Density of states techniques for fermion worldlines

Christof Gattringer
Austrian Science Fund FWF
\& University of Graz

Introductory remarks

- Worldline representations are a powerful tool (finite density, topological terms ...).
- Useful and elegant properties. E.g.: particle number = winding number.
- Fermion worldlines have remnant signs from Grassmann nature and Dirac algebra.
- Can we take care of this sign problem and keep using fermion worldlines?

Here we explore density of states (DoS) techniques for fermion worldline simulations.

A simple model and its worldline representation

- Staggered fermions with mass term and quartic self interaction:

$$
S=\sum_{x, \nu} \gamma_{x, \nu} \bar{\psi}_{x} \frac{\psi_{x+\hat{\nu}}-\psi_{x-\hat{\nu}}}{2}+M \sum_{x} \bar{\psi}_{x} \psi_{x}-\frac{J}{4} \sum_{x, \nu} \bar{\psi}_{x} \psi_{x} \bar{\psi}_{x+\hat{\nu}} \psi_{x+\hat{\nu}}
$$

- Integrating out the Grassmann variables \Rightarrow worldline representation:

$$
Z=\sum_{\{m, d, l\}}(2 M)^{\# m}(1+J)^{\# d} \prod_{l} \operatorname{sign}(l)
$$

Formulation as density of states problem

- Worldline representation:

$$
\begin{aligned}
& Z=\sum_{\{m, d, l\}}(2 M)^{\# m}(1+J)^{\# d}(-1)^{\mathcal{N}} \\
& \mathcal{N}=\text { number of loops with negative sign }
\end{aligned}
$$

- Introduce a density of states:

$$
\rho_{n}=\sum_{\{m, d, l\}}(2 M)^{\# m}(1+J)^{\# d} \delta_{n, \mathcal{N}}
$$

- Partition function is a weighted sum of the density:

$$
Z=\sum_{n=0}^{\infty} \rho_{n}(-1)^{n}
$$

Parameterization of the density and FFA approach

- Piecewise constant parameterization of the density in the form:

$$
\rho_{n}=\rho_{n-1} e^{-a_{n}} \quad \text { with } \quad a_{0}=0 \Leftrightarrow \rho_{0}=1
$$

- Restricted partition sum with a control parameter $\lambda \in \mathbb{R}$:

$$
\begin{aligned}
Z_{n}(\lambda)= & \sum_{\{m, d, l\}}(2 M)^{\# m}(1+J)^{\# d} e^{\lambda \mathcal{N}} \Theta_{n}(\mathcal{N}) \\
& \Theta_{n}(\mathcal{N})= \begin{cases}1 & \text { for } \mathcal{N} \in\{n, n+1\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Restricted expectation value for the determination of the a_{n} :

$$
\langle\mathcal{N}\rangle_{n}(\lambda)=\frac{\partial \ln Z_{n}(\lambda)}{\partial \lambda}=n+\frac{1}{2}\left[1+\tanh \left(\frac{\lambda-a_{n+1}}{2}\right)\right]
$$

FFA determination of the parameters a_{n}

- Compute $\langle\mathcal{N}\rangle_{n}(\lambda)$ in a numerical simulation:

$$
\langle\mathcal{N}\rangle_{n}(\lambda)=\frac{1}{Z_{n}(\lambda)} \sum_{\{m, d, l\}}(2 M)^{\# m}(1+J)^{\# d} \Theta_{n}(\mathcal{N}) e^{\lambda \mathcal{N}}
$$

- Determine the parameters a_{n} from a fit and from those compute ρ_{n}.

$$
V(\lambda)=2\langle\mathcal{N}\rangle_{n}(\lambda)-2 n-1=\tanh \left(\left[\lambda-a_{n+1}\right] / 2\right)
$$

Update strategies - 1

- Inserting, splitting and joining loops:

Exchanging elements on a plaquette (heat bath)

Joining/splitting loops $\quad(50 / 50)$
$\operatorname{sign} L=\operatorname{sign} L_{1} \operatorname{sign} L_{2}$

- Splitting of loops is the only update with a non-local operation for determining the sign.

Update strategies - 2

- Deforming loops:

Shrinking/expanding loops (heat bath)

Flipping a loop corner
(50/50)

$\operatorname{sign} L \rightarrow-\operatorname{sign} L$

Comments

- We work with a canonical setting. \Rightarrow Fixed particle number W.
$\Rightarrow \quad$ We use an initial configurations with net winding number W.
- Our update moves do not change the total net winding number.
$\Rightarrow \quad$ Update remains in the desired particle number sector.
- Additional update step: Flip the orientation of non-winding loops.
- The update moves are ergodic, and may be generalized to 4 dimensions and to fermions coupled to abelian gauge fields.
- The only move that is not strictly local is the determination of the loop sign when splitting loops.

A first look at the density - 1

- The density $\rho(n)$ for different volumes: $\quad(M=0.5, J=0.0, W=0)$

- For large n the density $\rho(n)$ decays exponentially!

A first look at the density - 2

- The density $\rho(n)$ for different particle numbers $W: \quad(M=0.5, J=0.0,24 \times 8)$

- For large n the density $\rho(n)$ decays exponentially!

Summary and outlook

- Worldline representations are a powerful tool, but for fermions the worldlines usually come with signs.
- Here we show that a DoS formulation can be set up where the density is considered as a function of the number of negative loops.
- Canonical formulation \Rightarrow work at a fixed winding number.
- Suitable ergodic updates can be found for the highly constrained system of monomers, dimers and closed fermion worldlines.
- We test the approach for 2-d staggered fermions with mass and quartic self-interaction.
- The density can be determined reliably and shows exponential decrease.
- Next steps: Implementation of observables and verification in the free case.

