

Lena Funcke

Illit
 $\therefore C^{2} Q A$ Co-design Center for Quantum Advantage

with Karl Jansen, Stefan Kühn, Tobias Hartung, et al.
Lattice 2022 Conference, Bonn, 8 August 2022

Why quantum computing?

Why quantum computing?

Computational costs of lattice field theory
Supercomputer usage for different fields (INCITE 2019)

Why quantum computing?

Computational costs of lattice field theory
Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics
- Biophysics
- Plasma Physics
- Seismology

- Subsurface Flow . Weather/Climate

Why quantum computing?

Computational costs of lattice field theory
Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics
- Biophysics
- Plasma Physics
- Seismology

- Subsurface Flow
- Combustion
- Materials/Chemistry
- Weather/Cimate

Computational challenges of lattice field theory
Critical slowing down, large autocorrelation times, ...
\rightarrow Machine learning (Algorithms 8/10 Aug.)

Why quantum computing?

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics
- Biophysics
- Plasma Physics
- Seismology

Computational challenges of lattice field theory
Critical slowing down, large autocorrelation times, ...
\rightarrow Machine learning (Algorithms 8/10 Aug.)
Baryon chemical potential, θ-term, real-time evolution, \ldots

Why quantum computing?

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics

- Biophysics
- Plasma Physics
- Seismology

Computational challenges of lattice field theory
Critical slowing down, large autocorrelation times, ...
\rightarrow Machine learning (Algorithms 8/10 Aug.)
Baryon chemical potential, θ-term, real-time evolution, \ldots

Why quantum computing?

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics
- Biophysics
- Plasma Physics
- Seismology

Computational challenges of lattice field theory
Critical slowing down, large autocorrelation times, ...
\rightarrow Machine learning (Algorithms 8/10 Aug.)
Baryon chemical potential, θ-term, real-time evolution, \ldots
\rightarrow Tensor networks (Plenary 13 Aug. and Algorithms 9/10 Aug.)

Why quantum computing?

Computational costs of lattice field theory

Supercomputer usage for different fields (INCITE 2019)
\rightarrow Lattice QCD: ~ 40\%

Figure credit:
Jack Wells, Kate Clark

- Astrophysics
- Al-Materials
- Nuclear Physics
- Biophysics
- Plasma Physics
- Seismology

Computational challenges of lattice field theory
Critical slowing down, large autocorrelation times, ...
\rightarrow Machine learning (Algorithms 8/10 Aug.)
Baryon chemical potential, θ-term, real-time evolution, \ldots
\rightarrow Tensor networks (Plenary 13 Aug. and Algorithms 9/10 Aug.)
\rightarrow Quantum computing (Algorithms 9/10/11 Aug.)

Why is the sign problem exponentially hard?

Why is the sign problem exponentially hard?

Partition function
 $Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$

Why is the sign problem exponentially hard?

Example: finite baryon chemical potential

Partition function

$Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$
Importance sampling
Interpretation of $e^{-S_{g}} \operatorname{det} M$ as probability weight

Why is the sign problem exponentially hard?

Example: finite baryon chemical potential

Partition function

$Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$
Importance sampling
Interpretation of $e^{-S_{g}} \operatorname{det} M$ as probability weight

Sign problem

For $\mu \neq 0$, complex $\operatorname{det} M:[\operatorname{det} M(\mu)]^{*}=\left[\operatorname{det} M\left(-\mu^{*}\right)\right]$

Why is the sign problem exponentially hard?

Example: finite baryon chemical potential

Reweighting procedure

Partition function

$Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$
Importance sampling
Interpretation of $e^{-S_{g}} \operatorname{det} M$ as probability weight

Sign problem

$$
\text { For } \mu \neq 0 \text {, complex } \operatorname{det} M:[\operatorname{det} M(\mu)]^{*}=\left[\operatorname{det} M\left(-\mu^{*}\right)\right]
$$

Example: phase quenched theory
$\langle O\rangle=\frac{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi} O}{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi}}=\frac{\left\langle e^{i \phi} O\right\rangle_{p q}}{\left\langle e^{i \phi}\right\rangle_{p q}}$

Why is the sign problem exponentially hard?

Example: finite baryon chemical potential

Reweighting procedure

Partition function

$Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$
Importance sampling
Interpretation of $e^{-S_{g}} \operatorname{det} M$ as probability weight

Sign problem

For $\mu \neq 0$, complex $\operatorname{det} M:[\operatorname{det} M(\mu)]^{*}=\left[\operatorname{det} M\left(-\mu^{*}\right)\right]$

Baryon density
Figure credit:
BNL/RHIC,
de Forcrand

Example: phase quenched theory
$\langle O\rangle=\frac{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi} O}{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi}}=\frac{\left\langle e^{i \phi} O\right\rangle_{p q}}{\left\langle e^{i \phi}\right\rangle_{p q}}$
Highly oscillatory integrands
Near-cancellation of positive \& negative contributions

$$
\int d x \exp \left(-x^{2}+i \lambda x\right) \rightarrow \int d x \exp \left(-x^{2}\right) \cos (\lambda x)
$$

Why is the sign problem exponentially hard?

Example: finite baryon chemical potential

Reweighting procedure

Partition function

$Z=\int D U D \bar{\psi} D \psi e^{-S}=\int D U e^{-S_{g}} \operatorname{det} M$
Importance sampling
Interpretation of $e^{-S_{g}} \operatorname{det} M$ as probability weight

Sign problem

For $\mu \neq 0$, complex $\operatorname{det} M:[\operatorname{det} M(\mu)]^{*}=\left[\operatorname{det} M\left(-\mu^{*}\right)\right]$

Figure credit:
BNL/RHIC,
de Forcrand

Example: phase quenched theory
$\langle O\rangle=\frac{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi} O}{\int D U e^{-S_{g}}|\operatorname{det} M| e^{i \phi}}=\frac{\left\langle e^{i \phi} O\right\rangle_{p q}}{\left\langle e^{i \phi}\right\rangle_{p q}}$

Highly oscillatory integrands

Near-cancellation of positive \& negative contributions
Sample number grows exponentially with volume V

$$
\int d x \exp \left(-x^{2}+i \lambda x\right) \rightarrow \int d x \exp \left(-x^{2}\right) \cos (\lambda x)
$$

Do we really need quantum computing?

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Why is(n't) classical computing enough?

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors
E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors
E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors
E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$
E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Orus (2014)

Bañuls et al. (2013)

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors
E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$
E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Orus (2014)

Other approaches

Deep learning for path integral contour deformations ${ }^{1}$

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Why is(n't) classical computing enough?

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors

Prospects

Simulate chemical potential, θ-term, real-time dynamics ${ }^{2}$
E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$
E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Nakayama et al. (2022)

Other approaches

Deep learning for path integral contour deformations ${ }^{1}$...

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Why is(n't) classical computing enough?

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$ E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Orus (2014)

Bañuls et al. (2013)

Prospects

Simulate chemical potential, θ-term, real-time dynamics ${ }^{2}$ Mostly focus on $1+1 \mathrm{D}$, first simulations in $2+1 \mathrm{D} \& 3+1 \mathrm{D}^{3}$

Other approaches

Deep learning for path integral contour deformations ${ }^{1}$...

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Why is(n't) classical computing enough?

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$ E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Bañuls et al. (2013)

Other approaches

Prospects

Simulate chemical potential, θ-term, real-time dynamics ${ }^{2}$ Mostly focus on $1+1 \mathrm{D}$, first simulations in $2+1 \mathrm{D} \& 3+1 \mathrm{D}^{3}$

Challenges

No efficient parametrization of highly entangled states
Deep learning for path integral contour deformations ${ }^{1}$...

Do we really need quantum computing?

Classical approaches to tackle the sign problem

Why is(n't) classical computing enough?

Tensor networks

Describe quantum state $|\psi\rangle$ by network of small tensors E.g. $|\psi\rangle=\sum c_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle=\sum A_{1}^{i_{1}} \cdots A_{N}^{i_{N}}\left|i_{1}\right\rangle \otimes \cdots\left|i_{N}\right\rangle$ E.g. variational algorithm: minimize energy $E=\langle\psi| \mathcal{H}|\psi\rangle$

Other approaches

Deep learning for path integral contour deformations ${ }^{1}$...

Prospects

Simulate chemical potential, θ-term, real-time dynamics ${ }^{2}$ Mostly focus on 1+1D, first simulations in 2+1D \& 3+1D3

Nakayama et al. (2022) Bañuls et al. (2013) Challenges

No efficient parametrization of highly entangled states
In real-time evolution, tensor size can grow exponentially

Do we really need quantum computing?

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model
Hamiltonian
$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Hamiltonian
$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Real-time simulation ${ }^{1}$
Analog quantum simulator: ultracold atoms

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Hamiltonian

$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Real-time simulation ${ }^{1}$

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Hamiltonian

$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Real-time simulation ${ }^{1}$

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)

Experimental results

"the controlled [quantum] dynamics runs for longer times than present classical algorithms can keep track of" ${ }^{1}$

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Hamiltonian

$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Why is(n't) classical computing enough?

Practical quantum advantage in quantum simulation ${ }^{2}$

Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices

Real-time simulation ${ }^{1}$

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)

Experimental results

"the controlled [quantum] dynamics runs for longer times than present classical algorithms can keep track of" ${ }^{1}$

[^0]
Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Why is(n't) classical computing enough?

Hamiltonian

$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Real-time simulation ${ }^{1}$

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)

Experimental results

"the controlled [quantum] dynamics runs for longer times than present classical algorithms can keep track of" ${ }^{1}$

[^1]
Practical quantum advantage in quantum simulation ${ }^{2}$

Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices

Do we really need quantum computing?

Example: 1+1D Bose-Hubbard model

Why is(n't) classical computing enough?

Hamiltonian

$\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\right.$ h.c. $)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)$

Real-time simulation ${ }^{1}$

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)

Experimental results

"the controlled [quantum] dynamics runs for longer times than present classical algorithms can keep track of" ${ }^{1}$

[^2]
Practical quantum advantage in quantum simulation ${ }^{2}$

Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices

Quantum computing: where do we stand?

Quantum computing: where do we stand?

Quantum hardware

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$

Arute et al. (2019)

Zhong et al. (2020)

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$
Exponential speedup of specific classical computations

Arute et al. (2019)

Zhong et al. (2020)

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$
Exponential speedup of specific classical computations

Arute et al. (2019)

Zhong et al. (2020)

Astibuag (2022)
$\left.\begin{array}{l}|1\rangle=8 \\ |0\rangle=\end{array}\right\} \quad|\psi\rangle=$

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$
Exponential speedup of specific classical computations

Challenges

$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more

Arute et al. (2019)

Zhong et al. (2020)

${ }^{1}$ Arute et al. (2019), Zhong et al. (2020, 2021), Yulin (2021), Zhu (2021), Madsen (2022).

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$
Exponential speedup of specific classical computations

Challenges

$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more
noise \rightarrow need quantum error mitigation / correction

Arute et al. (2019)

Zhong et al. (2020)

${ }^{1}$ Arute et al. (2019), Zhong et al. (2020, 2021), Yulin (2021), Zhu (2021), Madsen (2022).

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$
Exponential speedup of specific classical computations
Challenges
$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more
noise \rightarrow need quantum error mitigation / correction

Arute et al. (2019)

Zhong et al. (2020)

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$ Exponential speedup of specific classical computations Challenges
$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more noise \rightarrow need quantum error mitigation / correction

Arute et al. (2019)

Zhong et al. (2020)

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$ Exponential speedup of specific classical computations Challenges
$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more noise \rightarrow need quantum error mitigation / correction

Arute et al. (2019)

Zhong et al. (2020)

Quantum computing: where do we stand?

Quantum hardware

Quantum algorithms

Achievements

Quantum advantage: outperformed classical computers ${ }^{1}$ Exponential speedup of specific classical computations Challenges
$\mathcal{O}(100)$ digital / $\mathcal{O}(1000)$ analog qubits \rightarrow need more noise \rightarrow need quantum error mitigation / correction

Arute et al. (2019)

Zhong et al. (2020)

Applications

cryptography, optimization problems, ...
particle / nuclear / condensed matter physics, ...

Challenges

new technology \rightarrow need fundamentally new algorithms competition \rightarrow classical algorithms quickly advance

Quantum computing: where do we stand?

Quantum computing: where do we stand?

Example: "quantum advantage" (2019)
Example: "classical advantage" (2021)

Quantum supremacy using a programmable superconducting processor

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$.A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2-7}$ to create quantumstates on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{s-14}$ for this specific computational task, heralding a muchanticipated computing paradigm.

Quantum computing: where do we stand?

Example: "quantum advantage" (2019)

Quantum supremacy using a programmable superconducting processor

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$.A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2-7}$ to create quantumstates on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{8-14}$ for this specific computational task, heralding a muchanticipated computing paradigm.

Example: "classical advantage" (2021)

Closing the "Quantum Supremacy" Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a threelevel parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10×10 (qubits) $\times(1+40+1)$ (depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

Quantum computing: where do we stand?

Example: "quantum advantage" (2019)

Quantum supremacy using a programmable superconducting processor

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$.A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2-7}$ to create quantumstates on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{s-14}$ for this specific computational task, heralding a muchanticipated computing paradigm.

Example: "classical advantage" (2021)

Closing the "Quantum Supremacy" Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a threelevel parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10×10 (qubits) $\times(1+40+1)$ (depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

53- and 54-Qubit Sycamore Circuits with Single
Precision Storage to Disk (8 bytes per amplitude)

Pednault et al. (2019) runtime improved from 2.5 days (2019) to 304 seconds (2021)

Quantum computing: where do we stand?

Example: "quantum advantage" (2019)

Quantum supremacy using a programmable superconducting processor

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$.A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2-7}$ to create quantumstates on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{s-14}$ for this specific computational task, heralding a muchanticipated computing paradigm.

\rightarrow Quantum-classical race:

algorithms and hardware quickly advance

Example: "classical advantage" (2021)

Closing the "Quantum Supremacy" Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a threelevel parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10×10 (qubits) $\times(1+40+1)$ (depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

53- and 54-Qubit Sycamore Circuits with Single
Precision Storage to Disk (8 bytes per amplitude)

Pednault et al. (2019) runtime improved from 2.5 days (2019) to 304 seconds (2021)

Quantum computing: where do we stand?

Example: "quantum advantage" (2019)

Quantum supremacy using a programmable superconducting processor

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor ${ }^{1}$.A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits ${ }^{2-7}$ to create quantumstates on 53 qubits, corresponding to a computational state-space of dimension 2^{53} (about 10^{16}). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times-our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy ${ }^{s-14}$ for this specific computational task, heralding a muchanticipated computing paradigm.

\rightarrow Quantum-classical race:

algorithms and hardware quickly advance
\rightarrow For exponentially hard problems:
small quantum step \leftrightarrow giant classical leap

Example: "classical advantage" (2021)

Closing the "Quantum Supremacy" Gap: Achieving Real-Time Simulation of a Random Quantum Circuit Using a New Sunway Supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme, and a path-optimization strategy that considers both complexity and compute density; (2) a threelevel parallelization scheme that scales to about 42 million cores; (3) a fused permutation and multiplication design that improves the compute efficiency for a wide range of tensor contraction scenarios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effectively expands the scope of simulatable RQCs to include the 10×10 (qubits) $\times(1+40+1)$ (depth) circuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

53- and 54-Qubit Sycamore Circuits with Single
Precision Storage to Disk (8 bytes per amplitude)

Note: classical runtime improved from 2.5 days (2019) to 304 seconds (2021)

Pednault et al. (2019)

Quantum computing: where will we go?

Quantum computing: where will we go?

The Path to Go...
A Rough Sketch...
State of the Art
IBM: 27 physical qubits $(2019) \rightarrow 65(2020) \rightarrow 127(2021)$

Carlow (2018)

Quantum computing: where will we go?

The Path to Go...

```
State of the Art
IBM: 27 physical qubits (2019) }->65\mathrm{ (2020) }->127\mathrm{ (2021)
Near Future
IBM: 433(2022) -> 1121 (2023) -> 4158(2025) ) ...

\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65\) (2020) \(\rightarrow 127\) (2021)

\section*{Near Future}

IBM: 433 (2022) \(\rightarrow 1121\) (2023) \(\rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)


\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)
Near Future
IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


A Rough Sketch...


\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)
Near Future
IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)


A Rough Sketch...


\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)
Near Future
IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)


A Rough Sketch...


\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)
Near Future
IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)


A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)

\section*{Near Future}

IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)

\section*{Far Future}

Need \(\mathcal{O}\left(10^{7}-10^{8}\right)\) logical qubits for lattice volume of \(96^{3}\)

A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Quantum computing: where will we go?}

The Path to Go...

\section*{State of the Art}

IBM: 27 physical qubits (2019) \(\rightarrow 65(2020) \rightarrow 127\) (2021)

\section*{Near Future}

IBM: \(433(2022) \rightarrow 1121(2023) \rightarrow 4158(2025) \rightarrow \ldots\)
Google: 1,000,000 physical / 1000 logical qubits (2029)?


Arute et al. (2019)
Carlow (2018)

\section*{Far Future}

Need \(\mathcal{O}\left(10^{7}-10^{8}\right)\) logical qubits for lattice volume of \(96^{3}\) \(\rightarrow\) Analogy: lattice QCD from 1980s to 2020s?

A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{How can we reduce the noise?}

Noisy quantum circuit

\section*{How can we reduce the noise?}


\section*{How can we reduce the noise?}

Noisy quantum circuit


\section*{How can we reduce the noise?}

Noisy quantum circuit


\section*{Error mitigation versus error correction}

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement

\section*{How can we reduce the noise?}

Noisy quantum circuit


Error mitigation versus error correction

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement Near-term solution

Error mitigation: reduce noise on NISQ devices

\section*{How can we reduce the noise?}

Noisy quantum circuit


\section*{Error mitigation versus error correction}

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement Near-term solution
Error mitigation: reduce noise on NISQ devices

\section*{Long-term solution}

Error correction (EC): fault-tolerant quantum computation

\section*{How can we reduce the noise?}

Noisy quantum circuit


\section*{Error mitigation versus error correction}

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement Near-term solution
Error mitigation: reduce noise on NISQ devices

\section*{Long-term solution}

Error correction (EC): fault-tolerant quantum computation E.g. bit-flip code, \({ }^{1}\) Shor code, \({ }^{2}\) toric code, \({ }^{3}\) GKP code, \({ }^{4} \ldots\)

\footnotetext{
\({ }^{1}\) Peres (1985), \({ }^{2}\) Shor (1995), \({ }^{3}\) Kitaev (1997), \({ }^{4}\) Gottesmann et al. (2001),
}

\section*{How can we reduce the noise?}

Noisy quantum circuit


Error mitigation versus error correction

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement Near-term solution
Error mitigation: reduce noise on NISQ devices
Long-term solution
Error correction (EC): fault-tolerant quantum computation E.g. bit-flip code, \({ }^{1}\) Shor code, \({ }^{2}\) toric code, \({ }^{3}\) GKP code, \({ }^{4} \ldots\) Quantum threshold theorem

For EC, need extra qubits and noise below threshold \({ }^{5}\)

\footnotetext{
\({ }^{1}\) Peres (1985), \({ }^{2}\) Shor (1995), \({ }^{3}\) Kitaev (1997), \({ }^{4}\) Gottesmann et al. (2001),
\({ }^{5}\) Shor (1996), Knill et al. (1998), Kitaev (2003), Aharonov et al. (2008)
}

\section*{How can we reduce the noise?}

Noisy quantum circuit


Error mitigation versus error correction

\section*{Problem}

Quantum noise: affecting qubits, gates, measurement

\section*{Near-term solution}

Error mitigation: reduce noise on NISQ devices

\section*{Long-term solution}

Error correction (EC): fault-tolerant quantum computation E.g. bit-flip code, \({ }^{1}\) Shor code, \({ }^{2}\) toric code, \({ }^{3}\) GKP code, \({ }^{4} \ldots\) Quantum threshold theorem
For EC, need extra qubits and noise below threshold \({ }^{5}\)
E.g. surface code needs \(>1000\) extra qubits for \(p<0.1 \%\)

\footnotetext{
\({ }^{1}\) Peres (1985), \({ }^{2}\) Shor (1995), \({ }^{3}\) Kitaev (1997), \({ }^{4}\) Gottesmann et al. (2001),
\({ }^{5}\) Shor (1996), Knill et al. (1998), Kitaev (2003), Aharonov et al. (2008)
}

\section*{Error mitigation: how can we reduce the noise?}

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


Operator rescaling method
Goal
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\)

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


Operator rescaling method

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


Operator rescaling method

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)
\begin{tabular}{|cccc|}
\hline Readout & Bit Flips & Probability & Noisy Operator \\
\hline correct & \(0 \rightarrow 0,1 \rightarrow 1\) & \(\left(1-p_{0}\right)\left(1-p_{1}\right)\) & \(\tilde{O}=\boldsymbol{Z}=\left(\begin{array}{cc}1 & 0 \\
0 & -1\end{array}\right)\) \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\({ }^{1}\) Single \(Z\) operator: Kandala et al. (2017), strings of \(Z\) operators: Yeter-Aydeniz et al. (2019),

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


Operator rescaling method

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)
\begin{tabular}{|cccc|}
\hline Readout & Bit Flips & Probability & Noisy Operator \\
\hline correct & \(0 \rightarrow 0,1 \rightarrow 1\) & \(\left(1-p_{0}\right)\left(1-p_{1}\right)\) & \(\tilde{O}=\boldsymbol{Z}=\left(\begin{array}{cc}1 & 0 \\
0 & -1\end{array}\right)\) \\
\hline \begin{tabular}{c} 
incorrect \\
\(\ldots\) for both outcomes
\end{tabular} & \(0 \rightarrow 1,1 \rightarrow 0\) & \(p_{0} p_{1}\) & \(\tilde{O}=-Z=\left(\begin{array}{cc}-1 & 0 \\
0 & 1\end{array}\right)\) \\
\hline & & \\
\hline
\end{tabular}
\({ }^{1}\) Single \(Z\) operator: Kandala et al. (2017), strings of \(Z\) operators: Yeter-Aydeniz et al. (2019),

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


\section*{Operator rescaling method}

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)
\begin{tabular}{|cccc|}
\hline Readout & Bit Flips & Probability & Noisy Operator \\
\hline correct & \(0 \rightarrow 0,1 \rightarrow 1\) & \(\left(1-p_{0}\right)\left(1-p_{1}\right)\) & \(\tilde{O}=\boldsymbol{Z}=\left(\begin{array}{cc}1 & 0 \\
0 & -1\end{array}\right)\) \\
\hline \begin{tabular}{c} 
incorrect \\
\(\ldots\) for both outcomes
\end{tabular} & \(0 \rightarrow 1,1 \rightarrow 0\) & \(p_{0} p_{1}\) & \(\tilde{O}=-Z=\left(\begin{array}{cc}-1 & 0 \\
0 & 1\end{array}\right)\) \\
\hline\(\ldots\) for outcome 0 & \(0 \rightarrow 1,1 \rightarrow 1\) & \(p_{0}\left(1-p_{1}\right)\) & \(\tilde{O}=-\mathbb{I}=\left(\begin{array}{cc}-1 & 0 \\
0 & -1\end{array}\right)\) \\
\hline\(\ldots\) for outcome 1 & \(0 \rightarrow 0,1 \rightarrow 0\) & \(\left(1-p_{0}\right) p_{1}\) & \(\tilde{O}=\mathbb{I}=\left(\begin{array}{ll}1 & 0 \\
0 & 1\end{array}\right)\) \\
\hline
\end{tabular}

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


\section*{Operator rescaling method}

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)
\(\left.\begin{array}{|cccc|}\hline \text { Readout } & \text { Bit Flips } & \text { Probability } & \text { Noisy Operator } \\
\hline \text { correct } & 0 \rightarrow 0,1 \rightarrow 1 & \left(1-p_{0}\right)\left(1-p_{1}\right) & \tilde{O}=\boldsymbol{Z}=\left(\begin{array}{cc}1 & 0 \\
0 & -1\end{array}\right) \\
\hline \begin{array}{c}\text { incorrect } \\
\ldots \text { for both outcomes }\end{array} & 0 \rightarrow 1,1 \rightarrow 0 & p_{0} p_{1} & \tilde{O}=-Z=\left(\begin{array}{cc}-1 & 0 \\
0 & 1\end{array}\right) \\
\hline \ldots \text { for outcome } 0 & 0 \rightarrow 1,1 \rightarrow 1 & p_{0}\left(1-p_{1}\right) & \tilde{O}=-\mathbb{I}=\left(\begin{array}{cc}-1 & 0 \\
0 & -1\end{array}\right) \\
\hline \ldots \text { for outcome } 1 & 0 \rightarrow 0,1 \rightarrow 0 & \left(1-p_{0}\right) p_{1} & \tilde{O}=\mathbb{I}=\left(\begin{array}{cc}1 & 0 \\
0 & 1\end{array}\right)\end{array}\right\}\)\begin{tabular}{c}
\(\left.=\begin{array}{c}\text { Total noisy operator: } \tilde{O} \\
+p_{0}\left(1-p_{1}\right)\left(1-p_{1}\right) Z+p_{0} p_{1}(-Z)+\left(1-p_{0}\right) p_{1} \mathbb{I}\end{array}\right]\)
\end{tabular}

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation


\section*{Operator rescaling method}

\section*{Goal}
mitigate bit-flip errors during readout: \(0 \xrightarrow{p_{0}} 1\) or \(1 \xrightarrow{p_{1}} 0\) Method \({ }^{1}\)
replace operators by noisy operators: \(\langle\tilde{\psi}| \boldsymbol{O}|\tilde{\psi}\rangle \rightarrow\langle\psi| \tilde{O}|\psi\rangle\)
\begin{tabular}{|c|c|c|c|c|}
\hline Readout & Bit Flips & Probability & Noisy Operator & \\
\hline correct & \(0 \rightarrow 0,1 \rightarrow 1\) & \(\left(1-p_{0}\right)\left(1-p_{1}\right)\) & \(\tilde{O}=\boldsymbol{Z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\) & \} Total noisy operator: \(\tilde{0}\) \\
\hline \begin{tabular}{l}
incorrect \\
... for both outcomes
\end{tabular} & \(0 \rightarrow 1,1 \rightarrow 0\) & \(p_{0} p_{1}\) & \(\tilde{O}=-Z=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\) & \[
\begin{aligned}
& =\left(1-p_{0}\right)\left(1-p_{1}\right) \boldsymbol{Z}+p_{0} p_{1}(-Z) \\
& +p_{0}\left(1-p_{1}\right)(-\mathbb{I})+\left(1-p_{0}\right) p_{1} \mathbb{I}
\end{aligned}
\] \\
\hline ... for outcome 0 & \(0 \rightarrow 1,1 \rightarrow 1\) & \(p_{0}\left(1-p_{1}\right)\) & \(\tilde{O}=-\mathbb{I}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\) & Rescaled (zero-noise) operator: \\
\hline ... for outcome 1 & \(0 \rightarrow 0,1 \rightarrow 0\) & \(\left(1-p_{0}\right) p_{1}\) & \(\tilde{O}=\mathbb{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\) & \(\rightarrow \boldsymbol{Z}=\frac{1}{1-p_{0}-p_{1}} \tilde{O}-\frac{p_{1}-p_{0}}{1-p_{0}-p_{1}} \mathbb{I}\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Single Z operator: Kandala et al. (2017), strings of Z operators: Yeter-Aydeniz et al. (2019),
}

\section*{Error mitigation: how can we reduce the noise?}

\section*{Error mitigation: how can we reduce the noise?}

Example: measurement error mitigation
Example: gate error mitigation

\section*{Operator rescaling method \({ }^{1}\)}

Benchmark: \(Z\) and \(Z_{1} Z_{2}\) operators on IBM-Q hardware


\section*{Error mitigation: how can we reduce the noise?}

\section*{Example: measurement error mitigation}

\section*{Example: gate error mitigation}

\section*{Operator rescaling method \({ }^{1}\)}

Benchmark: \(Z\) and \(Z_{1} Z_{2}\) operators on IBM-Q hardware
Result: measurement error reduced by factor 10



Carlow (2018)

\section*{Error mitigation: how can we reduce the noise?}

\section*{Example: measurement error mitigation}

\section*{Operator rescaling method \({ }^{1}\)}

Benchmark: \(Z\) and \(Z_{1} Z_{2}\) operators on IBM-Q hardware Result: measurement error reduced by factor 10


\section*{Example: gate error mitigation}

\section*{Other mitigation techniques}

Zero-noise extrapolation, \({ }^{2}\) randomized compiling, \({ }^{3}\) quasi-probability decomposition, \({ }^{4}\)...
\({ }^{1}\) Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020); \({ }^{2}\) Li et al. (2017), Wallman et al. (2016), \({ }^{4}\) Temme et al. (2017), van den Berg (2020), 1.1

\section*{Error mitigation: how can we reduce the noise?}

\section*{Example: measurement error mitigation}

\section*{Operator rescaling method \({ }^{1}\)}

Benchmark: \(Z\) and \(Z_{1} Z_{2}\) operators on IBM-Q hardware Result: measurement error reduced by factor 10


\section*{Example: gate error mitigation}

\section*{Other mitigation techniques}

Zero-noise extrapolation, \({ }^{2}\) randomized compiling, \({ }^{3}\) quasi-probability decomposition, \({ }^{4}\)...

\section*{Lattice field theory applications}

Zero-noise extrapolation for lattice Schwinger model:


Klco et al. (2018)
\({ }^{1}\) Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020); \({ }^{2}\) Li et al. (2017), Wallman et al. (2016), \({ }^{4}\) Temme et al. (2017), van den Berg (2020), 1.1

\section*{Which field theories have already been simulated?}

\section*{Which field theories have already been simulated?}

Experimental results on "public" QC
IBM-Q's superconducting qubits
Real-time evolution: Schwinger model, \({ }^{1} \mathrm{SU}(2),{ }^{2} \mathrm{SU}(3),{ }^{3}\)...
\(1+1 \mathrm{D} \operatorname{SU}(3)\) gauge theory, one plaquette \({ }^{3}\)


\section*{Which field theories have already been simulated?}

Experimental results on "public" QC

\section*{IBM-Q's superconducting qubits}

Real-time evolution: Schwinger model, \({ }^{1} \mathrm{SU}(2),{ }^{2} \mathrm{SU}(3),{ }^{3}\)...


\section*{Which field theories have already been simulated?}

Experimental results on "public" QC

\section*{IBM-Q's superconducting qubits}

Real-time evolution: Schwinger model, \({ }^{1} \mathrm{SU}(2),{ }^{2} \mathrm{SU}(3),{ }^{3}\)...
\(1+1 \mathrm{DSU}(3)\) gauge theory, one plaquette \({ }^{3}\)



Variational computation: SU(2) "hadron" masses \({ }^{4}\)

\section*{Experimental results on "private" QC}

\section*{Trapped ions}

Real-time evolution: Schwinger model, \({ }^{5}\)...


\section*{Which field theories have already been simulated?}

Experimental results on "public" QC

\section*{IBM-Q's superconducting qubits}

Real-time evolution: Schwinger model, \({ }^{1} \mathrm{SU}(2),{ }^{2} \mathrm{SU}(3),{ }^{3}\)...
\(1+1 \mathrm{DSU}(3)\) gauge theory, one plaquette \({ }^{3}\)



\section*{Experimental results on "private" QC}

\section*{Trapped ions}

Real-time evolution: Schwinger model, \({ }^{5}\)...


Cold atoms
Analog simulation: Bose-Hubbard, \({ }^{6}\) Schwinger model, \({ }^{7}\)..

\section*{How to simulate these field theories?}

\section*{How to simulate these field theories?}

\section*{Key concept}

Classical computer: main computation

\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

Key concept
Classical computer: main computation
Quantum computer: classically hard/intractable part

\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

Key concept
Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!

\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

Key concept
Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!

Variational Quantum Eigensolver (VQE) \({ }^{1}\)

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

Key concept
Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!

Variational Quantum Eigensolver (VQE) \({ }^{1}\)

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\) Variational approach
Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\)

\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

\section*{Key concept}

Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!

\section*{Variational Quantum Eigensolver (VQE)}

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{Variational approach}

Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\)


\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

\section*{Key concept}

Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!

\section*{Variational Quantum Eigensolver (VQE)}

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{Variational approach}

Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\) Classical computer
Given \(E\left(\vec{\alpha}_{i}\right)\), find optimized parameters \(\vec{\alpha}_{i+1}\)


\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

\section*{Key concept}

Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!


Sim et al. (2018)

\section*{Variational Quantum Eigensolver (VQE) \({ }^{1}\)}

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{Variational approach}

Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\) Classical computer
Given \(E\left(\vec{\alpha}_{i}\right)\), find optimized parameters \(\vec{\alpha}_{i+1}\)


\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

\section*{Key concept}

Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!


Encode


Sim et al. (2018)

\section*{Variational Quantum Eigensolver (VQE) \({ }^{1}\)}

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{Variational approach}

Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\) Classical computer
Given \(E\left(\vec{\alpha}_{i}\right)\), find optimized parameters \(\vec{\alpha}_{i+1}\) Quantum device

Given \(\vec{\alpha}_{i}\), prepare \(|\psi(\vec{\alpha})\rangle\) and measure \(E\left(\vec{\alpha}_{i}\right)\)


\section*{How to simulate these field theories?}

\section*{Example: hybrid quantum-classical algorithms}

\section*{Key concept}

Classical computer: main computation
Quantum computer: classically hard/intractable part
Advantages: even for small quantum hardware!


Sim et al. (2018)

\section*{Variational Quantum Eigensolver (VQE) \({ }^{1}\)}

\section*{Goal}

Find ground state and excited states of Hamiltonian \(\mathcal{H}\)

\section*{Variational approach}

Minimize \(E(\vec{\alpha})=\langle\psi(\vec{\alpha})| \mathcal{H}|\psi(\vec{\alpha})\rangle\) w.r.t. parameters \(\vec{\alpha}\)

\section*{Classical computer}

Given \(E\left(\vec{\alpha}_{i}\right)\), find optimized parameters \(\vec{\alpha}_{i+1}\) Quantum device

Given \(\vec{\alpha}_{i}\), prepare \(|\psi(\vec{\alpha})\rangle\) and measure \(E\left(\vec{\alpha}_{i}\right)\)


\section*{How to prepare the quantum state?}

\section*{Quantum circuit design}

Example: geometrical method \({ }^{2}\)

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

Example: geometrical method \({ }^{2}\)
Maximal expressivity
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\({ }^{1}\) Martinez et al. (2016), Klco et al. (2018,2019), Ciavarella et al. (2019a,b), Schweizer et al. (2019), Yang et al. (2020), Mil et al. (2020), de Jong et al. (2021), Nguyen et al. (2021), Atas et al. (2021), ..., \({ }^{2}\) LF, Hartung, Jansen, Kühn, Stornati, Quantum (2021), IEEE ICWS (2021)

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Example: geometrical method \({ }^{2}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space
Minimality
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\({ }^{1}\) Martinez et al. (2016), Klco et al. (2018,2019), Ciavarella et al. (2019a,b), Schweizer et al. (2019), Yang et al. (2020), Mil et al. (2020),

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Example: geometrical method \({ }^{2}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space
Minimality
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\section*{Minimality}
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space Minimality
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit State manifold \(S\) : states \(|n(\vec{\alpha})\rangle\) of quantum device

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\section*{Minimality}
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit State manifold \(S\) : states \(|n(\vec{\alpha})\rangle\) of quantum device

\section*{Optimization}
minimize: \(\operatorname{codim}(M)=\operatorname{dim}(S)-\operatorname{dim}(M) \stackrel{!}{=} 0\)

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\section*{Minimality}
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit State manifold \(S\) : states \(|n(\vec{\alpha})\rangle\) of quantum device

\section*{Optimization}
minimize: \(\operatorname{codim}(M)=\operatorname{dim}(S)-\operatorname{dim}(M) \stackrel{!}{=} 0\)
\[
\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Re}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Re}\left|\partial_{\alpha_{k}} \psi\right\rangle \\
\operatorname{Im}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Im}\left|\partial_{\alpha_{k}} \psi\right\rangle
\end{array}\right)=0 \text { iff } \alpha_{k} \text { redundant }
\]

\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\section*{Minimality}
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit State manifold \(S\) : states \(|n(\vec{\alpha})\rangle\) of quantum device

\section*{Optimization}
minimize: \(\operatorname{codim}(M)=\operatorname{dim}(S)-\operatorname{dim}(M) \stackrel{!}{=} 0\) \(\operatorname{det}\left(\begin{array}{ccc}\operatorname{Re}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Re}\left|\partial_{\alpha_{k}} \psi\right\rangle \\ \operatorname{Im}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Im}\left|\partial_{\alpha_{k}} \psi\right\rangle\end{array}\right)=0\) iff \(\alpha_{k}\) redundant


\section*{How to prepare the quantum state?}

\section*{Quantum circuit design \({ }^{1}\)}

\section*{Maximal expressivity}
\(|\psi(\vec{\alpha})\rangle\) should reach all physical states in Hilbert space

\section*{Minimality}
\(|\psi(\vec{\alpha})\rangle\) should not contain any redundant parameters

\section*{Symmetry}
\(|\psi(\vec{\alpha})\rangle\) should include physical symmetries


\section*{Example: geometrical method \({ }^{2}\)}

\section*{Manifolds}

Circuit manifold \(M\) : states \(|\psi(\vec{\alpha})\rangle\) reachable by circuit State manifold \(S\) : states \(|n(\vec{\alpha})\rangle\) of quantum device

\section*{Optimization}
minimize: \(\operatorname{codim}(M)=\operatorname{dim}(S)-\operatorname{dim}(M) \stackrel{!}{=} 0\) \(\operatorname{det}\left(\begin{array}{ccc}\operatorname{Re}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Re}\left|\partial_{\alpha_{k}} \psi\right\rangle \\ \operatorname{Im}\left|\partial_{\alpha_{1}} \psi\right\rangle & \cdots & \operatorname{Im}\left|\partial_{\alpha_{k}} \psi\right\rangle\end{array}\right)=0\) iff \(\alpha_{k}\) redundant


\section*{How to deal with gauge fields?}

\section*{How to deal with gauge fields?}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space

\section*{How to deal with gauge fields?}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space
First approach
Integrate out gauge field: only possible in 1+1D

\section*{How to deal with gauge fields?}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space
First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


\section*{How to deal with gauge fields?}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space

\section*{First approach}

Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps: \({ }^{2}\) e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)

\section*{How to deal with gauge fields?}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space
First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps: \({ }^{2}\) e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!
\({ }^{1}\) Zohar et al. (2013), ..., \({ }^{2}\) Horn (1981),

\section*{How to deal with gauge fields?}

Infinite Hilbert space

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps:2 e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!

\section*{Gauge invariance}

\section*{Problem}

Gauge invariance requires imposing local constraints

\footnotetext{
\({ }^{1}\) Zohar et al. (2013), ..., \({ }^{2}\) Horn (1981),
}

\section*{How to deal with gauge fields?}

Infinite Hilbert space

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps:2 e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!

\section*{Gauge invariance}

\section*{Problem}

Gauge invariance requires imposing local constraints First approach
Penalize unphysical states, \({ }^{3}\) e.g. \(\mathcal{H}_{\text {penalty }}=\lambda\left(\sum_{j=1}^{N} Q_{j}\right)^{2}\)

\section*{How to deal with gauge fields?}

Infinite Hilbert space

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps: \({ }^{2}\) e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!

\section*{Gauge invariance}

\section*{Problem}

Gauge invariance requires imposing local constraints First approach
Penalize unphysical states, \({ }^{3}\) e.g. \(\mathcal{H}_{\text {penalty }}=\lambda\left(\sum_{j=1}^{N} Q_{j}\right)^{2}\) Second approach
Analytically solve Gauß law at every site \({ }^{4}\)

\footnotetext{
\({ }^{1}\) Zohar et al. (2013), ..., \({ }^{2}\) Horn (1981), ..., \({ }^{3}\) Banerjee et al. (2012), ..., \({ }^{4}\) Klco et al. (2018),
}

\section*{How to deal with gauge fields?}

\section*{Infinite Hilbert space}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space

\section*{First approach}

Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


\section*{Third approach}

Truncate irreps: \({ }^{2}\) e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!

\section*{Gauge invariance}

\section*{Problem}

Gauge invariance requires imposing local constraints

\section*{First approach}

Penalize unphysical states, \({ }^{3}\) e.g. \(\mathcal{H}_{\text {penalty }}=\lambda\left(\sum_{j=1}^{N} Q_{j}\right)^{2}\)

\section*{Second approach}

Analytically solve Gauß law at every site \({ }^{4}\)

\section*{Third approach}

Gauge-invariant formulation, e.g. loop-string-hadron \({ }^{5}\)

\footnotetext{
\({ }^{1}\) Zohar et al. (2013), ..., \({ }^{2}\) Horn (1981), ..., \({ }^{3}\) Banerjee et al. (2012), ...,
\({ }^{4}\) Klco et al. (2018), ..., \({ }^{5}\) Raychowdhury, Stryker (2020)
}

\section*{How to deal with gauge fields?}

\section*{Infinite Hilbert space}

\section*{Problem}

Continuous gauge theory requires \(\infty\)-dim. Hilbert space
First approach
Integrate out gauge field: only possible in 1+1D
Second approach
Approximate gauge group: \({ }^{1}\) e.g. \(U(1) \rightarrow \mathbb{Z}_{n}\)


Third approach
Truncate irreps:² e.g. for \(F_{j}|l\rangle=|l\rangle\), use finite \(|l|<L\)
Many more approaches \(\rightarrow\) see parallel talks!

\section*{Gauge invariance}

\section*{Problem}

Gauge invariance requires imposing local constraints

\section*{First approach}

Penalize unphysical states, \({ }^{3}\) e.g. \(\mathcal{H}_{\text {penalty }}=\lambda\left(\sum_{j=1}^{N} Q_{j}\right)^{2}\)

\section*{Second approach}

Analytically solve Gauß law at every site \({ }^{4}\)

\section*{Third approach}

Gauge-invariant formulation, e.g. loop-string-hadron \({ }^{5}\)
Many more approaches \(\rightarrow\) see parallel talks!

\footnotetext{
\({ }^{1}\) Zohar et al. (2013), ..., \({ }^{2}\) Horn (1981), ..., \({ }^{3}\) Banerjee et al. (2012), ...,
\({ }^{4}\) KIco et al. (2018), ..., \({ }^{5}\) Raychowdhury, Stryker (2020)
}

\section*{More details: parallel talks @ this conference}

\section*{More details: parallel talks @ this conference}

Quantum Electrodynamics in 1+1D

\author{
1+1D Schwinger model with chemical potential \\ Studying multi-flavor chemical potential with VQE \\ \(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
}

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential
Studying multi-flavor chemical potential with VQE
\(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential
Studying multi-flavor chemical potential with VQE
\(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm
1+1D Schwinger model with Wilson fermions
Comparing Wilson and staggered fermions
\(\rightarrow\) talk by Takis Angelides tomorrow at 5:30pm

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential
Studying multi-flavor chemical potential with VQE
\(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm
1+1D Schwinger model with Wilson fermions
Comparing Wilson and staggered fermions
\(\rightarrow\) talk by Takis Angelides tomorrow at 5:30pm
1+1D Schwinger model at finite temperature
Mapping out \(T-\mu\) phase diagram with VQE
\(\rightarrow\) talk by Akio Tomiya on Thursday at 12:30pm

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential Studying multi-flavor chemical potential with VQE \(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm
1+1D Schwinger model with Wilson fermions
Comparing Wilson and staggered fermions
\(\rightarrow\) talk by Takis Angelides tomorrow at 5:30pm
1+1D Schwinger model at finite temperature
Mapping out \(T-\mu\) phase diagram with VQE
\(\rightarrow\) talk by Akio Tomiya on Thursday at 12:30pm

\section*{Discrete and higher-dimensional gauge theories}
\(1+1 \mathrm{D} D_{n}\) gauge theory
Preparing ground state \& evolution on quantum annealer
\(\rightarrow\) talk by Michael Fromm on Wednesday at 2pm

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential Studying multi-flavor chemical potential with VQE
\(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm
1+1D Schwinger model with Wilson fermions
Comparing Wilson and staggered fermions
\(\rightarrow\) talk by Takis Angelides tomorrow at 5:30pm
1+1D Schwinger model at finite temperature
Mapping out \(T-\mu\) phase diagram with VQE
\(\rightarrow\) talk by Akio Tomiya on Thursday at 12:30pm

\section*{Discrete and higher-dimensional gauge theories}
\(1+1 \mathrm{D} D_{n}\) gauge theory
Preparing ground state \& evolution on quantum annealer
\(\rightarrow\) talk by Michael Fromm on Wednesday at 2pm
\(1+1 \mathrm{D} Z_{2}\) gauge theory
Developing quantum algorithms for thermal states
\(\rightarrow\) talk by Connor Powers tomorrow at 3:20pm

\section*{More details: parallel talks @ this conference}

\section*{Quantum Electrodynamics in 1+1D}

1+1D Schwinger model with chemical potential Studying multi-flavor chemical potential with VQE
\(\rightarrow\) talk by Stefan Kühn tomorrow at 2:20pm
1+1D Schwinger model with \(\boldsymbol{\theta}\)-term
Comparing quantum algorithms for state preparation
\(\rightarrow\) talk by Alexei Bazavov tomorrow at 3:20pm
1+1D Schwinger model with Wilson fermions Comparing Wilson and staggered fermions
\(\rightarrow\) talk by Takis Angelides tomorrow at 5:30pm
1+1D Schwinger model at finite temperature
Mapping out \(T-\mu\) phase diagram with VQE
\(\rightarrow\) talk by Akio Tomiya on Thursday at 12:30pm

\section*{Discrete and higher-dimensional gauge theories}
\(1+1 \mathrm{D} D_{n}\) gauge theory
Preparing ground state \& evolution on quantum annealer
\(\rightarrow\) talk by Michael Fromm on Wednesday at 2pm
\(1+1 \mathrm{D} Z_{2}\) gauge theory
Developing quantum algorithms for thermal states
\(\rightarrow\) talk by Connor Powers tomorrow at 3:20pm
2+1D U(1) gauge theory
Finding a resource-efficient implementation
\(\rightarrow\) talk by Christopher Kane tomorrow at 2pm

\section*{More details: parallel talks @ this conference}

\section*{More details: parallel talks @ this conference}

SU(N) lattice gauge theories
1+1D SU(2) gauge theory
Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm

\section*{More details: parallel talks @ this conference}

SU(N) lattice gauge theories
1+1D SU(2) gauge theory
Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am

\section*{More details: parallel talks @ this conference}

SU(N) lattice gauge theories

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am
SU(2) gauge theories
Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm

\section*{More details: parallel talks @ this conference}

SU(N) lattice gauge theories

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am
SU(2) gauge theories
Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm
Defining canonical momenta for discretized gauge fields
\(\rightarrow\) talk by Carsten Urbach tomorrow at 3pm

\section*{More details: parallel talks @ this conference}

SU(N) lattice gauge theories

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am
SU(2) gauge theories
Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm
Defining canonical momenta for discretized gauge fields
\(\rightarrow\) talk by Carsten Urbach tomorrow at 3pm
SU(3) gauge theories
Developing efficient digitization \& improved Hamiltonians
\(\rightarrow\) talk by Henry Lamm tomorrow at 5:50pm

\section*{More details: parallel talks @ this conference}

\section*{SU(N) lattice gauge theories}

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am

\section*{SU(2) gauge theories}

Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm
Defining canonical momenta for discretized gauge fields
\(\rightarrow\) talk by Carsten Urbach tomorrow at 3pm

\section*{SU(3) gauge theories}

Developing efficient digitization \& improved Hamiltonians
\(\rightarrow\) talk by Henry Lamm tomorrow at 5:50pm

\section*{Lattice field theories}

\section*{1+1D Ising model}

Studying NISQ algorithms for open quantum systems
\(\rightarrow\) talk by Bharath Sambasivam tomorrow at 6:10pm

\section*{More details: parallel talks @ this conference}

\section*{SU(N) lattice gauge theories}

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am
SU(2) gauge theories
Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm
Defining canonical momenta for discretized gauge fields
\(\rightarrow\) talk by Carsten Urbach tomorrow at 3pm

\section*{SU(3) gauge theories}

Developing efficient digitization \& improved Hamiltonians
\(\rightarrow\) talk by Henry Lamm tomorrow at 5:50pm

\section*{Lattice field theories}

\section*{1+1D Ising model}

Studying NISQ algorithms for open quantum systems
\(\rightarrow\) talk by Bharath Sambasivam tomorrow at 6:10pm
1+1D extended O(2) model
Studying discrete approximations of continuous groups
\(\rightarrow\) talk by Leon Hostetler on Wednesday at 3:40pm

\section*{More details: parallel talks @ this conference}

\section*{SU(N) lattice gauge theories}

\section*{1+1D SU(2) gauge theory}

Implementing real-time evolution on IBM-Q hardware
\(\rightarrow\) talk by Emanuele Mendicelli tomorrow at 4:30pm
Comparing Schwinger-boson \& loop-string hadron form.
\(\rightarrow\) talk by Jesse Stryker on Thursday at 11:50am
SU(2) gauge theories
Developing efficient digitization via finite subgroups
\(\rightarrow\) talk by Timo Jakobs tomorrow at 2:40pm
Defining canonical momenta for discretized gauge fields
\(\rightarrow\) talk by Carsten Urbach tomorrow at 3pm

\section*{SU(3) gauge theories}

Developing efficient digitization \& improved Hamiltonians \(\rightarrow\) talk by Henry Lamm tomorrow at 5:50pm

\section*{Lattice field theories}

\section*{1+1D Ising model}

Studying NISQ algorithms for open quantum systems
\(\rightarrow\) talk by Bharath Sambasivam tomorrow at 6:10pm
1+1D extended O(2) model
Studying discrete approximations of continuous groups
\(\rightarrow\) talk by Leon Hostetler on Wednesday at 3:40pm
1+1D Wess-Zumino model
Studying dynamical breaking of supersymmetry
\(\rightarrow\) talk by Christopher Culver tomorrow at 2:20pm

\title{
Summary: where do we stand, where will we go?
}

\title{
Summary: where do we stand, where will we go?
}

The Path to Go...
A Rough Sketch...

\author{
Present \\ Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation
}

\title{
Summary: where do we stand, where will we go?
}

The Path to Go...
A Rough Sketch...

\section*{Present}

Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation
Algorithms: first QC implementations of 1+1D LGTs, first resource-efficient formulations of 2+1D LGTs

\section*{Summary: where do we stand, where will we go?}

The Path to Go...

\section*{Present}

Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation
Algorithms: first QC implementations of 1+1D LGTs, first resource-efficient formulations of 2+1D LGTs


\section*{Summary: where do we stand, where will we go?}

The Path to Go...

\section*{Present}

Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation Algorithms: first QC implementations of 1+1D LGTs, first resource-efficient formulations of 2+1D LGTs


A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Path to Go...

\section*{Present}

Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation Algorithms: first QC implementations of 1+1D LGTs, first resource-efficient formulations of 2+1D LGTs

\section*{Future}


Hardware: \(\mathcal{O}(1000)\) error-corrected qubits by \(2029 ?\)

A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Path to Go...

\section*{Present}

Hardware: \(\mathcal{O}(10-100)\) noisy qubits with error mitigation Algorithms: first QC implementations of 1+1D LGTs, first resource-efficient formulations of 2+1D LGTs

\section*{Future}


Hardware: \(\mathcal{O}(1000)\) error-corrected qubits by 2029 ? Algorithms: improved Hamiltonians, resource-efficient formulations of 3+1D LGTs, ...

A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Way Forward...
A Rough Sketch...


Gidney, Ekera (2019);
Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Way Forward...
A Rough Sketch...

\section*{Quantum}
new and quickly progressing
\(\rightarrow\) high risk, high gain


Gidney, Ekera (2019);
Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Way Forward...

\section*{Quantum}
new and quickly progressing
\(\rightarrow\) high risk, high gain


\section*{Classical}
more established but limited
\(\rightarrow\) solid, promising


A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Way Forward...

\section*{Quantum}
new and quickly progressing
\(\rightarrow\) high risk, high gain


\section*{Classical}
more established but limited
\(\rightarrow\) solid, promising

\section*{Combination}
\(\rightarrow\) quantum-classical algorithms

A Rough Sketch...


Gidney, Ekera (2019); Kan, Nam (2021)

\section*{Summary: where do we stand, where will we go?}

The Way Forward...


\section*{Classical}
more established but limited
\(\rightarrow\) solid, promising

\section*{Combination}
\(\rightarrow\) quantum-classical algorithms


A Rough Sketch...


\section*{Backup: details of Bose-Hubbard quantum simulation}

\section*{Classical versus quantum simulation}

Why is(n't) classical computing enough?

\section*{Bose-Hubbard Hamiltonian}
\[
\mathcal{H}=\sum_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\text { h.c. }\right)+\frac{U}{2} \hat{n}_{j}\left(\hat{n}_{j}-1\right)+\frac{K}{2} \hat{n}_{j} j^{2}
\]

\section*{Experimental goal \({ }^{1}\)}

Simulate quantum tunneling from even to odd sites


\section*{Experimental setup}

Quantum simulation: ultracold atoms in optical lattice Classical benchmark: tensor networks (MPS-based)

\footnotetext{
\({ }^{1}\) Trotzky et al. (2012)
}

\section*{Experimental results}

Classical (line) vs. quantum (circles) simulation

this dynamical quantum simulator outperforms any continuous-time numerical simulation, for which the calculational effort increases with \(t\). Simulation methods on classical computers, such as matrix-product state based \(t\)-DMRG used here, suffer from an extensive increase in entanglement entropy which limits the relaxation times accessible in the calculations \({ }^{24,25}\).

\section*{Backup: analog versus digital quantum computers}

\section*{Analog}

\section*{Digital}

\section*{Concept}
- Use controllable quantum system to simulate the behavior of another quantum system
- Continuous time evolution
- Usually non-universal


\section*{Concept}
- Construct set of logical gates onto qubits
- Discrete time evolution
- Usually universal


\section*{Backup: how to measure the energy in VQE?}

\section*{Example: massless Schwinger model}

\section*{Original Hamiltonian}
\(\mathcal{H}=-\frac{i}{2 a} \sum_{n=0}^{N-2}\left(\phi_{n}^{\dagger} e^{i \theta_{n}} \phi_{n+1}-\right.\) h. c. \()+\frac{a g^{2}}{2} \sum_{n=0}^{N-2} F_{n}^{2}\)
with \(\theta_{n}=-a q A_{n}^{1}, g F_{n}=E_{n},\left[\theta_{n}, L_{m}\right]=i \delta_{n m}, \theta_{n} \in[0,2 \pi]\)
Eliminate \(\boldsymbol{\theta}_{\boldsymbol{n}}\)
\(\phi_{n}^{\dagger} e^{i \theta_{n}} \phi_{n+1} \rightarrow \phi_{n}^{\dagger} \phi_{n+1}\) from gauge transformation: \(\phi_{n} \rightarrow\left(\prod_{k=0}^{n-1} e^{-i \theta_{n}}\right) \phi_{n}\) and \(\phi_{n}^{\dagger} \rightarrow \phi_{n}^{\dagger}\left(\prod_{k=0}^{n-1} e^{i \theta_{n-k}}\right)\)
Eliminate \(\boldsymbol{F}_{\boldsymbol{n}}\)
\(F_{n}=\sum_{k=0}^{n} Q_{k}\) from solving Gauß law (for OBC):
\(F_{n}-F_{n-1}=Q_{n} \forall n\), where \(Q_{n}=\phi_{n}^{\dagger} \phi_{n}-\frac{1}{2}\left[1-(-1)^{n}\right]\)

\section*{Mapping the model to qubits}

\section*{Dimensionless spin Hamiltonian \({ }^{1}\)}
\(\mathcal{H}=x \sum_{n=0}^{N-2}\left(\sigma_{n}^{+} \sigma_{n+1}^{-}+\sigma_{n}^{-} \sigma_{n+1}^{+}\right)+\frac{1}{2} \sum_{n=0}^{N-2}\left\{\sum_{k=0}^{n}\left[(-1)^{k}+\sigma_{k}^{z}\right]\right\}^{2}\)
from mapping \(\phi_{n}^{\dagger} \phi_{n+1} \rightarrow \sigma_{n}^{+} \sigma_{n+1}^{-}\)and \(\phi_{n}^{\dagger} \phi_{n} \rightarrow \frac{1}{2}\left(\sigma_{n}^{Z}+\mathbb{I}\right)\)

\section*{Quantum computer}

Measurement of \(\langle\psi| \boldsymbol{O}|\psi\rangle\) with \(\boldsymbol{O} \in\left\{\mathbb{I}, \sigma^{z}\right\}^{\otimes N}\)
\(\mathcal{H}=\sum_{k} h_{k} U_{k}^{*} \boldsymbol{O}_{\boldsymbol{k}} U_{k}\) with \(U_{k}^{*} \boldsymbol{O}_{\boldsymbol{k}} U_{k} \in\left\{\mathbb{I}, \sigma^{x}, \sigma^{y}, \sigma^{z}\right\}^{\otimes N}\)


Gokhale et al. (2020)

\section*{Backup: quantum volume}

\section*{Concept}

\section*{Motivation}

Number of noisy qubits: no good performance measure New performance measure
Measure capabilities and error rates of quantum device

\section*{IBM's definition}
\[
\log _{2} V_{Q}=\arg \max _{\mathrm{n} \leq N}\{\min [n, d(n)]\}
\]

\section*{Example}

Successfully run circuit of depth \(d=8\) on \(n=8\) qubits: quantum volume is \(V_{Q}=2^{8}=256 \rightarrow\) size of state space "Success"
Most likely outputs of the circuit are computed correctly \(67 \%\) of the time with a \(2 \sigma\) confidence interval

\section*{Timeline}

\section*{Last three years}

Early 2020: \(V_{Q}=32\) (IBM) for \(d=5, n=5\)
Early 2021: \(V_{Q}=512\) (Honeywell) for \(d=9, n=9\)
Early 2022: \(V_{Q}=4096\) (Quantinuum) for \(d=12, n=12\)


\section*{Backup: preparing for overcoming sign problems in 3+1D}

\section*{Goal}

Simulate phase transition at \(\theta=\pi\) and large \(g=\beta^{-1 / 2}\)

\section*{Analytical results}

Derivation of Hamiltonian lattice \(\theta\)-term:
\(\theta Q=-\frac{i g^{2} \theta}{8 \pi^{2} a} \sum_{n, i, j, k, b} \varepsilon_{i j k} \operatorname{Tr}\left[E_{n, i}^{b} \lambda^{b}\left(U_{n, j k}-U_{n, j k}^{\dagger}\right)\right]\)

\section*{Numerical results}

Unlike in QCD, transition in \(U(1)\) might be not of first order

\section*{Near-future outlook}

Larger-volume simulation with 3+1D tensor networks

\section*{Far-future outlook}

First quantum simulation of \(3+1 \mathrm{D} \theta\)-term
```


[^0]: ${ }^{1}$ Trotzky et al. (2012)

[^1]: ${ }^{1}$ Trotzky et al. (2012)

[^2]: ${ }^{1}$ Trotzky et al. (2012)

