sign problem and keep using fermion worldlines?

Here we explore density of states (DoS) techniques for fermion worldline simulations.

Compare also: O. Francesconi, PhD thesis Univ. Swansea & Univ. Grenoble, 2021
https://tel.archives-ouvertes.fr/tel-03403475



A simple model and its worldline representation

• Staggered fermions with mass term and quartic self interaction:

S =
∑
x,ν

γx,ν ψx
ψx+ν̂ − ψx−ν̂

2
+ M

∑
x

ψxψx −
J

4

∑
x,ν

ψxψxψx+ν̂ψx+ν̂

• Integrating out the Grassmann variables ⇒ worldline representation:

Z =
∑
{m,d,l}

(2M)#m (1+J)# d
∏
l

sign(l)

- 1

+ 1

+ 1



Formulation as density of states problem

• Worldline representation:

Z =
∑
{m,d,l}

(2M)#m (1+J)# d (−1)N

N = number of loops with negative sign

• Introduce a density of states:

ρn =
∑
{m,d,l}

(2M)#m (1+J)# d δn ,N

• Partition function is a weighted sum of the density:

Z =
∞∑
n=0

ρn (−1)n



Parameterization of the density and FFA approach (Gattringer, Giuliani, Törek)

• Piecewise constant parameterization of the density in the form:

ρn = ρn−1 e
−an with a0 = 0 ⇔ ρ0 = 1

• Restricted partition sum with a control parameter λ ∈ R: (Langfeld, Lucini, Rago)

Zn(λ) =
∑
{m,d,l}

(2M)#m (1+J)# d eλN Θn(N )

Θn(N ) =

{
1 for N ∈ {n, n+ 1}
0 otherwise

• Restricted expectation value for the determination of the an:

〈N〉n(λ) =
∂ ln Zn(λ)

∂λ
= n +

1

2

[
1 + tanh

(
λ−an+1

2

)]



FFA determination of the parameters an

• Compute 〈N〉n(λ) in a numerical simulation:

〈N〉n(λ) =
1

Zn(λ)

∑
{m,d,l}

(2M)#m (1+J)# d Θn(N ) eλN

• Determine the parameters an from a fit and from those compute ρn.

V (λ) = 2〈N〉n(λ)− 2n− 1 = tanh([λ− an+1]/2)
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Update strategies - 1

• Inserting, splitting and joining loops:

Exchanging elements on a plaquette        (heat bath)

Joining/splitting loops       (50/50)

x 2x 2 x 4

sign L   =   sign L1  sign L2

L L1 L2

• Splitting of loops is the only update with a non-local operation for determining the sign.



Update strategies - 2

• Deforming loops:

Shrinking/expanding loops        (heat bath)

Flipping a loop corner        (50/50)

sign L          - sign L



Comments

• We work with a canonical setting. ⇒ Fixed particle number W .
⇒ We use an initial configurations with net winding number W .

• Our update moves do not change the total net winding number.
⇒ Update remains in the desired particle number sector.

• Additional update step: Flip the orientation of non-winding loops.

• The update moves are ergodic, and may be generalized to 4 dimensions
and to fermions coupled to abelian gauge fields.

• The only move that is not strictly local is the determination
of the loop sign when splitting loops.



A first look at the density - 1

• The density ρ(n) for different volumes: (M = 0.5, J = 0.0,W = 0)
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• For large n the density ρ(n) decays exponentially!



A first look at the density - 2

• The density ρ(n) for different particle numbers W : (M = 0.5, J = 0.0, 24× 8)
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• For large n the density ρ(n) decays exponentially!



Summary and outlook

• Worldline representations are a powerful tool, but for fermions the worldlines usually
come with signs.

• Here we show that a DoS formulation can be set up where the density is considered as
a function of the number of negative loops.

• Canonical formulation ⇒ work at a fixed winding number.

• Suitable ergodic updates can be found for the highly constrained system of monomers,
dimers and closed fermion worldlines.

• We test the approach for 2-d staggered fermions with mass and quartic self-interaction.

• The density can be determined reliably and shows exponential decrease.

• Next steps: Implementation of observables and verification in the free case.


