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LF et al. (2020) 

Carlow (2018)
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Experimental results

Classical (line) vs. quantum (circles) simulation

Bose-Hubbard Hamiltonian

ℋ =෍

𝑗

−𝐽 ො𝑎𝑗
†
ො𝑎𝑗+1 + ℎ. 𝑐. +

𝑈

2
ො𝑛𝑗 ො𝑛𝑗 − 1 +

𝐾

2
ො𝑛𝑗𝑗

2

Experimental goal 1

Simulate quantum tunneling from even to odd sites

Experimental setup

Quantum simulation: ultracold atoms in optical lattice

Classical benchmark: tensor networks (MPS-based)

Backup: details of Bose-Hubbard quantum simulation

Why is(n’t) classical computing enough?Classical versus quantum simulation

1 Trotzky et al. (2012)



Backup: analog versus digital quantum computers

DigitalAnalog 

Concept

• Use controllable quantum system to simulate the 
behavior of another quantum system

• Continuous time evolution

• Usually non-universal

Concept

• Construct set of logical gates onto qubits

• Discrete time evolution

• Usually universal

Trotzky et al. (2012) Martinez et al. (2016)



Dimensionless spin Hamiltonian 1 

ℋ = 𝑥෍

𝑛=0

𝑁−2

𝜎𝑛
+𝜎𝑛+1

− + 𝜎𝑛
−𝜎𝑛+1

+ +
1

2
෍

𝑛=0

𝑁−2

෍

𝑘=0

𝑛

−1 𝑘 + 𝜎𝑘
𝑧

2

from mapping 𝜙𝑛
†
𝜙𝑛+1 → 𝜎𝑛

+𝜎𝑛+1
− and 𝜙𝑛

†
𝜙𝑛 →

1

2
(𝜎𝑛

𝑧 + 𝕀)

Quantum computer

Measurement of 𝜓 𝑶 𝜓 with 𝑶 ∈ 𝕀, 𝜎𝑧 ⊗𝑁

ℋ = σ𝑘 ℎ𝑘𝑈𝑘
∗𝑶𝒌𝑈𝑘 with 𝑈𝑘

∗𝑶𝒌𝑈𝑘 ∈ 𝕀, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 ⊗𝑁

Original Hamiltonian

ℋ = −
𝑖

2𝑎
෍

𝑛=0

𝑁−2

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 − h. c. +

𝑎𝑔2

2
෍

𝑛=0

𝑁−2

𝐹𝑛
2

with 𝜃𝑛 = −𝑎𝑞𝐴𝑛
1 , 𝑔𝐹𝑛 = 𝐸𝑛, 𝜃𝑛, 𝐿𝑚 = 𝑖𝛿𝑛𝑚, 𝜃𝑛 ∈ [0,2𝜋]

Eliminate 𝜽𝒏

𝜙𝑛
†
𝑒𝑖𝜃𝑛𝜙𝑛+1 → 𝜙𝑛

†
𝜙𝑛+1 from gauge transformation:

𝜙𝑛 → ς𝑘=0
𝑛−1 𝑒−𝑖𝜃𝑛 𝜙𝑛 and 𝜙𝑛

†
→ 𝜙𝑛

† ς𝑘=0
𝑛−1 𝑒𝑖𝜃𝑛−𝑘

Eliminate 𝑭𝒏

𝐹𝑛 = σ𝑘=0
𝑛 𝑄𝑘 from solving Gauß law (for OBC):

𝐹𝑛 − 𝐹𝑛−1 = 𝑄𝑛 ∀𝑛, where 𝑄𝑛 = 𝜙𝑛
†
𝜙𝑛 −

1

2
1 − −1 𝑛

Backup: how to measure the energy in VQE?

Mapping the model to qubitsExample: massless Schwinger model

Gokhale et al. (2020)

1 Banks et al. (1976), Hamer et al. (1997)



Backup: quantum volume

TimelineConcept 

Motivation

Number of noisy qubits: no good performance measure

New performance measure

Measure capabilities and error rates of quantum device

IBM’s definition
log2 𝑉𝑄 = argmax

n≤𝑁
{min[𝑛, 𝑑 𝑛 ]}

Example

Successfully run circuit of depth 𝑑 = 8 on 𝑛 = 8 qubits: 
quantum volume is 𝑉𝑄 = 28 = 256 → size of state space 

“Success”

Most likely outputs of the circuit are computed correctly 
67% of the time with a 2σ confidence interval

Last three years

Early 2020: 𝑉𝑄 = 32 (IBM) for 𝑑 = 5, 𝑛 = 5

Early 2021: 𝑉𝑄 = 512 (Honeywell) for 𝑑 = 9, 𝑛 = 9

Early 2022: 𝑉𝑄 = 4096 (Quantinuum) for 𝑑 = 12, 𝑛 = 12

Chow, 

Gambetta (2020)
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Goal

Simulate phase transition at 𝜃 = 𝜋 and large 𝑔 = 𝛽−1/2

Analytical results

Derivation of Hamiltonian lattice 𝜃-term:

𝜃𝑄 = −
𝑖𝑔2𝜃

8𝜋2𝑎
෍

𝑛,𝑖,𝑗,𝑘,𝑏

𝜀𝑖𝑗𝑘Tr 𝐸𝑛,𝑖
𝑏 𝜆𝑏 𝑈𝑛,𝑗𝑘 − 𝑈𝑛,𝑗𝑘

†

Numerical results

Unlike in QCD, transition in U(1) might be not of first order

Near-future outlook

Larger-volume simulation with 3+1D tensor networks

Far-future outlook

First quantum simulation of 3+1D 𝜃-term

𝜃/8𝜋2
T
o
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o
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ic

a
l 
c
h
a
rg

e
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ℋ

𝜃
⟩(
−
8
𝜋
2
𝛽
/𝜃
𝑉
)

Kan, LF, Kühn, Dellantonio, Zhang, Haase, Muschik, Jansen (2021a,2021b)

Backup: preparing for overcoming sign problems in 3+1D

Details: numerical ED results for single cubeExample: 3+1D compact U(1) theory with 𝜽-term
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