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Why Is the sign problem exponentially hard?

Example: finite baryon chemical potential Reweighting procedure
Partition function Example: phase quenched thecl_)qu
Z = [ DUDY Dpe=S = [ DUe ™S9 det M (0) = J DUe™s |detM|e'?0 (e 0>pq
Importance sampling | DUe™ s [detM|e'?  (e?)
Interpretation of e ¢ det M as probability weight Highly oscillatory integrands
Sign problem Near-cancellation of positive & negative contributions
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Real-time simulation?

Analog quantum simulator: ultracold atoms
Classical benchmark: tensor networks (MPS)
Experimental results

“the controlled [quantum] dynamics runs for longer times
than present classical algorithms can keep track of’ !

1 Trotzky et al. (2012)

Practical quantum advantage in quantum
simulation®

Here we overview the state of the art and future perspectives for
quantum simulation, arguing that a first practical quantum advantage already exists
inthe case of specialized applications of analogue devices
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Example: “quantum advantage” (2019) Example: “classical advantage” (2021)

Quantum supremacy using a programmable
superconducting processor

The promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor’. A
fundamental challenge is to build a high-fidelity processor capable of running quantum
algorithms in an exponentially large computational space. Here we report the use of a
processor with programmable superconducting qubits®” to create quantum states on
53 qubits, corresponding to acomputational state-space of dimension 2*° (about 10').
Measurements from repeated experiments sample the resulting probability
distribution, which we verify using classical simulations. Our Sycamore processor takes
about 200 seconds to sample one instance of a quantum circuit amillion times—our
benchmarks currently indicate that the equivalent task for a state-of-the-art classical
supercomputer would take approximately 10,000 years. This dramatic increase in
speed compared to all known classical algorithms is an experimental realization of
quantumsupremacy®  for this specific computational task, heralding amuch-
anticipated computing paradigm.
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Example: “quantum advantage” (2019) Example: “classical advantage” (2021)
Quantum supremacy using a programmable Closing the “Quantum Supremacy” Gap: Achieving Real-Time
Simulation of a Random Quantum Circuit Using a New Sunway

superconducting processor

Supercomputer

The promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor’. A
fundamental challenge is to build a high-fidelity processor capable of running quantum

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on
the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme,
and a path-optimization strategy that considers both complexity and compute density; (2) a three-

algorithms in an exponentially large computational Space. Herewereport theuseofa level parallelization scheme that scales to about 42 million cores; (3) a fused permutation and mul-
processor with programmable superconducting qubits* to create quantumstates on tiplication design that improves the compute efficiency for a wide range of tensor contraction sce-
53 qubits, corresponding to acomputational state-space of dimension 2* (about 10'). narios; and (4) a mixed-precision scheme to further improve the performance. Our simulator effec-
Measurements from repeated experiments sample the resulting probability tively expands the scope of simulatable RQCs to include the 10x10(qubits)x (1+40+1)(depth) cir-
distribution, which we verify using classical simulations. Our Sycamore processor takes cuit, with a sustained performance of 1.2 Eflops (single-precision), or 4.4 Eflops (mixed-precision)as
about 200 seconds to sample one instance of a quantum circuit amillion times—our a new milestone for classical simulation of quantum circuits; and reduces the simulation sampling

benchmarks currently indicate that the equivalent task for a state-of-the-art classical time of Google Sycamore to 304 seconds, from the previously claimed 10,000 years.

supercomputer would take approximately 10,000 years. This dramatic increase in
speed compared to all known classical algorithms is an experimental realization of
quantumsupremacy®  for this specific computational task, heralding amuch-
anticipated computing paradigm.
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Quantum supremacy using a programmable Closing the “Quantum Supremacy” Gap: Achieving Real-Time

superconducting processor

The promise of quantum computers is that certain computational tasks might be
executed exponentially faster on a quantum processor than on a classical processor’. A
fundamental challenge is to build a high-fidelity processor capable of running quantum
algorithms in an exponentially large computational space. Here we report the use of a
processor with programmable superconducting qubits®” to create quantum states on
53 qubits, corresponding to acomputational state-space of dimension 2*° (about 10').
Measurements from repeated experiments sample the resulting probability
distribution, which we verify using classical simulations. Our Sycamore processor takes
about 200 seconds to sample one instance of a quantum circuit amillion times—our
benchmarks currently indicate that the equivalent task for a state-of-the-art classical
supercomputer would take approximately 10,000 years. This dramatic increase in
speed compared to all known classical algorithms is an experimental realization of
quantumsupremacy®  for this specific computational task, heralding amuch-
anticipated computing paradigm.

Simulation of a Random Quantum Circuit Using a New Sunway
Supercomputer

We develop a high-performance tensor-based simulator for random quantum circuits(RQCs) on
the new Sunway supercomputer. Our major innovations include: (1) a near-optimal slicing scheme,
and a path-optimization strategy that considers both complexity and compute density; (2) a three-
level parallelization scheme that scales to about 42 million cores; (3) a fused permutation and mul-
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Backup: details of Bose-Hubbard quantum simulation

Classical versus quantum simulation Why is(n’t) classical computing enough?
Bose-Hubbard Hamiltonian Experimental results
U K
H = z —J (ajajﬂ + h. c.) + Enj(nj — 1) + Enjjz Classical (line) vs. quantum (circles) simulation
Experimental goal ! 0.6 —
Simulate quantum tunneling from even to odd sites -
q g Q 0090000000
0.4 —
/)(\(\ e Ao E
M U/J=9.90)
0.2
K/J=29x%x1072
(1) Preparation (2) Evolution (3) Readout B
0 | |
. 0 1 2 3 4 5
Experimental setup Alt/h
Quantum simulation: ultracold atoms in optical lattice | _ O S R
continuous-time numerical simulation, for which the calculational

Classical benchmark: tensor networks (MPS-based) effort increases with t. Simulation methods on classical computers,
such as matrix-product state based r-DMRG used here, suffer from

an extensive increase in entanglement entropy which limits the

1Trotzky et al. (2012 . . S— . .
y ( ) relaxation times accessible in the calculations***



Backup: analog versus digital guantum computers

Analog Digital

Concept Concept

» Use controllable quantum system to simulate the » Construct set of logical gates onto qubits

behavior of another quantum system . Discrete time evolution

e Continuous time evolution .
» Usually universal

« Usually non-universal

a — lIdeal evolution B—8 Exp. error model
0.6 — &34 Discretization errors E i Experimental data
0.5f ' ' ‘ &
9 q > 041
0.4 — 2
o) @
EO % 0 3 L
o i
L &
£
02 —C U/J1=9.9(1) 3 02t t ' @ @
K/J=29x1072 g
i éLtU' 04l vac e* e vac
0 | | | | 0o |
0 1 2 3 4 5 - /4 /2

wt

Trotzky et al. (2012) Martinez et al. (2016)



Backup: how to measure the energy in VQE?

Example: massless Schwinger model Mapping the model to qubits
Original Hamlltonlan Dimensionless spin Hamiltonian* ,
- N-2 N-2 n
L
— [0, 1
—_%z<¢n l ¢n+1_hc)+_zF2 7’[=XZ(01-{01:+1 +01?01:LI-+1)+EZ Z[(_l)k+gkz]
n=0 n=0 n=0 \ k=0

with 8, = —aqA}, gE, = E,, [0, L] = i6,m, 6, € [0,27]
Eliminate 6,,

from mapping o, ¢ns1 = o7 s and ¢ by = 2 (07 + 1)

Quantum computer

¢:Lrei9”¢n+1 - ¢:Lr ¢n+1 from gauge transformation: Measurement of (1|0|y) with O € {I, aZ}®V

Eliminate Fn 10) Standard Z Measurement

E, = Y} Qx from solving Gaul3 law (for OBC): (AN,
+ 1 n I~ Measure |0> probability
F, — Fy_q = Qp Y, Where Q,, = bn bn — 5 [1-(-D"] Resront |

R ~ Measure | 1> probability

1Banks et al. (1976), Hamer et al. (1997) 1)



Backup: quantum volume

Concept Timeline

Motivation Last three years
Number of noisy qubits: no good performance measure Early 2020: V, = 32 (IBM) ford =5,n =5
New performance measure Early 2021: V, = 512 (Honeywell) ford =9,n =9
Measure capabilities and error rates of quantum device Early 2022: V,, = 4096 (Quantinuum) for d = 12, n = 12
IBM’s definition

log, Vy = arg max{min[n,d(n)]}

nsN

Example

Successfully run circuit of depth d = 8 on n = 8 qubits:
quantum volume is V,, = 2% = 256 — size of state space

o
-
(=]
=
[
g
n
o
=
a2

“Success”

Most likely outputs of the circuit are computed correctly ’
67% of the time with a 20 confidence interval el

“Tokyo ”

“ Tenerife ”

Chow,
Gambetta (2020)

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030




Backup: preparing for overcoming sign problems in 3+1D

Example: 3+1D compact U(1) theory with 8-term Details: numerical ED results for single cube
Goal
Simulate phase transition at 8 = 7 and large g = g~1/2 g . ;
Analytical results Ng_ 0:6
Derivaticlggzog Hamiltonian lattice 6-term: OlF 0
90 =~ 8m2a z Eijic 1T [Eﬁ'illb (U"’jk B U:’r'jk)] = 0.2

n,i,j,k,b oS

Numerical results \8: F’
Unlike in QCD, transition in U(1) might be not of first order 5_3 —0.2
Near-future outlook c—(; —0.4
Larger-volume simulation with 3+1D tensor networks ':?D;: —0.(?;
Far-future outlook 38 08
First qguantum simulation of 3+1D 6-term = _1—0.6 _(l,_,_,.l _[l,_Q [l, 0{2 0[4 0.6

2
Kan, LF, Kuhn, Dellantonio, Zhang, Haase, Muschik, Jansen (2021a,2021b) 9/87‘[
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