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Benchmark: 𝑍 and 𝑍1𝑍2 operators on IBM-Q hardware 

Error mitigation: how can we reduce the noise?

Carlow (2018)

1 Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020)
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LF et al. (2020) 
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Other mitigation techniques

Zero-noise extrapolation,2 randomized compiling,3

quasi-probability decomposition,4 …

Lattice field theory applications

Zero-noise extrapolation for lattice Schwinger model:
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number of measurements

1 Kandala et al. (2017), Yeter-Aydeniz et al. (2019), LF et al. (2020); 2 Li et al. 

(2017), Wallman et al. (2016), 4 Temme et al. (2017), van den Berg (2020), ...

Operator rescaling method1

Benchmark: 𝑍 and 𝑍1𝑍2 operators on IBM-Q hardware 

Result: measurement error reduced by factor 10
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Experimental results

Classical (line) vs. quantum (circles) simulation

Bose-Hubbard Hamiltonian

ℋ =

𝑗

−𝐽 ො𝑎𝑗
†
ො𝑎𝑗+1 + ℎ. 𝑐. +

𝑈

2
ො𝑛𝑗 ො𝑛𝑗 − 1 +

𝐾

2
ො𝑛𝑗𝑗

2

Experimental goal 1

Simulate quantum tunneling from even to odd sites

Experimental setup

Quantum simulation: ultracold atoms in optical lattice

Classical benchmark: tensor networks (MPS-based)

Backup: details of Bose-Hubbard quantum simulation

Why is(n’t) classical computing enough?Classical versus quantum simulation

1 Trotzky et al. (2012)



Backup: analog versus digital quantum computers

DigitalAnalog 

Concept

• Use controllable quantum system to simulate the 
behavior of another quantum system

• Continuous time evolution

• Usually non-universal

Concept

• Construct set of logical gates onto qubits

• Discrete time evolution

• Usually universal

Trotzky et al. (2012) Martinez et al. (2016)



Dimensionless spin Hamiltonian 1 

ℋ = 𝑥

𝑛=0

𝑁−2

𝜎𝑛
+𝜎𝑛+1

− + 𝜎𝑛
−𝜎𝑛+1

+ +
1

2


𝑛=0

𝑁−2



𝑘=0

𝑛

−1 𝑘 + 𝜎𝑘
𝑧

2

from mapping 𝜙𝑛
†
𝜙𝑛+1 → 𝜎𝑛

+𝜎𝑛+1
− and 𝜙𝑛

†
𝜙𝑛 →

1

2
(𝜎𝑛

𝑧 + 𝕀)

Quantum computer

Measurement of 𝜓 𝑶 𝜓 with 𝑶 ∈ 𝕀, 𝜎𝑧 ⊗𝑁

ℋ = σ𝑘 ℎ𝑘𝑈𝑘
∗𝑶𝒌𝑈𝑘 with 𝑈𝑘

∗𝑶𝒌𝑈𝑘 ∈ 𝕀, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 ⊗𝑁

Original Hamiltonian

ℋ = −
𝑖

2𝑎


𝑛=0

𝑁−2

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 − h. c. +

𝑎𝑔2

2


𝑛=0

𝑁−2

𝐹𝑛
2

with 𝜃𝑛 = −𝑎𝑞𝐴𝑛
1 , 𝑔𝐹𝑛 = 𝐸𝑛, 𝜃𝑛, 𝐿𝑚 = 𝑖𝛿𝑛𝑚, 𝜃𝑛 ∈ [0,2𝜋]

Eliminate 𝜽𝒏

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 → 𝜙𝑛

†
𝜙𝑛+1 from gauge transformation:

𝜙𝑛 → ς𝑘=0
𝑛−1 𝑒−𝑖𝜃𝑛 𝜙𝑛 and 𝜙𝑛

†
→ 𝜙𝑛

† ς𝑘=0
𝑛−1 𝑒𝑖𝜃𝑛−𝑘

Eliminate 𝑭𝒏

𝐹𝑛 = σ𝑘=0
𝑛 𝑄𝑘 from solving Gauß law (for OBC):

𝐹𝑛 − 𝐹𝑛−1 = 𝑄𝑛 ∀𝑛, where 𝑄𝑛 = 𝜙𝑛
†
𝜙𝑛 −

1

2
1 − −1 𝑛

Backup: how to measure the energy in VQE?

Mapping the model to qubitsExample: massless Schwinger model

Gokhale et al. (2020)

1 Banks et al. (1976), Hamer et al. (1997)



Backup: quantum volume

TimelineConcept 

Motivation

Number of noisy qubits: no good performance measure

New performance measure

Measure capabilities and error rates of quantum device

IBM’s definition
log2 𝑉𝑄 = argmax

n≤𝑁
{min[𝑛, 𝑑 𝑛 ]}

Example

Successfully run circuit of depth 𝑑 = 8 on 𝑛 = 8 qubits: 
quantum volume is 𝑉𝑄 = 28 = 256 → size of state space 

“Success”

Most likely outputs of the circuit are computed correctly 
67% of the time with a 2σ confidence interval

Last three years

Early 2020: 𝑉𝑄 = 32 (IBM) for 𝑑 = 5, 𝑛 = 5

Early 2021: 𝑉𝑄 = 512 (Honeywell) for 𝑑 = 9, 𝑛 = 9

Early 2022: 𝑉𝑄 = 4096 (Quantinuum) for 𝑑 = 12, 𝑛 = 12

Chow, 

Gambetta (2020)
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Goal

Simulate phase transition at 𝜃 = 𝜋 and large 𝑔 = 𝛽−1/2

Analytical results

Derivation of Hamiltonian lattice 𝜃-term:

𝜃𝑄 = −
𝑖𝑔2𝜃

8𝜋2𝑎


𝑛,𝑖,𝑗,𝑘,𝑏

휀𝑖𝑗𝑘Tr 𝐸𝑛,𝑖
𝑏 𝜆𝑏 𝑈𝑛,𝑗𝑘 − 𝑈𝑛,𝑗𝑘

†

Numerical results

Unlike in QCD, transition in U(1) might be not of first order

Near-future outlook

Larger-volume simulation with 3+1D tensor networks

Far-future outlook

First quantum simulation of 3+1D 𝜃-term

𝜃/8𝜋2
T
o
p
o
lo

g
ic

a
l 
c
h
a
rg

e
 ⟨
ℋ

𝜃
⟩(
−
8
𝜋
2
𝛽
/𝜃
𝑉
)

Kan, LF, Kühn, Dellantonio, Zhang, Haase, Muschik, Jansen (2021a,2021b)

Backup: preparing for overcoming sign problems in 3+1D

Details: numerical ED results for single cubeExample: 3+1D compact U(1) theory with 𝜽-term


	Slide 1
	Slide 2: Why quantum computing?
	Slide 3: Why quantum computing?
	Slide 4: Why quantum computing?
	Slide 5: Why quantum computing?
	Slide 6: Why quantum computing?
	Slide 7: Why quantum computing?
	Slide 8: Why quantum computing?
	Slide 9: Why quantum computing?
	Slide 10: Why is the sign problem exponentially hard?
	Slide 11: Why is the sign problem exponentially hard?
	Slide 12: Why is the sign problem exponentially hard?
	Slide 13: Why is the sign problem exponentially hard?
	Slide 14: Why is the sign problem exponentially hard?
	Slide 15: Why is the sign problem exponentially hard?
	Slide 16: Why is the sign problem exponentially hard?
	Slide 17: Do we really need quantum computing?
	Slide 18: Do we really need quantum computing?
	Slide 19: Do we really need quantum computing?
	Slide 20: Do we really need quantum computing?
	Slide 21: Do we really need quantum computing?
	Slide 22: Do we really need quantum computing?
	Slide 23: Do we really need quantum computing?
	Slide 24: Do we really need quantum computing?
	Slide 25: Do we really need quantum computing?
	Slide 26: Do we really need quantum computing?
	Slide 27: Do we really need quantum computing?
	Slide 28: Do we really need quantum computing?
	Slide 29: Do we really need quantum computing?
	Slide 30: Do we really need quantum computing?
	Slide 31: Do we really need quantum computing?
	Slide 32: Do we really need quantum computing?
	Slide 33: Do we really need quantum computing?
	Slide 34: Do we really need quantum computing?
	Slide 35: Quantum computing: where do we stand?
	Slide 36: Quantum computing: where do we stand?
	Slide 37: Quantum computing: where do we stand?
	Slide 38: Quantum computing: where do we stand?
	Slide 39: Quantum computing: where do we stand?
	Slide 40: Quantum computing: where do we stand?
	Slide 41: Quantum computing: where do we stand?
	Slide 42: Quantum computing: where do we stand?
	Slide 43: Quantum computing: where do we stand?
	Slide 44: Quantum computing: where do we stand?
	Slide 45: Quantum computing: where do we stand?
	Slide 46: Quantum computing: where do we stand?
	Slide 47: Quantum computing: where do we stand?
	Slide 48: Quantum computing: where do we stand?
	Slide 49: Quantum computing: where do we stand?
	Slide 50: Quantum computing: where do we stand?
	Slide 51: Quantum computing: where will we go?
	Slide 52: Quantum computing: where will we go?
	Slide 53: Quantum computing: where will we go?
	Slide 54: Quantum computing: where will we go?
	Slide 55: Quantum computing: where will we go?
	Slide 56: Quantum computing: where will we go?
	Slide 57: Quantum computing: where will we go?
	Slide 58: Quantum computing: where will we go?
	Slide 59: Quantum computing: where will we go?
	Slide 60: Quantum computing: where will we go?
	Slide 61: How can we reduce the noise?
	Slide 62: How can we reduce the noise?
	Slide 63: How can we reduce the noise?
	Slide 64: How can we reduce the noise?
	Slide 65: How can we reduce the noise?
	Slide 66: How can we reduce the noise?
	Slide 67: How can we reduce the noise?
	Slide 68: How can we reduce the noise?
	Slide 69: How can we reduce the noise?
	Slide 70: Error mitigation: how can we reduce the noise?
	Slide 71: Error mitigation: how can we reduce the noise?
	Slide 72: Error mitigation: how can we reduce the noise?
	Slide 73: Error mitigation: how can we reduce the noise?
	Slide 74: Error mitigation: how can we reduce the noise?
	Slide 75: Error mitigation: how can we reduce the noise?
	Slide 76: Error mitigation: how can we reduce the noise?
	Slide 77: Error mitigation: how can we reduce the noise?
	Slide 78: Error mitigation: how can we reduce the noise?
	Slide 79: Error mitigation: how can we reduce the noise?
	Slide 80: Error mitigation: how can we reduce the noise?
	Slide 81: Error mitigation: how can we reduce the noise?
	Slide 82: Error mitigation: how can we reduce the noise?
	Slide 83: Error mitigation: how can we reduce the noise?
	Slide 84: Which field theories have already been simulated?
	Slide 85: Which field theories have already been simulated?
	Slide 86: Which field theories have already been simulated?
	Slide 87: Which field theories have already been simulated?
	Slide 88: Which field theories have already been simulated?
	Slide 89: How to simulate these field theories?
	Slide 90: How to simulate these field theories?
	Slide 91: How to simulate these field theories?
	Slide 92: How to simulate these field theories?
	Slide 93: How to simulate these field theories?
	Slide 94: How to simulate these field theories?
	Slide 95: How to simulate these field theories?
	Slide 96: How to simulate these field theories?
	Slide 97: How to simulate these field theories?
	Slide 98: How to simulate these field theories?
	Slide 99: How to simulate these field theories?
	Slide 100: How to prepare the quantum state?
	Slide 101: How to prepare the quantum state?
	Slide 102: How to prepare the quantum state?
	Slide 103: How to prepare the quantum state?
	Slide 104: How to prepare the quantum state?
	Slide 105: How to prepare the quantum state?
	Slide 106: How to prepare the quantum state?
	Slide 107: How to prepare the quantum state?
	Slide 108: How to prepare the quantum state?
	Slide 109: How to prepare the quantum state?
	Slide 110: How to deal with gauge fields?
	Slide 111: How to deal with gauge fields?
	Slide 112: How to deal with gauge fields?
	Slide 113: How to deal with gauge fields?
	Slide 114: How to deal with gauge fields?
	Slide 115: How to deal with gauge fields?
	Slide 116: How to deal with gauge fields?
	Slide 117: How to deal with gauge fields?
	Slide 118: How to deal with gauge fields?
	Slide 119: How to deal with gauge fields?
	Slide 120: How to deal with gauge fields?
	Slide 121: More details: parallel talks @ this conference
	Slide 122: More details: parallel talks @ this conference
	Slide 123: More details: parallel talks @ this conference
	Slide 124: More details: parallel talks @ this conference
	Slide 125: More details: parallel talks @ this conference
	Slide 126: More details: parallel talks @ this conference
	Slide 127: More details: parallel talks @ this conference
	Slide 128: More details: parallel talks @ this conference
	Slide 129: More details: parallel talks @ this conference
	Slide 130: More details: parallel talks @ this conference
	Slide 131: More details: parallel talks @ this conference
	Slide 132: More details: parallel talks @ this conference
	Slide 133: More details: parallel talks @ this conference
	Slide 134: More details: parallel talks @ this conference
	Slide 135: More details: parallel talks @ this conference
	Slide 136: More details: parallel talks @ this conference
	Slide 137: More details: parallel talks @ this conference
	Slide 138: Summary: where do we stand, where will we go?
	Slide 139: Summary: where do we stand, where will we go?
	Slide 140: Summary: where do we stand, where will we go?
	Slide 141: Summary: where do we stand, where will we go?
	Slide 142: Summary: where do we stand, where will we go?
	Slide 143: Summary: where do we stand, where will we go?
	Slide 144: Summary: where do we stand, where will we go?
	Slide 145: Summary: where do we stand, where will we go?
	Slide 146: Summary: where do we stand, where will we go?
	Slide 147: Summary: where do we stand, where will we go?
	Slide 148: Summary: where do we stand, where will we go?
	Slide 149: Summary: where do we stand, where will we go?
	Slide 150: Backup: details of Bose-Hubbard quantum simulation
	Slide 151: Backup: analog versus digital quantum computers
	Slide 152: Backup: how to measure the energy in VQE?
	Slide 153: Backup: quantum volume
	Slide 154: Backup: preparing for overcoming sign problems in 3+1D

