A REVIEW ON GLUEBALL HUNTING

Davide Vadacchino

School of Engineering, Computing and Mathematics University of Plymouth

Lattice 2022, Bonn August 9th, 2022

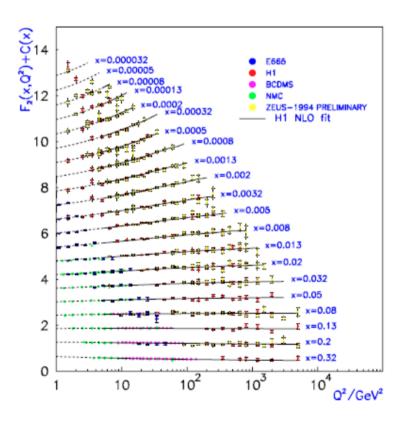
n	V	(TT	oP)

Quantum ChromoDynamics

$$\mathscr{L} = -\frac{1}{g_0^2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} + \sum_{f=u,d,s,\dots} \bar{q}_f (\imath \mathbb{D} + m_f) q_f$$
$$G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + f^{abc} G^b_\mu G^c_\nu$$

It is a theory of quarks and gluons:

- \rightarrow Very successfull at high-energies (DIS, Jets,...)
- \rightarrow Running coupling: No perturbation theory (PT) at low-energies.



Introduction

Glueballs

- \rightarrow Important footprint in literature (~ 1000)
- \rightarrow Theoretical predictions mostly consistent.
- \rightarrow Experimental detection challenging: overlapped resonances.
- \rightarrow Essential for understanding of QCD.

Fritzsch and Gell-Mann, 1972; Fritzsch and Minkowski, 1975

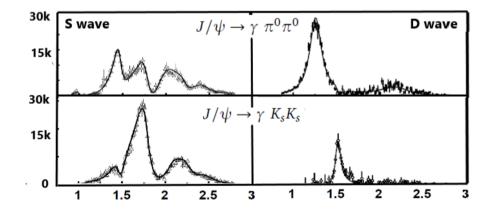


Figure: The $J/\psi \rightarrow \gamma \pi \pi$, $\gamma K \bar{K}$ as a function of the invariant $\pi \pi$ of *KK* energy. From Klempt, 2022.

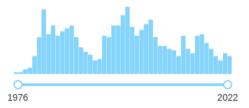


Figure: "find t glueballs OR t glueballs"

Not only QCD

- \rightarrow Important for general non-Abelian gauge theory.
- → Present in many scenario on BSM, Dark Matter^{*a*},...

Lattice 2022

^aCarenza et al., 2022.

(中)(部)(第)(第)(第)(9)

Glueball Hunting

The determination of

$$J^{PC}$$
, $m(J^{PC})$, $\Gamma(J^{PC})$

from theory and experiment.

Outline of this talk

- → Brief overview of QCD inspired models: MIT bag model, QCD sum rules
- → Lattice status: spectrum and decays from quenched and unquenched simulations
- \rightarrow Introduction to experiments: glue rich processes

Reviews

- \rightarrow "The Physics of Glueballs" Mathieu, Kochelev, and Vento, 2009
- \rightarrow "The Status of Glueballs" Ochs, 2013
- → "Glueballs as the Ithaca of meson spectroscopy: From simple theory to challenging detection" Llanes-Estrada, 2021
- → "The Experimental Status of Glueballs" Crede and C. A. Meyer, 2009

The simplest model

Let

 $|G\rangle = \hat{G}|\Omega\rangle$

be a pure glueball state. Then \hat{G} is:

- \rightarrow a color-singlet (confinement)
- \rightarrow Bose symmetric (gluon is spin-1)

and^{*a*} for 2, 3, ... gluon states

 $(2g): \quad B^a_{\mu}B^a_{\nu}, \quad (3g): \quad f_{abc}B^a_{\mu}B^b_{\nu}B^c_{\sigma}, \ d_{abc}B^a_{\mu}B^b_{\nu}B^c_{\sigma}$

Since B^a_μ is massless^b,

(2g):
$$J^{PC} = 0^{++}, 2^{++}, 0^{-+}, ...$$

(3g): $J^{PC} = 1^{+-}, 1^{--}, 3^{--}, ...$

 \rightarrow exotic states

 $\rightarrow \hat{G}$ flavour-singlet: Γ flavour-agnostic

MIT Bag model¹

From^{*a*} the spherical boundary conditions

$$(TE): P, C = (-1)^{l}, +, (TM): P, C = (-1)^{l+1}, -$$

For *n* gluons

 $|G\rangle = |(TE)^{n_E}(TM)^{n_E}\rangle, \quad n_e + n_M = n$

$$(2g): \quad J^{PC} = 0^{++}, 2^{++}, 0^{-+}, 2^{-+}, \dots$$
$$(3g): \quad J^{PC} = 0^{+-}, 1^{+-}, 1^{--}, 3^{+-}, \dots$$

From other hadrons: $B \sim 0.1$ GeV, thus,

 $m(\text{TE})^2 = 960 \text{ MeV},$ $m(\text{TM})^2 = 1590 \text{ MeV},$ m(TETM) = 1290 MeV.

^aJohnson, 1975.

 ^aFritzsch and Minkowski, 1975.
 ^bLandau, 1948; C.-N. Yang, 1950.

Many other examples...

- → Potential models(Cornwall, 1982)
- → Flux-tube models(Isgur and Paton, 1983; Isgur and Paton, 1985)

→ ...

Summary

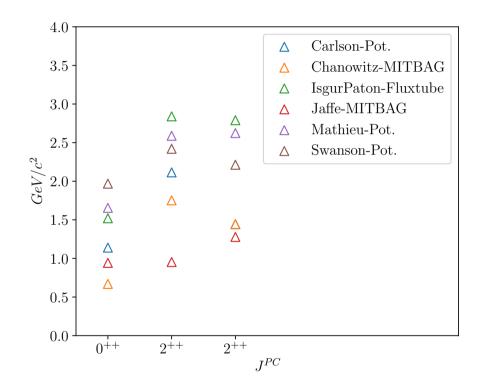
- \rightarrow No quarks involved.
- \rightarrow Each model can be refined "at will".
- \rightarrow (almost) All agree that the lightest states are found for

$$J^{PC} = 0^{++}, 2^{++}, 0^{-+}$$

with

$$m(0^{++}) \sim 1 - 2 \text{ GeV},$$

 $m(0^{-+}) \sim 1.5 - 2.5 \text{ GeV}$
 $m(2^{++}) \sim 2.0 - 3.0 \text{ GeV}$



QCD Sum Rules

$$\Pi(q^2) = \int \mathrm{d}^4 x \, e^{iq \cdot x} \, \langle \Omega | \, T\{J(x)J(0)\} \, | \Omega \rangle$$

where, depending on the desired quantum numbers

$$J_{\rm S}(x) = \alpha_s G^a_{\mu\nu} G^a_{\mu\nu}, \quad J_{\rm PS}(x) = \alpha_s G^a_{\mu\nu} \tilde{G}^a_{\mu\nu}$$

$$J_{\mathrm{T},\mu\nu}(x) = -G^a_{\mu\alpha}G^a_{\alpha\nu} + \frac{g^{\mu\nu}}{4}G^a_{\beta\alpha}G^a_{\alpha\beta}$$

Using the OPE at short distances and setting

$$\frac{1}{\pi} \text{Im} \Pi(q^2) = \rho(s) = \sum_i f_{G_i}^2 \,\delta(s - m_{G_i}^2) + \rho_{\text{cont.}}(s)$$

 f_{G_i} and m_{G_i} can be estimated^{*a*}

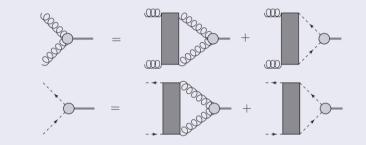
 $m_{\rm S} \sim 1.780(170) \text{ GeV}, \quad m_{\rm PS} \sim 1.860(170) \text{GeV},$

 $m_{\rm T} \sim 2.170(110) {
m GeV}$

and in a different setting^{*b*}, $\Gamma(G \rightarrow PS) \lesssim 100$ Mev.

BS equations

By finding a self-consistent truncation to the BSE equations^a



and to the Schwinger-Dyson equations for the gluon and ghost correlation functions, fixing an overall scale from lattice data allows to obtain

 $m_{\rm S} \sim 1.850(130) \text{ GeV}, \quad m_{\rm PS} \sim 2.610(180) \text{ GeV}$

 $m_{\rm T} \sim 2.580(180) {
m GeV}$

^{*a*}Huber, Fischer, and Sanchis-Alepuz, 2020.

^{*a*}H.-X. Chen, W. Chen, and Zhu, 2021. ^{*b*}Narison, 2009.

Summary of analytical and phenomenological models



```
D.V. (UoP)
```

Wishlist for glueballs

- $\rightarrow~$ The Spectrum of stable states: 2-point functions.
- $\rightarrow~$ The decay width: phases shifts, 3-points functions

Lattice regularization

$$S = \sum_{x,\mu\nu} \beta \left(1 - \frac{1}{2N_c} \operatorname{Re} \operatorname{Tr} U_{\mu\nu}(x) \right) + \sum_x \bar{\psi} M[U] \psi \quad (+ \text{ impr.})$$

where $\beta = g_0^2 / 4N_c$,

$$U_{\mu\nu} = U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\mu}+\hat{\nu}) U_{\nu}^{\dagger}(x+\nu), \quad U_{\mu}(x) = e^{ia\int ds A_{\mu}(s)}$$

and M[U] is the fermionic matrix.

Observables

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{O}[U] \det M[U] e^{-S_{\text{YM}}},$$

where

$$Z = \int \mathscr{D}[U] \det M[U] e^{-S_{\rm YM}}$$

Space-time symmetries

Subduced representations of $T \rtimes O_h$ \rightarrow IRREPs of O_h :

 $A_1^{\pm}, A_2^{\pm}, E^{\pm}, T_1^{\pm}, T_2^{\pm}.$

- → IRREPs of *T*: exp($\pm l \frac{2\pi}{L} n$) with $n \in [0, L)$.
- \rightarrow Correspondence with *J*

J	A_1	A_2	Ε	T_1	T_2
0	1	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	1	0	1	1
4		0	1	1	1

Spectrum calculations

$$\mathscr{C}(t) = \langle \Phi(t)\Phi(0) \rangle = \sum_{n} |c_{n}|^{2} e^{-tE_{n}} \longrightarrow |c_{0}|^{2} e^{-E_{0}t}, \qquad t \gg 1/E_{0}$$

- $\rightarrow \Phi$ are $\vec{p} = 0$ color-singlet operators.
- $\rightarrow c_n = \langle n | \Phi(0) | 0 \rangle$ are the overlaps.

Signal-to-noise ratio

At large euclidean time, signal/noise is exponentially decaying:

- \rightarrow Maximize the overlap $|c_0|^2$: Variational method^{*a*}
- \rightarrow Use variance reduction at large-*t*: Multilevel^{*b*}.

^aWilson, 1974; Ishikawa, M. Teper, and Schierholz, 1982.
^bH. B. Meyer, 2003; Della Morte and Giusti, 2011.

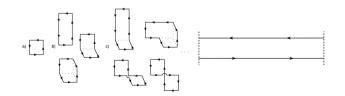


Figure: Example of contractible(left) and non-contractible(right) paths. From Biagio Lucini, Rago, and Rinaldi, 2010

Variational method

- → Define a *variational basis* of *N* operators $\{\Phi_i\}$ in each symmetry channel.
- \rightarrow Compute for all *t* the 2*N* × 2*N* matrix $\mathscr{C}_{ij}(t) = \langle \Phi_i(t) \Phi_j(0) \rangle$
- \rightarrow Find { v_i } that minimize the quantity

$$m_{\rm eff}(\tau) = \ln \frac{v_i \mathscr{C}_{ij}(\tau) v_j}{v_i \mathscr{C}_{ij}(\tau-1) v_j}$$

a $\tau = 1$.

 \rightarrow Fit

$$\mathcal{C}_{ii}(t) = |c_i|^2 \cosh\left(m_i t - N_L/2\right)$$

to the data, using m_i and c_i as fitting parameters.

Continuum and large volume limits

After reaching the infinite volume limit, the continuum spectrum can be extrapolated to a = 0,

$$\frac{m}{\mu}(a) = \frac{m}{\mu}(0) + ca^2\mu + \dots$$

where μ is come physical scale.

Quenched systems

- → Center symmetry. → No sea quarks, det M[U] = 1.
- \rightarrow Very different from physical Glueballs: no mixing, no decays
- \rightarrow The spectrum was calculated in all the available channels in the infinite volume and continuum limits.

Technical details

- \rightarrow HB+OR algorithms: large statistic, high precision.
- \rightarrow Pure-glue variational basis
- \rightarrow Poor overlap without blocked and smeared operators^{*a*}
- \rightarrow Anisotropic lattice, improved actions^b
- ▲ All the states in the channel propagate^{*c*}: scattering, di-torelons, ...
- ∴ The effects of topological freezing^{*d*} as $a \rightarrow 0$. (talk by C. Bonanno today @14.20).

^{*a*}M. Teper, 1987.

- ^bMorningstar and Peardon, 1997.
- ^cBiagio Lucini, Rago, and Rinaldi, 2010.
- ^dBonanno et al., 2022.

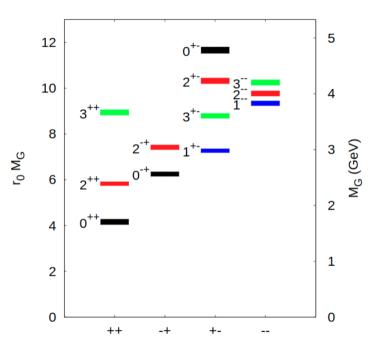


Figure: The quenched spectrum, taken from F. Chen et al., 2021. It is consistent with Morningstar and Peardon, 1999

Quenched systems

- → Center symmetry. → No sea quarks, det M[U] = 1.
- $\rightarrow~$ Very different from physical Glueballs: no mixing, no decays
- \rightarrow The spectrum was calculated in all the available channels in the infinite volume and continuum limits.

Technical details

- \rightarrow HB+OR algorithms: large statistic, high precision.
- → Pure-glue variational basis
- \rightarrow Poor overlap without blocked and smeared operators^{*a*}
- \rightarrow Anisotropic lattice, improved actions^b
- <u>All</u> the states in the channel propagate^{*c*}: scattering, di-torelons, ...
- ∴ The effects of topological freezing^{*d*} as $a \rightarrow 0$. (talk by C. Bonanno today @14.20).

^dBonanno et al., 2022.

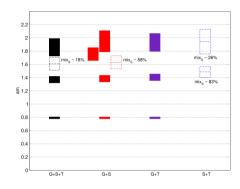


Figure: The effect of including different kinds of operators in the variational basis. From Biagio Lucini, Rago, and Rinaldi, 2010.

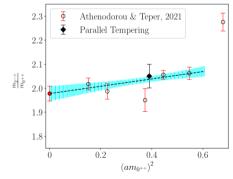


Figure: Effect of top. freezing on m_T/m_S . From Bonanno et al., 2022.

^{*a*}M. Teper, 1987.

^bMorningstar and Peardon, 1997.

^{*c*}Biagio Lucini, Rago, and Rinaldi, 2010.

Results

- → Estimates obtained with different techniques are compatible.
- \rightarrow The lightest states are the scalar, tensor, pseudo-scalar, with^{*a*}

 $m(0^{++}) = 1475 - 1730$ MeV, $m(2^{++}) = 2150 - 2400$ MeV, $m(0^{-+}) = 2250 - 2590$ MeV

^{*a*}H.-X. Chen, W. Chen, Liu, et al., 2022.

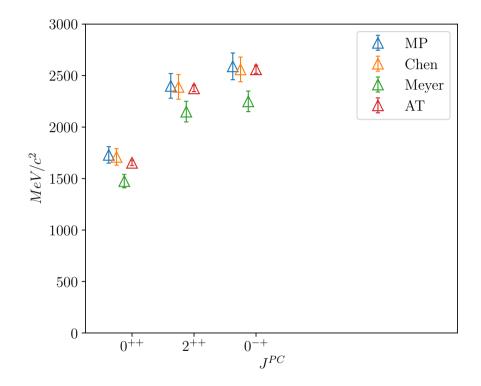


Figure: The full quenched spectrum, collection of data from H.-X. Chen, W. Chen, Liu, et al., 2022.

Quenched decays

- \rightarrow Phase shifts: finite volume study^{*a*}
- \rightarrow simplified method 0⁺⁺ 2PS coupling λ from 3 point functions^b,

 $\Gamma_{\text{tot}}(0^{++} \rightarrow 2PS) \sim 108(29) \text{ MeV},$

but potentially large systematics.

 \rightarrow The decay of J/ψ to pseudo-scalar^c and tensor^d glueballs were studied and the form factor was computed as a function of Q^2 .

^aLuscher, 1986. ^bSexton, Vaccarino, and Weingarten, 1995. ^cGui et al., 2019. ^{*d*}Y.-B. Yang et al., 2013.

D.V. (UoP)

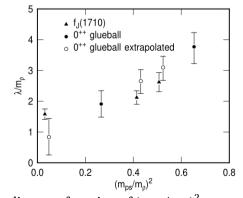


Figure: The *G* – 2*PS* coupling as a function of $(m_{PS}/m_0)^2$ extrapolated to *PS* = π , *K*, A REVIEW ON GLUEBALL HUNTING

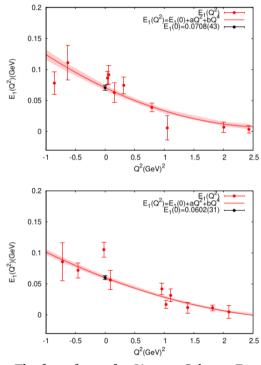


Figure: The form factor for $J/\psi \rightarrow \gamma G$ decay. From Gui et al., 2019.

Other directions

- \rightarrow The spectrum was also studied^{*a*} at large- N_c
- \rightarrow for *Sp*(2*N*) groups^{*b*},
- \rightarrow for trace deformed actions^{*c*}
- \rightarrow Its universal features were investigated^d
- ^{*a*}B. Lucini and M. Teper, 2001; Athenodorou and Michael Teper, 2021.

^bBennett et al., 2021.

^cAthenodorou, Cardinali, and D'Elia, 2021.

^{*d*}Bennett et al., 2020; Hong et al., 2017.

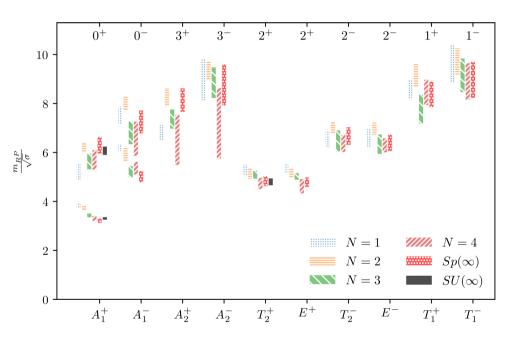


Figure: The spectrum of Sp(2N) for N = 1, 2, 3, 4 and its large-N limit. From Bennett et al., 2021.

・ ロト・ 御 ト・ ヨト・ ヨー うへの

Technical aspects

- \rightarrow Computationally more expensive
- \rightarrow Many fermion discretizations: Wilson, Staggered, Twisted mass,...
- \rightarrow Anisotropic lattices^{*a*} and improved actions^{*b*}.
- \rightarrow Pure-glue variational bases.

^{*a*}Sun et al., 2018. ^{*b*}Hart and M. Teper, 2002; Gregory et al., 2012.

The pure glueball component

- → The spectrum was obtained in $N_f = 2$ with Wilson^{*a*} and clover improved^{*b*} actions at $m_{\text{PS}}/m_{\rho} \ge 0.5$ and $a \simeq 0.1 fm$.
- → The effects of scattering states was studied^{*c*} on $N_f = 2 + 1$ AQSTAD improved staggered fermions.
- → First computation at physical point, CDER at two lattice spacings F. Chen et al., 2021, $N_f = 2 + 1$

^{*a*}Bali et al., 2000.

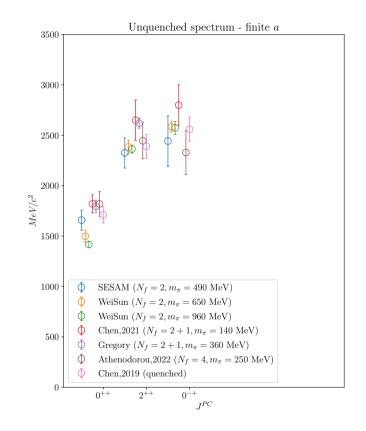


Figure: Quenched and Unquenched spectrum of glueball component at finite a.

^bHart and M. Teper, 2002.

^cGregory et al., 2012.

Unquenched Glueballs: the physical spectrum

The physical glueball

- \rightarrow Fermion operators in the variational basis. bases.
- → Spectrum and mixing studied in $N_f = 2$ clover improved^{*a*} at $a \simeq 0.13$ fm.
- \rightarrow Mass suppression seems^b to be smaller for smaller *a*, but still present.
- \rightarrow Light scalar meson spectrum seems to be independent on the presence of pure-glue operators^{*c*}.

^aCraig McNeile and Michael, 2001.
^bHart, C. McNeile, et al., 2006.
^cBrett et al., 2020.

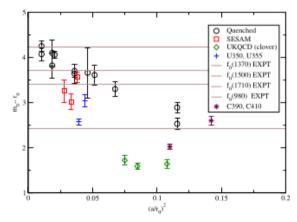


Figure: The masses of physical glueballs as a function of $(a/r_0)^2$. The value of m_{π} for each ensemble is not indicated. From Craig McNeile and Michael, 2001.

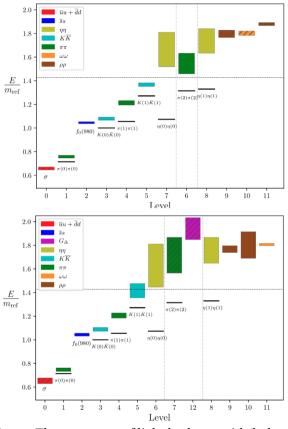


Figure: The spectrum of light hadrons with(below) and without(above) glueball operators in the variational basis. From Brett et al., 2020.

D.V. (UoP)

Unquenched Glueballs

The decays

- \rightarrow Should use FV formalism^{*a*}.
- \rightarrow A simpler method can be used when near threshold^b but large systematics^c

^aLuscher, 1986.

^bSexton, Vaccarino, and Weingarten, 1995.

^cCraig McNeile and Michael, 2001.

Recent studies

- → Distillation profiles were optimized for glueballs^{*a*}(see talk by J.A.U Nino today @15.40)
- \rightarrow The 0⁻⁺ η/η_c mixing energy in $N_f = 2$ energy^b.
- \rightarrow Interglueball potential from BSE^c
- → Scattering cross section of SU(2) glueballs using HAL QCD method^{*d*}.
- → Recently, $N_f = 4$ and $N_f = 2 + 1 + 1$ were explored (see talk by A. Athenodorou on 11Aug@9.00)

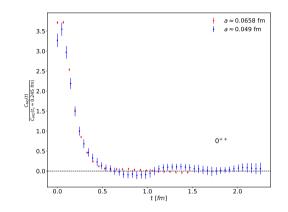


Figure: The $C_{MG}(t)/C_{MG}(t_c)$ correlation function where using distillation for the meson operators. From Knechtli et al., 2022.

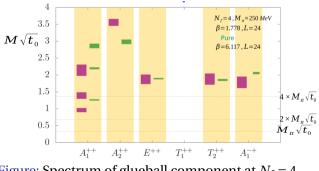


Figure: Spectrum of glueball component at $N_f = 4$, $m_{\rm PS} \sim 250$ MeV. From Athenodorou, This conference.

^{*a*}Knechtli et al., 2022.

^bJiang, Sun, et al., 2022; Jiang, F. Chen, et al., 2022.

^cYamanaka, Nakamura, and Wakayama, 2022.

^dYamanaka, Iida, et al., 2020.

A summary of results from models and lattice

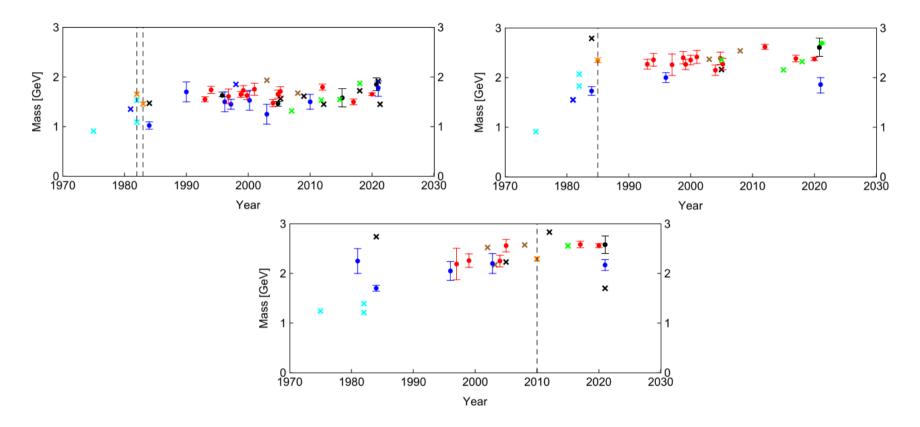


Figure: The value of the scalar(left), tensor(right) and pseudoscalar(center) masses as a function of time. From H.-X. Chen, W. Chen, Liu, et al., 2022.

 < □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ >

 Lattice 2022

Glueballs?

- \rightarrow The searches focus mainly on the lightest states: scalar, tensor, pseudo-scalar.
- \rightarrow Promising signals should come from the analysis of glue-rich processes,
- \rightarrow Glueballs should be supernumerary states with respect to $q\bar{q}$ multiplets.
- \rightarrow A priori, mixed with $q\bar{q}$ of similar mass
- → Exotics: 0^{--} , 0^{+-} , 1^{-+} ,...

Glue rich processes

Data from multiple sources are combined to map the landscape of resonances with $I^G = 0^+$

 \rightarrow radiative decays of J/ψ : BESIII, ...

$$J/\psi \rightarrow \gamma hh, \quad J/\psi \rightarrow Vhh$$

- $\rightarrow p\bar{p}$ annihilations: Crystal Barrell, PANDA,...
- $\rightarrow pp$ double Pomerons exchange: WA102,...

The peaks in $J^{PC} = 0^{++}$, 2^{++} , 0^{-+} channels are then obtained with partial wave analysis.

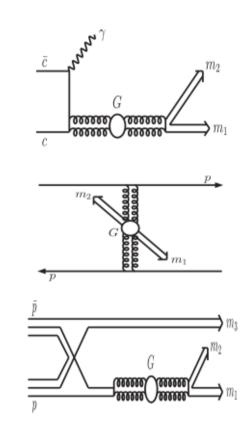


Figure: Gluon rich processes. From Mathieu, Kochelev, and Vento, 2009

Glueball identification

- → Glueball candidates: resonances with mass is close to theoretical prediction.
- → Id: Coupled channel analysis to obtain G fraction.

The Scalar resonances				
	name	m(MeV)	Γ(MeV)	
	$f_0(500)$	$400 \rightarrow 500$	480(30)	
	$f_0(980)$	990(1)20	71(10)	
	$f_0(1370)$	$1200 \rightarrow 1500$	$200 \rightarrow 500$	
	$f_0(1500)$	1506(6)	112(9)	
	$f_0(1710)$	1704(12)	123(18)	
	$f_0(1770)$	1765(15)	180(20)	
	$f_0(2020)$	1992(16)	442(60)	
	$f_0(2100)$	2086^{20}_{-24}	284_{32}^{60}	
	$f_0(2200)$	2187(14)	~ 200	
	$f_0(2330)$	~ 2330	250(20)	

Mixing scenarios

 \rightarrow Assume one of $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ supernumerary^{*a*},

 $M = \begin{bmatrix} M_G & f & \sqrt{2}f \\ f & M_S & 0 \\ \sqrt{2}f & 0 & M_N \end{bmatrix}, \quad f = \langle s\bar{s}|V|G \rangle = \langle n\bar{n}|V|G \rangle / \sqrt{2}, \quad |n\bar{n}\rangle = |u\bar{u} + d\bar{d}\rangle / \sqrt{2}$

based on branching ratio calculation yielded a scalar glueball at $m \sim 1490(30)$ MeV.

 \rightarrow If a new isoscalar $f_0(1770)$ is introduced^b then

res.	$f_0(1370)$	$f_0(1500)$	$f_0(1710)$	$f_0(1770)$	$f_0(2020)$	$f_0(2100)$
G content	5(4)%	< 5%	12(6)%	25(10)%	16(9)%	17(8)%
and argued for a distributed scalar glueball at $m \sim 1865$ MeV and $\Gamma \sim 370$ MeV.						

^{*a*}Amsler and Close, 1995; Amsler and Close, 1996; Close and Kirk, 2000. ^{*b*}Klempt and Andrey V. Sarantsev, 2022; A. V. Sarantsev et al., 2021.

The Tensor/Pseudo-scalar glueball

- $\rightarrow 2^{++}$: Many resonances in the tensor channel, but branching ratios much lower than (quenched) lattice predictions^{*a*}.
- → 0^{-+} : Beside the resonances in PDG, the *X*(1835), *X*(2120), *X*(2370), *X*(2500) and *X*(2600) recently observed at BES3^{*b*}.

^{*a*}Ablikim et al., 2016.

^bGroup et al., 2020.

- Quenched lattice results consistent with the predictions of phenomenological models.
 - \rightarrow The lightest glueballs are the 0⁺⁺, 2⁺⁺, 0⁻⁺ channels.
 - \rightarrow The results obtained in models and lattice seem spreaded around the values

 $m(0^{++}) \sim 1600 \text{ MeV}, \quad m(2^{++}) \sim m(0^{-+}) \sim 2400 \text{ MeV}$

- Unquenched lattice results still at an exploratory level:
 - \rightarrow Mass of the glueball components consistent with quenched results.
 - \rightarrow No continuum limits and first principle calculations not at physical point.
 - \rightarrow Mixing and decay to be studied with finite volume analysis.
 - → Distillation techniques and the "simplified" method could provide further results on mixing and decays.
- Despite years of searches, currently no undisputed experimental identification of the 0⁺⁺, 2⁺⁺ and 0⁻⁺ glueballs
 - \rightarrow Several different mixing scenarios seem to be simultaneously plausible
 - → Additional data data from the BES3 and PANDA experiments will lift ambiguity on several resonances and help to discriminate between these scenarios.
 - \rightarrow Input from (unquenched) lattice of the decay width and mixing energy essential.

Thank you for your attention