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Nucleon structure (leading twist) 
 


Structure functions from first 
principles 

Understanding the behaviour in 
the high- and low-x regions

Motivation PDG 2020
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Motivation
Scaling


 cuts of global QCD analyses 

Power corrections / Higher twist 
effects 


Target mass corrections 


Twist-4 contributions

Q2

PDG 2020
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Technical issues:


Operator Product Expansion formalism to study DIS processes 


Operator mixing/renormalisation issues in OPE approach in LQCD


 

 

Why not calculate the observable directly? 

μ(Q2) = c2(a2Q2) v2(a) +
c4(a2Q2)

Q2
v4(a) + ⋯

Motivation

mixing1/a2 divergence

twist-2 twist-4physical observable
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LQCD landscapeLattice PDFs/GPDs: dynamical progress

Krzysztof Cichy Progress in x-dependent partonic distributions from LQCD – LATTICE2021 @ MIT – 4 / 41

Reviews: K. Cichy, M. Constantinou, A guide to light-cone PDFs from Lattice QCD: an overview of approaches,
techniques and results, special issue of Adv. High Energy Phys. 2019 (2019) 3036904, 1811.07248
update: M. Constantinou, The x-dependence of hadronic parton distributions: A review on the progress
of lattice QCD, (would-be) plenary talk of LATTICE 2020, EPJA 57 (2021) 77, 2010.02445
X. Ji, Y. Liu, Y.-S. Liu, J.-H. Zhang, Y. Zhao, Large-Momentum Effective Theory, 2004.03543
M. Constantinou et al., Parton distributions and LQCD calculations: toward 3D structure, 2006.08636

Some studies already advanced, but still full systematics needs to be investigated
Many exploratory directions: GPDs, twist-3 PDFs/GPDs, singlet PDFs, TMDs

Krzysztof Cichy @ LATTICE’21 plenary

PoS(LATTICE2021)017 

QCDSF-UKQCD-CSSM Collaboration

Extended to nucleon  and 

Study of higher-twist effects

also, a first look at  and 

F2 FL

g1 g2
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Outline

Credit: D Dominguez / CERN

Forward Compton Amplitude &  
    the Nucleon Structure Functions

Application of the Feynman-Hellmann Theorem

Moments of the Nucleon Structure Functions

Scaling and Power Corrections/Higher-twist effects



DIS and the Hadronic Tensor
Forward Compton Amplitude & the Nucleon Structure Functions

Deep  inelastic  scattering (DIS)(Q2 ≫ M2) (W2 ≫ M2) dσ ∼ Lμν
j Wj

μν

leptonic tensor hadronic tensor

 (neutral) orW (charged)j = γ, Z, and γZ

<latexit sha1_base64="qfiOjRukCzgot9FWTJDHIEBb+FY="></latexit>
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✓
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qµq⌫
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p · q
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Structure Functions unpolari
sed

3.1 Deep Inelastic Scattering 16

P

k k0

q

P + q
N

e�

X
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Figure 3.1: The Feynman diagram for deep inelastic scattering. As with all Feynman diagrams

in this thesis, time increases left to right.

• the virtual photon exchanged by the electron and nucleon has momentum q = k�k0.

Given these variables, it is useful to define some Lorentz scalars.

• ⌫ = P ·q

M
, which is the energy transferred to the nucleon in the nucleon’s rest frame:

⌫ = k0 � k00.

• Q =
p

�q2, which is always real, since qµ is spacelike. This is the momentum
transferred to the nucleon.

• x = Q
2

2P ·q
, the ‘Bjorken scaling variable’. In the nucleon’s rest frame, this is propor-

tional to the ratio of momentum transfer to energy transfer.

• ! = x�1, the inverse Bjorken variable. This variable is particularly useful for the
OPE.

• M , the nucleon mass.

• mf the mass of a quark of flavour f .

• M2

X
= (P + q)2, the invariant mass of the outgoing state X.

Physical Region of Scalars

Now we will determine what the physically allowed region is for each Lorentz scalar defined
above.

First, note that in the nucleon’s rest frame the electron transfers energy to the proton
and hence ⌫ � 0, and since this is a Lorentz scalar it is non-negative in all frames.

Then, since q = k�k0 and k and k0 are future-pointing timelike vectors, we can use the
inverse Minkowski triangle inequality to get q2 = (k � k0)2  |k2 � k02| = m2

e�
� m2

e�
= 0

(see appendix A). Therefore, q is a spacelike vector, and hence �q2 = Q2 � 0. The region
for inelastic scattering starts at Q2 & 2GeV2.

In inelastic scattering, the momentum transfer to the nucleon is very large, and hence
M2

X
= (P + q)2 & M2. Therefore,

P 2 + 2P · q � Q2 & P 2 ) 2P · q & Q2 ) ! =
2P · q

Q2
& 1. (3.1)

Hence the physical region of x is [0, 1], and for ! it is [1, 1).

p p

<latexit sha1_base64="zCQ0bWqFBwwCDFOJI+K79x6dk7M="></latexit>

Wµ⌫ =
1

4⇡

Z
d4zeiq·z⇢ss0hp, s0|[Jµ(z), J⌫(0)]|p, si

of higher twist under renormalization, be it in a soft
renormalization scheme like MS or in a cutoff scheme
like the lattice [1,30,31]. On the lattice the result is that the
leading-twist Wilson coefficients diverge as 1=a2 (a being
the lattice constant). This divergence must be canceled with
that of the higher-twist operator matrix element, which
demands a nonperturbative calculation of the Wilson
coefficients. The usefulness of the OPE comes from the
assumption that the nonperturbative physics is contained in
the operator matrix elements, known as factorization, while
the Wilson coefficients are calculable in perturbation
theory. This fundamental property is threatened by the
presence of power divergences. Another shortcoming of
present calculations is that the structure functions at
medium to small Bjorken x are dominated by Regge and
Pomeron exchange, which are peripheral processes that
proceed far off the light-cone [32,33]. Several attempts
have been made to extend the OPE into the Regge regime
[34,35] without much success [36]. TheWilson coefficients
can be computed on the lattice, in principle, as presented in
Refs. [8,37,38]. It should be noted though that the hyper-
cubic lattice can only accommodate operators of spin four
or less, which thwarts any prediction of the Wilson
coefficients for the higher moments on the lattice.
The structure of hadrons relevant for deep-inelastic

scattering are completely characterized by the Compton
amplitude. In the present work, we build upon a recent
paper [12] outlining a procedure to determine nucleon
structure functions from a lattice QCD calculation of the
forward Compton amplitude. By working with the physical
amplitude, this approach overcomes issues of operator
mixing and renormalization, and the restriction to light-
cone operators [32,33]. By working with the physical
amplitude, there is no need to resort to the OPE, facing
problems of factorization and renormalization, nor is the
calculation bound to light cone kinematics. However, if we
were to map the OPE upon the Compton amplitude, as far
as this is possible, we will find Wilson coefficients and
operators being properly renormalized, including mixing
effects. If the Compton amplitude is known sufficiently
accurately, we can expect to obtain nucleon structure
functions in closed form [12], including power corrections.
The strategy is most similar to those considered in
Refs. [7,9,20,39], and shares features with other approaches
to inclusive processes [20,40–44].
Here we establish the theoretical foundation of the

approach and present results for the Compton amplitude
across a range of kinematics. The calculations are per-
formed at the SU(3) flavor symmetric point [45] at an
unphysical pion mass. Results are reported on the lowest
four moments of the unpolarized structure functions of the
nucleon for photon momenta Q2 ranging from approx-
imately 3–7 GeV2. The variation of Q2 demonstrates the
potential to provide a quantitative test of the twist expan-
sion on the lattice for the first time.

In terms of the practical computation, the determination
of the Compton amplitude takes advantage of the Feynman-
Hellmann [46–50] approach to hadron structure—see also
Refs. [51–57]. The use of Feynman-Hellmann provides an
alternative to computing the 3- or 4-point functions. Here
we also present a derivation of the second-order Feynman-
Hellmann theorem necessary for the present work—a
related derivation has been presented in Ref. [58].
This paper is organized as follows: formal definitions of

the Compton amplitude and the structure functions, along
with the connection between the OPE and the dispersion
relation are given in Sec. II. We explicitly derive the second
order Feynman-Hellmann theorem in Sec. III. Our lattice
setup and the implementation details are given in Sec. IV.
Results for the Compton amplitude and the moments of the
structure functions are presented in Sec. V. We summarize
our findings in Sec. VI.

II. FORWARD COMPTON AMPLITUDE
AND THE STRUCTURE FUNCTIONS

A. Notation

At leading order in the electromagnetic interaction, the
general description for the inclusive scattering of a charged
lepton from a hadronic target, e.g., eN → e0X, is encoded
in the hadron tensor. Conventionally, the hadron tensor is
expressed as a matrix element of the commutator of
electromagnetic current operators [59–61],1

Wμνðp; qÞ ¼
1

4π

Z
d4zeiq·zρss0 hp; s0j½J μðzÞ;J νð0Þ%jp; si;

ð1Þ

for a hadron of momentum p and (virtual) photon momen-
tum q. For the present discussion, we will only consider
spin-averaged observables by taking ρss0 ¼ 1

2 δss0 . The cur-
rent operator takes the familiar form as the charge-weighted
sum of the quark vector currents, J μ ¼

P
f QfJ

f
μ, withQf

being the charge of quark flavor f. The flavor decomposition
will be discussed in further detail in a later section.
The spin-averaged nucleon tensor can be decomposed as

Wμνðp;qÞ¼
!
−gμνþ

qμqν
q2

"
F1ðx;Q2Þ

þ
!
pμ−

p ·q
q2

qμ

"!
pν−

p ·q
q2

qν

"
F2ðx;Q2Þ

p ·q
;

ð2Þ

which is defined such that Lorentz-invariant structure
functions, F1;2, match onto their conventional partonic
interpretation in the deep inelastic scaling region. These

1In this section, we work in Minkowski space.

K. U. CAN et al. PHYS. REV. D 102, 114505 (2020)

114505-2
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Tμν(p, q) = i∫ d4z eiq⋅zρss′￼
⟨p, s′￼|𝒯{Jμ(z)Jν(0)} |p, s⟩

= (−gμν +
qμqν

q2 ) ℱ1(ω, Q2) + (pμ −
p ⋅ q
q2

qμ) (pν −
p ⋅ q
q2

qν) ℱ2(ω, Q2)
p ⋅ q

Forward Compton Amplitude
Forward Compton Amplitude & the Nucleon Structure Functions

, spin avg. ⇢ss0 =
1

2
�ss0

<latexit sha1_base64="2gLiSuUHGhOyqmbksHycQI0Rn8U="></latexit>

Compton Structure Functions (SF)

ω =
2p ⋅ q

Q2

∼
N(p)

J𝜇(q)

2 Im

Forward Compton Amplitude ~ Compton Tensor

N(p)

J𝜇(q)
2

DIS Cross Section ~ Hadronic Tensor

Same Lorentz 

decom
positio

n as 

the Hadronic 

Tensor
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we can write down dispersion relations and connect  
Compton SFs to DIS SFs:

Nucleon Structure Functions
Forward Compton Amplitude & the Nucleon Structure Functions

ℱ1(ω, Q2) − ℱ1(0,Q2) = 2ω2 ∫
1

0
dx

2x F1(x, Q2)
1 − x2ω2 − iϵ

ℱ2(ω, Q2) = 4ω2 ∫
1

0
dx

F2(x, Q2)
1 − x2ω2 − iϵ

ℱL(ω, Q2) + ℱ1(0,Q2) =
8M2

N

Q2 ∫
1

0
dxF2(x, Q2)

+2ω2 ∫
1

0
dx

FL(x, Q2)
1 − x2ω2 − iϵ

Im ω

ω0 1-1 Re ω

ω = x−1

Compton Amplitude is an 
analytic function in the 
unphysical region |ω0 | < 1

inelastic cut

≡ ℱ1(ω, Q2)

≡ ℱL(ω, Q2)
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Nucleon Structure Functions
Forward Compton Amplitude & the Nucleon Structure Functions

ω =
2p ⋅ q

Q2
≡ x−1using the Taylor expansion, 

1
1 − (xω)2

=
∞

∑
n=1

(xω)2n−2

ℱ1,L(ω, Q2) =
∞

∑
n=0

2ω2nM(1,L)
2n (Q2) M(1)

2n (Q2) = 2∫
1

0
dx x2n−1F1(x, Q2) M(1)

0 (Q2) = 0

ℱ2(ω, Q2) =
∞

∑
n=1

4ω2n−1M(2)
2n (Q2) M(2,L)

2n (Q2) = ∫
1

0
dx x2n−2F2,L(x, Q2) M(L)

0 (Q2) =
4M2

N

Q2
M(2)

2 (Q2)

, where

, where

, and

, and

  and          μ = ν = 3 p3 = q3 = 0 ⟹ ℱ1(ω, Q2) = T33(p, q)

  and  μ = ν = 0 p3 = q3 = q0 = 0 ⟹
ℱ2(ω, Q2)

ω
= [T00(p, q) + T33(p, q)] Q2

2E2
N

ℱL(ω, Q2) = − ℱ1(ω, Q2) + ( ω
2

+
2M2

N

ωQ2 ) ℱ2(ω, Q2)
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Application of the Feynman-Hellmann Theorem

∂Eλ

∂λ
= ⟨ϕλ |

∂Hλ

∂λ
|ϕλ⟩

H𝜆: perturbed Hamiltonian of the system

E𝜆: energy eigenvalue of the perturbed system

𝜙𝜆:  eigenfunction of the perturbed system

in Quantum Mechanics:

expectation value of the perturbed system is related to the shift in the energy eigenvalue

S → S(λ) = S + λ∫ d4x 𝒪(x)
e.g. local bilinear operator

q̄(x)Γμq(x) , Γμ ∈ {1, γμ, γ5γμ, …}
real parameter

∂Eλ

∂λ
=

1
2Eλ

⟨0 |𝒪 |0⟩

@ 1st order
E𝜆 → spectroscopy, 2-pt function

<0|𝓞|0> → determine 3-pt 

FH Theorem at 1st order

in Lattice QCD: energy shifts in the presence of a weak external field

Applications:

 - terms


Form factors
σ
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Tμμ(p, q) = ∫ d4zeiq⋅z⟨N(p) |𝒯{Jμ(z)Jμ(0)} |N(p)⟩ S → S(λ) = S + λ∫ d4z (eiq⋅z + e−iq⋅z) Jμ(z)

Action modification
Jμ(z) = ∑q eqq̄(z)γμq(z)
local EM current

N(p)

J𝜇(q)unpolarised Compton Amplitude

from spectral decomposition 

<latexit sha1_base64="Cy+Lg2/Iv3otJqkzO7/A4uVdP1s=">AAADGHicbVJdixMxFM2MX2v96uqjLxeL0CKWaVlUkIVVEcUHWWG7u9C0QyaTacNmPkwyQpvNz/DFv+KLD4r4um/+GzOzw9J2vTBw7rnn3Lm5SVQIrnQQ/PX8K1evXb+xdbN16/adu/fa2/cPVV5KykY0F7k8johigmdspLkW7LiQjKSRYEfRyZuqfvSFScXz7EAvCjZJySzjCadEOyrc9vpYsET3ASeSUIMLIjUnYjqEd1PTHfZsiIXrFpMuTomeR4kp7EvdsxdKaOrToQUs+WyuT0PTcLuBhd2m86uVBs4+hLfhxzUKNLCpebpBg7YtzDMN8XQHltB1Eg6fAdM417C08KQ2rVK9aqJsJhisNzqFOqNEmAOLzUXywXaXPVhNgx62Tr5ux7JuGrY7QT+oAy6DQQM6qIn9sH2G45yWKcs0FUSp8SAo9MRUy6OCucOVihWEnpAZGzuYkZSpiakv1sJjx8SQ5NJ9bgc1u+owJFVqkUZOWY2qNmsV+b/auNTJi4nhWVFqltHzHyWlAJ1D9Uog5pJRLRYOECq5mxXonLh71O4ttdwSBptHvgwOh/3Bs37waaez97pZxxZ6iB6hLhqg52gPvUf7aISo99X77v30fvnf/B/+b//PudT3Gs8DtBb+2T+eRvou</latexit>

@2G(2)
� (p; t)

@�2

�����
�=0

=
A(p)

2EN (p)
te�EN (p)t

Z
d4z(eiq·z + e�iq·z)hN(p)|T {J (z)J (0)}|N(p)i

from path integral 

2nd order derivatives of the 2-pt correlator, , in the presence of the external fieldG(2)
λ (p; t)

<latexit sha1_base64="1ScOIKq+zI4jTTBBRymyBQt5lWk="></latexit>

@2EN�(p)

@�2

����
�=0

= � 1

2EN (p)

Tµµ(p,q)z }| {Z
d4z(eiq·z + e�iq·z)hN(p)|J (z)J (0)|N(p)i

equate the time-enhanced terms:

Compton amplitude is related to the second-order energy shift

+ (q → − q)

Compton amplitude via the FH relation at 2nd order
kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]Application of the Feynman-Hellmann Theorem
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relevant contribution comes from the ordering where the currents are sandwiched

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

χ (0)χ(t)
<latexit sha1_base64="EP1xIALsOxPMVHG7Rtub2bgCNwk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRoi4LbkQ3FewD2hAm02k7dDIJM5NCCAU/xI0LRdz6J+78GydtF9p64MLhnHuZMyeIOVPacb6twtr6xuZWcbu0s7u3f2AfHrVUlEhCmyTikewEWFHOBG1qpjntxJLiMOC0HYxvcr89oVKxSDzqNKZeiIeCDRjB2ki+bfdCrEcE8+xuWkn92rlvl52qMwNaJe6ClGGBhm9/9foRSUIqNOFYqa7rxNrLsNSMcDot9RJFY0zGeEi7hgocUuVls+RTdGaUPhpE0ozQaKb+vshwqFQaBmYzz6mWvVz8z+smenDtZUzEiaaCzB8aJBzpCOU1oD6TlGieGoKJZCYrIiMsMdGmrJIpwV3+8ippXVTdy6rzUCvX75/mdRThBE6hAi5cQR1uoQFNIDCBZ3iFNyuzXqx362O+WrAWFR7DH1ifPwObk64=</latexit>

J (y4)
<latexit sha1_base64="R8VkFs8APqwwbjf2Nvz5ZTytQto=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHqpiRS1GXBjeimgn1AG8JkOmmHTiZhZlKooeCHuHGhiFv/xJ1/46TtQlsPXDiccy9z5gQJZ0o7zre1srq2vrFZ2Cpu7+zu7dsHh00Vp5LQBol5LNsBVpQzQRuaaU7biaQ4CjhtBcPr3G+NqFQsFg96nFAvwn3BQkawNpJv290I6wHBPLudlB/96plvl5yKMwVaJu6clGCOum9/dXsxSSMqNOFYqY7rJNrLsNSMcDopdlNFE0yGuE87hgocUeVl0+QTdGqUHgpjaUZoNFV/X2Q4UmocBWYzz6kWvVz8z+ukOrzyMiaSVFNBZg+FKUc6RnkNqMckJZqPDcFEMpMVkQGWmGhTVtGU4C5+eZk0zyvuRcW5r5Zqd0+zOgpwDCdQBhcuoQY3UIcGEBjBM7zCm5VZL9a79TFbXbHmFR7BH1ifPwUik68=</latexit>

J (z4) ∼ e−EN(p)t ∫
t
dΔ e−(EX(p + q) − EN(p))Δ (t − Δ)

under the condition , 
,  

so the intermediate states 
cannot go on-shell


ground state dominance is 
ensured in the large time limit

|ω | < 1
EX(p + nq) ≳ EN(p)

of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,

SðλÞ ¼ Sþ λ
Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,

Gð2Þ
λ ðp; tÞ≡

Z
d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,
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Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
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¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,
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where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,
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λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,
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where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be
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where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,
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λ ðp; tÞ≡
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d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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|ω | = 0.59
Δ = z4 − y4

 e.g.

Compton amplitude via the FH relation at 2nd order
Application of the Feynman-Hellmann Theorem
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Moments of the Nucleon Structure Functions

Strategy | Energy shifts
kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]
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Moments of the Nucleon Structure Functions
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Q2 = 4.9 GeV2

where F1 and F2 are the deep-inelastic structure functions
of the nucleon. Using the OPE, one can express F 1 and F 2

in terms of moments of F1 and F2, which are amenable to
calculation on the Euclidean lattice. Alternatively, F 1 and
F 2 can be written as dispersion integrals over ω, which
leads to the same expressions.
Let us first consider the OPE of F 1 and F 2. After some

simple algebra we obtain [7]

Tμνðp;qÞ¼
X∞

n¼2;4;$$$

!"
δμν−

qμqν
q2

#
4ωn

Z
1

0
dxxn−1F1ðx;q2Þ

þ
"
pμ−

p ·q
q2

qμ

#"
pν−

p ·q
q2

qν

#
8

2p ·q
ωn−1

×
Z

1

0
dxxn−2F2ðx;q2Þ

$
: ð5Þ

The series
P

k∈NðωxÞ2k in Eq. (5) is geometric and sums up
to ½1 − ðωxÞ2'−1, which leads to the alternate expression

Tμνðp; qÞ ¼
"
δμν −

qμqν
q2

#
4ω

Z
1

0
dx

ωx
1 − ðωxÞ2

F1ðx; q2Þ

þ
"
pμ −

p · q
q2

qμ

#"
pν −

p · q
q2

qν

#
8ω

2p · q

×
Z

1

0
dx

1

1 − ðωxÞ2
F2ðx; q2Þ: ð6Þ

In the limit where F1ðx; q2Þ and F2ðx; q2Þ become inde-
pendent of q2 we have the Callan-Gross rela-
tion F2ðxÞ ¼ 2xF1ðxÞ.
Alternatively, we can express F 1 and F 2 directly in

terms of the structure functions F1 and F2, circumventing
the OPE. The amplitudes F 1 and F 2 have cuts at −∞ ≤
ω ≤ −1 and 1 ≤ ω ≤ ∞ with discontinuities (4). This leads
to once subtracted dispersion relations

F 1ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F1ðω̄;q2Þ
ω̄ðω̄−ωÞ

−
F1ðω̄;q2Þ
ω̄ðω̄þωÞ

#
þF 1ð0;q2Þ;

F 2ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F2ðω̄;q2Þ
ω̄ðω̄−ωÞ

þF2ðω̄;q2Þ
ω̄ðω̄þωÞ

#
: ð7Þ

While F 2ð0; q2Þ ¼ 0, the subtraction constant F 1ð0; q2Þ
contains information on the magnetic polarizability of the
nucleon and the proton-neutron electromagnetic mass shift
[8]. In the following equations we shall discard it, as it has
no counterpart in F1, nor is it accounted for by the OPE. It
can be computed like any other value of F 1 though and, if
necessary, has to be subtracted from F 1ðω; q2Þ. (So, for
example, from the data underlying Fig. 6.) Substituting ω̄
by 1=x, we finally obtain

F 1ðω; q2Þ ¼ 4ω2

Z
1

0
dxx

F1ðx; q2Þ
1 − ðωxÞ2

;

F 2ðω; q2Þ ¼ 4ω
Z

1

0
dx

F2ðx; q2Þ
1 − ðωxÞ2

; ð8Þ

where we have identified F1ðω̄; q2Þ and F2ðω̄; q2Þ with
F1ðx; q2Þ and F2ðx; q2Þ, respectively. If we insert Eq. (8)
into Eq. (3), we obtain Eq. (6), in agreement with the OPE
resummed. It should be noted that the structure functions
F1ðx; q2Þ and F2ðx; q2Þ include higher twist contributions,
as we have not made any assumptions on F 1 and F 2 other
than on the analytic structure.
To simplify the numerical calculation, we may choose

μ ¼ ν ¼ 3 and p3 ¼ q3 ¼ q4 ¼ 0. We then have

T33ðp; qÞ ¼
X∞

n¼2;4;$$$
4ωn

Z
1

0
dxxn−1F1ðx; q2Þ ð9Þ

and, alternatively,

T33ðp; qÞ ¼ 4ω
Z

1

0
dx

ωx
1 − ðωxÞ2

F1ðx; q2Þ: ð10Þ

For jωj > 1 the principal value has to be taken. The matrix
element T33ðp; qÞ can be computed most efficiently,
including singlet matrix elements, by a simple extension
of existing implementations of the Feynman-Hellmann
technique to lattice QCD [9]. For simplicity, we consider
the local vector current only. The appropriate renormaliza-
tion factor ZV can be computed unambiguously [10]. No
further renormalization is needed. To compute the
Compton amplitude from the Feynman-Hellmann relation,
we introduce the perturbation to the Lagrangian

LðxÞ → LðxÞ þ λJ 3ðxÞ;
J 3ðxÞ ¼ ZV cosðq⃗ · x⃗Þefψ̄fðxÞγ3ψfðxÞ; ð11Þ

where ψf is the quark field of flavor f ¼ u; d; s;… to which
the photon is attached, and ef is its electric charge. Note
that λ has dimension mass. Taking the second derivative
of the nucleon two-point function hNðp⃗; tÞN̄ðp⃗; 0Þiλ ≃
Cλe−Eλðp;qÞt with respect to λ on both sides, we obtain

−2Eλðp; qÞ
∂2

∂λ2 Eλðp; qÞjλ¼0 ¼ T33ðp; qÞ: ð12Þ

The derivation of Eq. (12) would go beyond the scope of this
Letter and will be presented in a separate publication.
Provided we compute at sufficiently large q2, standard
factorization theorems state that the Compton amplitude
will be dominated by the “handbag” diagram shown in the
left panel of Fig. 1. Nevertheless, the amplitude does
encompass all contributions, including the power-suppressed

FIG. 1. The so-called “handbag” diagram (left panel) and cats-
ears diagram (right panel).
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where F1 and F2 are the deep-inelastic structure functions
of the nucleon. Using the OPE, one can express F 1 and F 2

in terms of moments of F1 and F2, which are amenable to
calculation on the Euclidean lattice. Alternatively, F 1 and
F 2 can be written as dispersion integrals over ω, which
leads to the same expressions.
Let us first consider the OPE of F 1 and F 2. After some

simple algebra we obtain [7]

Tμνðp;qÞ¼
X∞

n¼2;4;$$$

!"
δμν−

qμqν
q2

#
4ωn

Z
1

0
dxxn−1F1ðx;q2Þ

þ
"
pμ−

p ·q
q2

qμ

#"
pν−

p ·q
q2

qν

#
8

2p ·q
ωn−1

×
Z

1

0
dxxn−2F2ðx;q2Þ

$
: ð5Þ

The series
P

k∈NðωxÞ2k in Eq. (5) is geometric and sums up
to ½1 − ðωxÞ2'−1, which leads to the alternate expression

Tμνðp; qÞ ¼
"
δμν −

qμqν
q2

#
4ω

Z
1

0
dx
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1 − ðωxÞ2
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þ
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pν −

p · q
q2

qν

#
8ω

2p · q

×
Z

1

0
dx

1

1 − ðωxÞ2
F2ðx; q2Þ: ð6Þ

In the limit where F1ðx; q2Þ and F2ðx; q2Þ become inde-
pendent of q2 we have the Callan-Gross rela-
tion F2ðxÞ ¼ 2xF1ðxÞ.
Alternatively, we can express F 1 and F 2 directly in

terms of the structure functions F1 and F2, circumventing
the OPE. The amplitudes F 1 and F 2 have cuts at −∞ ≤
ω ≤ −1 and 1 ≤ ω ≤ ∞ with discontinuities (4). This leads
to once subtracted dispersion relations

F 1ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F1ðω̄;q2Þ
ω̄ðω̄−ωÞ

−
F1ðω̄;q2Þ
ω̄ðω̄þωÞ

#
þF 1ð0;q2Þ;

F 2ðω;q2Þ¼2ω
Z

∞

1
dω̄

"
F2ðω̄;q2Þ
ω̄ðω̄−ωÞ

þF2ðω̄;q2Þ
ω̄ðω̄þωÞ

#
: ð7Þ

While F 2ð0; q2Þ ¼ 0, the subtraction constant F 1ð0; q2Þ
contains information on the magnetic polarizability of the
nucleon and the proton-neutron electromagnetic mass shift
[8]. In the following equations we shall discard it, as it has
no counterpart in F1, nor is it accounted for by the OPE. It
can be computed like any other value of F 1 though and, if
necessary, has to be subtracted from F 1ðω; q2Þ. (So, for
example, from the data underlying Fig. 6.) Substituting ω̄
by 1=x, we finally obtain

F 1ðω; q2Þ ¼ 4ω2

Z
1

0
dxx

F1ðx; q2Þ
1 − ðωxÞ2

;

F 2ðω; q2Þ ¼ 4ω
Z

1

0
dx

F2ðx; q2Þ
1 − ðωxÞ2

; ð8Þ

where we have identified F1ðω̄; q2Þ and F2ðω̄; q2Þ with
F1ðx; q2Þ and F2ðx; q2Þ, respectively. If we insert Eq. (8)
into Eq. (3), we obtain Eq. (6), in agreement with the OPE
resummed. It should be noted that the structure functions
F1ðx; q2Þ and F2ðx; q2Þ include higher twist contributions,
as we have not made any assumptions on F 1 and F 2 other
than on the analytic structure.
To simplify the numerical calculation, we may choose

μ ¼ ν ¼ 3 and p3 ¼ q3 ¼ q4 ¼ 0. We then have

T33ðp; qÞ ¼
X∞

n¼2;4;$$$
4ωn

Z
1

0
dxxn−1F1ðx; q2Þ ð9Þ

and, alternatively,

T33ðp; qÞ ¼ 4ω
Z

1

0
dx

ωx
1 − ðωxÞ2

F1ðx; q2Þ: ð10Þ

For jωj > 1 the principal value has to be taken. The matrix
element T33ðp; qÞ can be computed most efficiently,
including singlet matrix elements, by a simple extension
of existing implementations of the Feynman-Hellmann
technique to lattice QCD [9]. For simplicity, we consider
the local vector current only. The appropriate renormaliza-
tion factor ZV can be computed unambiguously [10]. No
further renormalization is needed. To compute the
Compton amplitude from the Feynman-Hellmann relation,
we introduce the perturbation to the Lagrangian

LðxÞ → LðxÞ þ λJ 3ðxÞ;
J 3ðxÞ ¼ ZV cosðq⃗ · x⃗Þefψ̄fðxÞγ3ψfðxÞ; ð11Þ

where ψf is the quark field of flavor f ¼ u; d; s;… to which
the photon is attached, and ef is its electric charge. Note
that λ has dimension mass. Taking the second derivative
of the nucleon two-point function hNðp⃗; tÞN̄ðp⃗; 0Þiλ ≃
Cλe−Eλðp;qÞt with respect to λ on both sides, we obtain

−2Eλðp; qÞ
∂2

∂λ2 Eλðp; qÞjλ¼0 ¼ T33ðp; qÞ: ð12Þ

The derivation of Eq. (12) would go beyond the scope of this
Letter and will be presented in a separate publication.
Provided we compute at sufficiently large q2, standard
factorization theorems state that the Compton amplitude
will be dominated by the “handbag” diagram shown in the
left panel of Fig. 1. Nevertheless, the amplitude does
encompass all contributions, including the power-suppressed

FIG. 1. The so-called “handbag” diagram (left panel) and cats-
ears diagram (right panel).
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Moments of the Nucleon Structure Functions

Moments | Fit details

Enforce monotonic decreasing of moments

for  and  only, uu dd |ud |2 ≤ 4uu * dd

M2(Q2) ≥ M4(Q2) ≥ ⋅ ⋅ ⋅ ≥ M2n(Q2) ≥ ⋅ ⋅ ⋅ ≥ 0
We truncate at 

No dependence to truncation order for 

n = 6
3 ≤ n ≤ 10

M2(Q2) ∼ 𝒰 (0, 1)
M2n(Q2) ∼ 𝒰 (0, M2n−2(Q2))

Sample the moments from Uniform priors

individually for u- and d-quark

Normal Likelihood function, exp(−χ2/2)

χ2 = ∑
i

(ℱi − ℱobs(ωi))2

σ2
i

Bayesian approach by MCMC method

0

2

Fuu
1 Fuu

2 /! Fuu
L

0

1
Fdd

1 Fdd
2 /! Fdd

L

0.0 0.2 0.4 0.6 0.8 1.0
!

°0.05

0.00

0.05

Fud
1 Fud

2 /! Fud
L

ℱqq
1 (ω, Q2) = 2

∞

∑
n=1

M(1)
2n (Q2) ω2n

ℱqq
2 (ω, Q2)

ω
=

τ
1 + τω2

∞

∑
n=0

4ω2n [M(1)
2n + M(L)

2n ](Q2), where
τ =

Q2

4M2
N

kuc et al. (CSSM/QCDSF/UKQCD) PoS(LATTICE2021)324, arXiv:2110.01310 [hep-lat]

errors via bootstrap analysis
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 Y

483x96, 2+1 flavour


a = 0.068 fm

mπ ∼ 420 MeV
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Lowest moments of  
  

F1,2(x, Q2)

M(1,2)
2,p =

4
9

M(1,2)
2,uu +

1
9

M(1,2)
2,dd −

2
9

M(1,2)
2,ud

Scaling and Power Corrections

Moments of F1,2(x, Q2)
Unique ability to study the  dependence of the moments!Q2

• Exp : W. Melnitchouk, R. Ent, and C. Keppel, Phys. Rept. 406, 127 (2005), 
arXiv:hep-ph/0501217. 

• Exp : C. S. Armstrong, R. Ent, C. E. Keppel, S. Liuti, G. Niculescu, and I. 
Niculescu, Phys. Rev. D 63, 094008 (2001), arXiv:hep-ph/0104055.
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Scaling and Power Corrections

Scaling and Power Corrections

Need  data to reliably 
constrain the partonic moments 

Power corrections below  ?

Naive modelling via




 contains: 


TMC, elastic cont. ( ),  
 scaling, and twist-4

Q2 ≳ 10 GeV2

∼ 3 GeV2

M(2)
2 (Q2) = M(2)

2 + C(2)
2 /Q2

C(2)
2

x = 1
ln Q2

Unique ability to study the  dependence of the moments!Q2

• Exp : W. Melnitchouk, R. Ent, and C. Keppel, Phys. Rept. 406, 127 (2005), 
arXiv:hep-ph/0501217. 

• Exp : C. S. Armstrong, R. Ent, C. E. Keppel, S. Liuti, G. Niculescu, and I. 
Niculescu, Phys. Rev. D 63, 094008 (2001), arXiv:hep-ph/0104055.
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Power corrections ScalingP R E L 
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0 2 4 6 8
Q2 [GeV2]

0

10

20

30

40

M
(L

)
2
,p

(Q
2
)

£10°3

323 £ 64

Direct

Indirect

483 £ 96

Direct

Indirect

Exp.

M(L)
2 + C(L)

2 /Q2

Scaling and Power Corrections

Moments of FL(x, Q2)

  

Direct: Fit to data points

Determines upper bounds


Indirect: Use the moments of :

Leading twist contribution





Better precision, good agreement with 
exp. behaviour

FL(x, Q2) ≡ (1 +
4M2

Nx2

Q2 ) F2(x, Q2) − 2xF1(x, Q2)

Q2→∞
𝒪(αs(Q2))

F2

M(L),LT
2 (Q2) =

4
9π

αs(Q2) M(2)
2 (Q2)

Unique ability to study the moments of !FL

• Exp Nachtmann : P. Monaghan, A. Accardi, M. E. Christy, C. E. Keppel, 
W. Melnitchouk, and L. Zhu, Phys. Rev. Lett. 110, 152002 (2013), 
arXiv:1209.4542 [nucl-ex]. 

M(L)
2

Possible for the first time 

in a lattice QCD simulation!
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Outlook



Outlook

Polarised Structure Functions
Tμν(p, q, s) = iεμναβ qα

p ⋅ q [sβ g̃1(ω, Q2) + (sβ −
s ⋅ q
p ⋅ q

pβ) g̃2(ω, Q2)]
Similar to the unpolarised case, we can 
extract  and  

Lowest moment of  is related to 
nucleon axial charge 

 

where, 


 is twist-3, holds information on 
quark-gluon correlations

Wandzura-Wilczek decomposition 




The Buckhardt — Cottingham sum rule 

g̃1 g̃2

g1(x)

Γ1(Q2) = ∫
1

0
g(u−d)

1 (x, Q2) dx = (Δu − Δd)
≡gA

C1(αs(Q2))

C1(αs(Q2)) = 1 −
αs(Q2)

π
− 𝒪(α2

s )

g2(x)

g2(x, Q2) = −g1(x, Q2) + ∫
1

x

dy
y

g1(y, Q2)

gWW
2 (x,Q2)

+ ḡ2(x, Q2)

∫
1

0
g2(x, Q2) dx = 0
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Outlook

Polarised Structure Functions
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483x96, 2+1 flavour
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P.L. Anthony, et al. (E155 Collaboration), Phys. Lett. B 493 (2000) 19

compare6(Γp
1 − Γn

1)
exp. = 1.056(46)
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Outlook

Polarised Structure Functions
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Summary
A versatile approach!


Systematic investigation of power corrections,  
higher-twist effects and scaling is within reach


Overcomes the operator mixing/renormalisation issues 

Can be extended to:


mixed currents, interference terms


spin-dependent structure functions (ongoing) 


GPDs: A. Hannaford-Gunn et al. Phys. Rev. D 105, 014502 
            see Alec’s talk on 10/08 (Wed) @ 18:10 Hadron Structure

F1, F2, FL and g1, g2

0 2 4 6 8
Q2 [GeV2]

0

10

20

30

40

M
(L

)
2
,p

(Q
2
)

£10°3

323 £ 64

Direct

Indirect

483 £ 96

Direct

Indirect

Exp.

P R E L 
I M

 I N
 A R Y

2 4 6

Q2 [GeV2]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
2
,p
(Q

2
)

Exp.

M (1)
2 (Q2)

M (2)
2 (Q2)

323 £ 64

M (1)
2 (Q2)

M (2)
2 (Q2)

483 £ 96

M (1)
2 (Q2)

M (2)
2 (Q2)

M(2)
2 + C(2)

2 /Q2

1 3 5 7
P R E L 

I M
 I N

 A R Y

0.06 0.12 0.18 0.240.24 0.29 0.35 0.41 0.47 0.53 0.59 0.65 0.71 0.76 0.82 0.88 0.94
!

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g̃
1
(!

,Q
2
)/

!

Muu
1 (Q2) = 0.822+0.054

°0.055

Mdd
1 (Q2) = °0.197+0.019

°0.019

Muu°dd
1 (Q2) = 1.019+0.057

°0.060

uu

dd

uu ° dd



0.0 0.2 0.4 0.6 0.8
!̄

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

H
u
(!̄

,t
)

t = 0 GeV2

t = °0.6 GeV2

t = °1.14 GeV2

Teaser off-forward kinematics:  
see Alec’s talk on 10/08 (Wed) @ 18:10 Hadron Structure 
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Tμμ(p, q) = ∫ d4zeiq⋅z⟨N(p) |𝒯{Jμ(z)Jμ(0)} |N(p)⟩
4-pt function

∂2ENλ
(p)

∂λ2
λ=0

= −
1

2EN(p)

Tμμ(p,q)

∫ d4zeiq⋅z⟨N(p) |𝒯{Jμ(z)Jμ(0)} |N(p)⟩ + (q → − q)

Determine the Compton Amplitude from second order energy shifts!

S → S(λ) = S + λ∫ d4z (eiq⋅z + e−iq⋅z) Jμ(z)
Action modification

Jμ(z) = ∑q eqq̄(z)γμq(z)
local EM current

N(p)

J𝜇(q) unpolarised Compton Amplitude

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

Compton amplitude via the FH relation at 2nd order

@ 2nd order

Application of the Feynman-Hellmann Theorem



Take the 2nd order derivative, Non-Breit frame, |p | ≠ |p ± q | ⇒ 0

quadratic energy shift

temporal enhancement ∼ t e−EN (p)t

Spectral decomposition of a 2-point nucleon correlator in an external field, ,Ωλ

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

Compton amplitude via the FH relation at 2nd order
Application of the Feynman-Hellmann Theorem



2-point nucleon correlator in path integral formalism,

, where

for simplicity define:

spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:

∂2Gð2Þ
λ ðp; tÞ
∂λ2

!!!!
λ¼0

¼ e−ENðpÞt
"∂2AλðpÞ

∂λ2 − t
#
2
∂AλðpÞ
∂λ

∂ENλ
ðpÞ

∂λ

þAðpÞ
∂2ENλ

∂λ2
$
þ t2AðpÞ

#∂ENλ
ðpÞ

∂λ
$

2
%
:

ðB3Þ

The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to

∂2Gð2Þ
λ ðp; tÞ
∂λ2

!!!!
λ¼0

¼ e−ENðpÞt
"∂2AλðpÞ

∂λ2 − tAðpÞ
∂2ENλ

ðpÞ
∂λ2

%
:

ðB4Þ

where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:

ðB5Þ

We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by

∂hGiλ
∂λ ¼ hGiλ

&∂SðλÞ
∂λ

'

λ
−
&
G
∂SðλÞ
∂λ

'

λ
: ðB9Þ

The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,

∂2hGiλ
∂λ2 ¼ hGiλ

&∂2SðλÞ
∂λ2

'

λ
þ
&
G
∂2SðλÞ
∂λ2

'

λ

þhGiλ
&#∂SðλÞ

∂λ
$

2
'

λ
þ2hGiλ

&∂SðλÞ
∂λ

'

λ

&∂SðλÞ
∂λ

'

λ

−2

&
G
∂SðλÞ
∂λ

'

λ

&∂SðλÞ
∂λ

'

λ
þ
&
G
#∂SðλÞ

∂λ
$

2
'

λ
:

ðB10Þ

The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),

∂2hGiλ
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¼
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G
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$

2
'
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where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have
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spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:

∂2Gð2Þ
λ ðp; tÞ
∂λ2
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λ¼0

¼ e−ENðpÞt
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#
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$
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The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to
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%
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where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:

ðB5Þ

We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by
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'

λ
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The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,
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The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),
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where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have

LATTICE QCD EVALUATION OF THE COMPTON AMPLITUDE … PHYS. REV. D 102, 114505 (2020)

114505-13

Take the 2nd order derivative,

spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:

∂2Gð2Þ
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∂λ2

!!!!
λ¼0

¼ e−ENðpÞt
"∂2AλðpÞ

∂λ2 − t
#
2
∂AλðpÞ
∂λ

∂ENλ
ðpÞ

∂λ

þAðpÞ
∂2ENλ

∂λ2
$
þ t2AðpÞ

#∂ENλ
ðpÞ

∂λ
$

2
%
:
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The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to
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where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:

ðB5Þ

We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by

∂hGiλ
∂λ ¼ hGiλ

&∂SðλÞ
∂λ
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λ
−
&
G
∂SðλÞ
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'

λ
: ðB9Þ

The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,

∂2hGiλ
∂λ2 ¼ hGiλ
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The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),

∂2hGiλ
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2
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where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have
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spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:

∂2Gð2Þ
λ ðp; tÞ
∂λ2
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λ¼0
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$

2
%
:
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The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to
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where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:

ðB5Þ

We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by

∂hGiλ
∂λ ¼ hGiλ
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−
&
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λ
: ðB9Þ

The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,
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The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),
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where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have
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spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:

∂2Gð2Þ
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∂λ2
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The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to
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where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:
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We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by

∂hGiλ
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The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,
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The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),
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where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have
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no quadratic perturbation = 0 as , vacuum m.e. of ext. current ,

given that the operator does not carry vacuum quantum numbers.

EM current satisfies this condition.

λ → 0 ⟨∂S(λ)/∂λ⟩ = 0does not vanish in general,

but only affects the free-field

correlator

spectral decomposition of the Euclidean correlator,
and match the energy shift against the explicit
decomposition of the correlator in the presence of a
weak external field. Following the usual procedure
of inserting a complete set of states in between the
operators, ⨋X

d3k
ð2πÞ3

1
2EXλ

ðkÞ jXλðkÞihXλðkÞj, and carrying

out the momentum integral, the spectral decomposition
of Eq. (B1) in the large (Euclidean) time limit, where the
ground state dominance is realized, is given as,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ðB2Þ

where ENλ
ðpÞ and AλðpÞ are the energy of the ground state

nucleon and overlap factor, respectively, in the background
field. We note that in the presence of the background field,
the Hamiltonian of the system will mix momentum states
p# nq—with that p chosen to correspond to the lowest
kinetic energy, jpj < jpþ nqj ∀ n ∈ Z.
The second order derivative of Eq. (B2) with respect to λ,

evaluated at λ ¼ 0, is given by:
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The derivatives of AλðpÞ and ENλ
ðpÞ are understood to be

evaluated at λ ¼ 0. The first-order energy shifts vanish,
∂EN=∂λ ¼ 0, provided we restrict ourselves to the non-
Breit-frame kinematics, i.e., jpj ≠ jp# qj [47,50]. In this
case, the above equation thus reduces to
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where the first term corresponds to the shift in the overlap
factor and the second order energy shift is identified in the
t-enhanced or the time-enhanced term. The familiar overlap
factor is given by:

AðpÞ ¼
X

s

1

2ENðpÞ
ΓhΩjχð0ÞjNðp; sÞihNðp; sÞjχ̄ð0ÞjΩi:

ðB5Þ

We now directly evaluate the second-order derivative
within the path integral formalism. The 2-point correlation
function takes the form:

λhχðx; tÞχ̄ð0Þiλ ¼
1

ZðλÞ

Z
DψDψ̄DUχðx; tÞχ̄ð0Þe−SðλÞ;

ðB6Þ

where SðλÞ is the perturbed action given in Eq. (22), and
ZðλÞ is the corresponding partition function. Projecting the
2-point function to definite momenta and spin gives the
standard correlator,

Gð2Þ
λ ðp; tÞ ¼

Z
d3xe−ip·xΓλhχðx; tÞχ̄ð0Þiλ ðB7Þ

To simplify the following expressions, we use the
shorthand notation to describe the product of interpolating
operators,

G ¼
Z

d3xe−ip·xΓχðx; tÞχ̄ð0Þ: ðB8Þ

The first-order derivative of the correlator is then given by

∂hGiλ
∂λ ¼ hGiλ

&∂SðλÞ
∂λ

'

λ
−
&
G
∂SðλÞ
∂λ

'

λ
: ðB9Þ

The first term corresponds to a vacuum shift and the second
term encodes a the three-point correlation function that is
related to the first-order energy shift. This term has been
discussed in detail and applied to the calculation of forward
matrix elements [47] and form factors [50]. For the
Compton amplitude, the second order derivative is
required, which is straightforward to evaluate,

∂2hGiλ
∂λ2 ¼ hGiλ

&∂2SðλÞ
∂λ2

'

λ
þ
&
G
∂2SðλÞ
∂λ2

'

λ

þhGiλ
&#∂SðλÞ

∂λ
$

2
'

λ
þ2hGiλ

&∂SðλÞ
∂λ

'

λ

&∂SðλÞ
∂λ

'

λ

−2

&
G
∂SðλÞ
∂λ

'

λ

&∂SðλÞ
∂λ

'

λ
þ
&
G
#∂SðλÞ

∂λ
$

2
'

λ
:

ðB10Þ

The first two terms vanish when the external perturbation is
purely linear in λ. In the limit λ → 0, vacuum matrix
elements of the external fields vanish, h∂SðλÞ=∂λi ¼ 0,
assuming the operator does not carry vacuum quantum
numbers, such as the electromagnetic current—the scalar
current would be an obvious counterexample. The term
involving hð∂SðλÞ=∂λÞ2i will not in general vanish,
however this can only act as a multiplicative factor on the
free-field correlator and hence cannot contribute to the time-
enhanced term in Eq. (B4). The second-order energy shift
can therefore only arise from the final term in Eq. (B10),

∂2hGiλ
∂λ2

!!!!
λ¼0

¼
&
G
#∂SðλÞ

∂λ
$

2
'
þ…; ðB11Þ

where the ellipsis denotes terms that are not time-enhanced.
By restoring the explicit form for G, we have
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Thus (in the limit ) the second order energy shift arises from, λ → 0

terms that are not time enhanced

S(λ) = S + λ

of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,

SðλÞ ¼ Sþ λ
Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,

Gð2Þ
λ ðp; tÞ≡

Z
d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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Compton amplitude via the FH relation at 2nd order
Application of the Feynman-Hellmann Theorem



∂2Gð2Þ
λ ðp; yÞ
∂λ2

!!!!
λ¼0

¼
Z

d3xe−ip·xΓ
"
χðx; tÞχ̄ð0Þ

#∂SðλÞ
∂λ

$
2
%
;

ðB12Þ

Using our explicit form for the electromagnetic external
field, the corresponding second derivative of the correlator
is given by

∂2Gð2Þ
λ ðp;tÞ
∂λ2

!!!!
λ¼0

¼
Z

d3xe−ip·xΓ
Z

d4yd4zðeiq·yþe−iq·yÞ

×ðeiq·zþe−iq·zÞhχðx;tÞJ μðzÞJ μðyÞχ̄ð0Þi:
ðB13Þ

The correlator defined here involves a four-point correla-
tion function with nucleon interpolating operators held at
fixed temporal separation t, with the currents inserted
across the entire four-volume. Importantly, this expression
is evaluated in the absence of the external field, and hence
momentum conservation is exact. It is then possible to
perform a spectral decomposition of this correlator in terms
of a transfer matrix that is diagonal in the momenta. Given
that the Fourier projection of the nucleon sink is at definite
momentum p, and jpj < jp% qj [as discussed above
Eq. (B4)], the leading asymptotic behavior of the correlator
must have an exponential behavior given by e−ENðpÞt. By
resolving the corresponding t-enhanced coefficient of this
exponential, we can identify the second-order energy shift,
as given in Eq. (B4).
Assuming that the temporal length is sufficiently large

that we can neglect the temporal boundary conditions, there
are six distinct time orderings of where the current insertions
can act relative to the nucleon interpolating fields. They are
shown in Fig. 8. ConfigurationA is the obvious ordering that
contains the desired Compton amplitude. This corresponds
to ground-state saturation of the nucleon on either side of the
current insertions. The t dependence of this particular
contribution, including explicit integrals over the current
insertion times, will take the form:
Z

t

0
dτ0

Z
τ0

0
dτhχðtÞJðτ0ÞJðτÞχ̄ð0Þi

∼
Z

t

0
dτ0

Z
τ0

0
dτe−ENðpÞðt−τ0Þe−EXðpþqÞðτ0−τÞe−ENðpÞðτÞ ðB14Þ

It is convenient to isolate the current separation time by
transforming the coordinates to:

Δ ¼ τ0 − τ ðB15Þ

τ̄ ¼ ðτ þ τ0Þ=2; ðB16Þ

and hence

Z
t

0
dτ0

Z
τ0

0
dτe−ENðpÞðt−τ0Þe−EXðpþqÞðτ0−τÞe−ENðpÞðτÞ

¼
Z

t

0
dΔ

Z
t−Δ=2

Δ=2
dτ̄e−ENðpÞte−ðEXðpþqÞ−ENðpÞÞΔ; ðB17Þ

¼ e−ENðpÞt
Z

t

0
dΔe−ðEXðpþqÞ−ENðpÞÞΔðt − ΔÞ: ðB18Þ

The term linear in t corresponds to the anticipated time
enhancement of Eq. (B4)—details of the connection to the
Compton amplitude are given below. Given the condition
that EX > EN , the damping ensures that the term propor-
tional to Δ is independent of t for large times. It is this
damping which ensures the current separation remains
localized in time, and allows the nucleon to saturate to
the ground state on either side of the current.
Having selected the term of interest, it is necessary to

confirm that none of the other possible configurations can
scale as te−ENðpÞt at large times. One potential example
would be to consider the nucleon at the source to carry
momentum pþ 2q. This case gives a temporal behavior
according to

Z
t

0
dτ0

Z
τ0

0
dτhχðtÞJðτ0ÞJðτÞχ̄ð0Þi ∼

Z
t

0
dτ0

Z
τ0

0
dτe−ENðpÞðt−τ0Þe−EXðpþqÞðτ0−τÞe−ENðpþ2qÞðτÞ; ðB19Þ

¼
Z

t

0
dΔ

#
e−ENðpþ2qÞte−ðEXðpþqÞ−ENðpþ2qÞÞΔ − e−ENðpÞte−ðEXðpþqÞ−ENðpÞÞΔ

ENðpþ 2qÞ − ENðpÞ

$
: ðB20Þ

FIG. 8. Distinct time orderings of the current insertions, with
increasing time assumed from left to right.
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writing the 2nd order derivative explicitly,

, where

note that  is evaluated in the absence of the external field⟨⋯⟩

∂2Gð2Þ
λ ðp; yÞ
∂λ2

!!!!
λ¼0

¼
Z

d3xe−ip·xΓ
"
χðx; tÞχ̄ð0Þ

#∂SðλÞ
∂λ

$
2
%
;

ðB12Þ

Using our explicit form for the electromagnetic external
field, the corresponding second derivative of the correlator
is given by

∂2Gð2Þ
λ ðp;tÞ
∂λ2

!!!!
λ¼0

¼
Z

d3xe−ip·xΓ
Z

d4yd4zðeiq·yþe−iq·yÞ

×ðeiq·zþe−iq·zÞhχðx;tÞJ μðzÞJ μðyÞχ̄ð0Þi:
ðB13Þ

The correlator defined here involves a four-point correla-
tion function with nucleon interpolating operators held at
fixed temporal separation t, with the currents inserted
across the entire four-volume. Importantly, this expression
is evaluated in the absence of the external field, and hence
momentum conservation is exact. It is then possible to
perform a spectral decomposition of this correlator in terms
of a transfer matrix that is diagonal in the momenta. Given
that the Fourier projection of the nucleon sink is at definite
momentum p, and jpj < jp% qj [as discussed above
Eq. (B4)], the leading asymptotic behavior of the correlator
must have an exponential behavior given by e−ENðpÞt. By
resolving the corresponding t-enhanced coefficient of this
exponential, we can identify the second-order energy shift,
as given in Eq. (B4).
Assuming that the temporal length is sufficiently large

that we can neglect the temporal boundary conditions, there
are six distinct time orderings of where the current insertions
can act relative to the nucleon interpolating fields. They are
shown in Fig. 8. ConfigurationA is the obvious ordering that
contains the desired Compton amplitude. This corresponds
to ground-state saturation of the nucleon on either side of the
current insertions. The t dependence of this particular
contribution, including explicit integrals over the current
insertion times, will take the form:
Z

t

0
dτ0

Z
τ0

0
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∼
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It is convenient to isolate the current separation time by
transforming the coordinates to:

Δ ¼ τ0 − τ ðB15Þ

τ̄ ¼ ðτ þ τ0Þ=2; ðB16Þ

and hence
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¼ e−ENðpÞt
Z

t

0
dΔe−ðEXðpþqÞ−ENðpÞÞΔðt − ΔÞ: ðB18Þ

The term linear in t corresponds to the anticipated time
enhancement of Eq. (B4)—details of the connection to the
Compton amplitude are given below. Given the condition
that EX > EN , the damping ensures that the term propor-
tional to Δ is independent of t for large times. It is this
damping which ensures the current separation remains
localized in time, and allows the nucleon to saturate to
the ground state on either side of the current.
Having selected the term of interest, it is necessary to

confirm that none of the other possible configurations can
scale as te−ENðpÞt at large times. One potential example
would be to consider the nucleon at the source to carry
momentum pþ 2q. This case gives a temporal behavior
according to
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Z

d3xe−ip·xΓ
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χðx; tÞχ̄ð0Þ
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$
2
%
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ðB12Þ

Using our explicit form for the electromagnetic external
field, the corresponding second derivative of the correlator
is given by

∂2Gð2Þ
λ ðp;tÞ
∂λ2

!!!!
λ¼0
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Z

d3xe−ip·xΓ
Z

d4yd4zðeiq·yþe−iq·yÞ

×ðeiq·zþe−iq·zÞhχðx;tÞJ μðzÞJ μðyÞχ̄ð0Þi:
ðB13Þ

The correlator defined here involves a four-point correla-
tion function with nucleon interpolating operators held at
fixed temporal separation t, with the currents inserted
across the entire four-volume. Importantly, this expression
is evaluated in the absence of the external field, and hence
momentum conservation is exact. It is then possible to
perform a spectral decomposition of this correlator in terms
of a transfer matrix that is diagonal in the momenta. Given
that the Fourier projection of the nucleon sink is at definite
momentum p, and jpj < jp% qj [as discussed above
Eq. (B4)], the leading asymptotic behavior of the correlator
must have an exponential behavior given by e−ENðpÞt. By
resolving the corresponding t-enhanced coefficient of this
exponential, we can identify the second-order energy shift,
as given in Eq. (B4).
Assuming that the temporal length is sufficiently large

that we can neglect the temporal boundary conditions, there
are six distinct time orderings of where the current insertions
can act relative to the nucleon interpolating fields. They are
shown in Fig. 8. ConfigurationA is the obvious ordering that
contains the desired Compton amplitude. This corresponds
to ground-state saturation of the nucleon on either side of the
current insertions. The t dependence of this particular
contribution, including explicit integrals over the current
insertion times, will take the form:
Z

t

0
dτ0

Z
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0
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It is convenient to isolate the current separation time by
transforming the coordinates to:

Δ ¼ τ0 − τ ðB15Þ

τ̄ ¼ ðτ þ τ0Þ=2; ðB16Þ

and hence
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The term linear in t corresponds to the anticipated time
enhancement of Eq. (B4)—details of the connection to the
Compton amplitude are given below. Given the condition
that EX > EN , the damping ensures that the term propor-
tional to Δ is independent of t for large times. It is this
damping which ensures the current separation remains
localized in time, and allows the nucleon to saturate to
the ground state on either side of the current.
Having selected the term of interest, it is necessary to

confirm that none of the other possible configurations can
scale as te−ENðpÞt at large times. One potential example
would be to consider the nucleon at the source to carry
momentum pþ 2q. This case gives a temporal behavior
according to
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∂S(λ)
∂λ

=

of 2-point correlation functions using spectroscopic tech-
niques. We note that other related background field
methods also offer alternatives to the direct evaluation of
lattice 4-point functions [56,57].
In order to compute the forward Compton amplitude via

the Feynman-Hellmann relation, we introduce the follow-
ing perturbation to the fermion action,

SðλÞ ¼ Sþ λ
Z

d4zðeiq·z þ e−iq·zÞJ μðzÞ; ð22Þ

where λ is the strength of the coupling between the quarks
and the external field, J μðxÞ ¼ ZVq̄ðxÞγμqðxÞ is the
electromagnetic current coupling to the quarks along the
μ direction, q is the external momentum inserted by
the current and ZV is the renormalization constant for
the local electromagnetic current.
The general strategy for deriving Feynman-Hellmann in

a lattice QCD context is to consider the general spectral
decomposition of a correlator in the presence of the
background field. The differentiation of this correlation
function with respect to the external field reveals a distinct
temporal signature for the energy shift. By explicit evalu-
ation of the perturbed correlator, one is able to identify this
signature and hence resolve the desired relationship
between the energy shift and matrix element. Our principal
theoretical result here is that for the perturbed action
described in Eq. (22), the second-order energy shift of
the nucleon is found to be

∂2ENλ
ðpÞ

∂λ2
!!!!
λ¼0

¼ −
Tμμðp; qÞ þ Tμμðp;−qÞ

2ENðpÞ
; ð23Þ

where T is the Compton amplitude defined in Eq. (3), q ¼
ðq; 0Þ is the external momentum encoded by Eq. (22), and
ENλ

ðpÞ is the nucleon energy atmomentump in the presence
of a background field of strength λ. In the following we
sketch the main steps of the derivation, and refer the
interested reader to Appendix B for further details.
In the presence of the external field introduced in

Eq. (22), we define the two-point correlation function
projected to definite momentum as,

Gð2Þ
λ ðp; tÞ≡

Z
d3xe−ip·xΓhΩλjχðx; tÞχ̄ð0ÞjΩλi; ð24Þ

where here and in the following, a trace over Dirac indices
with the spin-parity projection matrix Γ is understood, and
jΩλi is the vacuum in the presence of the external field. The
asymptotic behavior of the correlator at large Euclidean
times takes the familiar form,

Gð2Þ
λ ðp; tÞ ≃ AλðpÞe−ENλ

ðpÞt; ð25Þ

whereENλ
ðpÞ is the energy of the ground state nucleon in the

external field and AλðpÞ the corresponding overlap factor.

For the purpose of current presentation, a nucleon
interpolating operator is assumed for χ. However, the
derivation applies to any ground-state hadron, provided
the ground state in the presence of the external field is
perturbatively close to the free-field state. A simple counter
example could be a Σ baryon in the presence of a
strangeness-changing current, where at λ ¼ 0 the correlator
behaves as e−EΣt but at any finite λ this will eventually be
dominated by e−ENt (kinematics permitting).
It is for a similar physical reason that one must work with

nucleon states that have the least possible kinetic energy
among all states connected to any number of current
insertions. This same condition guarantees the connection
between the Euclidean and Minkowski Compton ampli-
tudes described in the previous section. In the presence of
the background field, the Hamiltonian of the system will
mix momentum states connected by integer multiples of
the momentum transfer q. We hence choose the Fourier
projection of our correlation function, Eq. (24), such that p
corresponds to the lowest energy of all these coupled states
at finite λ. An example is given in Fig. 1, where we show
the single nucleon energy plotted along the direction of q,
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. In the example plotted, if the
Fourier projection were chosen at n ¼ 1 (i.e., pþ q) the
asymptotic behavior of the correlator would be dominated
by a state near that of the free particle at n ¼ 0 (with an
amplitude suppressed by λ and the elastic form factor).
When there is a degeneracy in the lowest energy states,

this corresponds precisely to Breit-frame kinematics, where
a linear response in λ isolates the elastic form factors, see
Ref. [50]. For the purposes of the kinematics discussed

FIG. 1. The lower curve shows the nucleon energy for momenta
along the direction of q, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðpþ nqÞ2
p

. At finite
external field strength, all momentum states connected by integer
multiples of q will be coupled, these are emphasized by the large
dots for the ground-state nucleon. We choose an example
kinematic point from the numerical results presented in the
following section: p¼ 2π=Lð−1;−1;0Þ and q ¼ 2π=Lð4; 1; 0Þ.
The upper curve shows the (noninteracting) two-particle Nπ
threshold, with the small dots representing the discrete nature of
this two-body “cut” on the lattice.
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need to resolve the time ordering of the currents

back to full form,
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no time enhancement
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there is time enhancement, 

but due to non-Breit frame kinematics → 0
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J (z4)

The second term clearly contains a damped exponential and
hence the integral over Δ converges for large t. In the
first term, the ordering of the levels EXðpþ qÞ and
ENðpþ 2qÞ will govern which contribution dominates at
large t. However in either case, this term is exponentially
suppressed relative to e−ENðpÞt. This example, that does
not exhibit the desired te−ENðpÞt behavior, makes it clear
that in order to generate the coefficient linear in t, one
must have 2 intermediate propagators of the lowest
energy nucleon, such as in Eq. (B14). With three
available time windows and the momentum transfer
through the current insertion, it is only possible to
achieve this with the lowest-energy nucleons separated
by an intermediate, energetic state.
It is then straightforward to conclude that it is not

possible for any of the temporal configurations B to F to
generate a contribution te−ENðpÞt. To highlight how these
other terms contribute, we consider the behavior of the B-
type ordering. One of the contributions would take the form
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0
dτe−EVðqÞðτ0−tÞe−EXðpþqÞðt−τÞe−ENðpÞτ:

ðB21Þ

Although a “light” vector meson propagates outside the
nucleon interpolators, the τ0 integral is convergent and no
remnant of this mass scale can appear in the t-dependent
exponent. And even though the momentum states were
chosen to highlight a e−ENðpÞt contribution, there cannot be
a temporal enhancement since the kinematics are chosen to
ensure EXðpþ qÞ > ENðpÞ.
Given that the contribution to the second-order energy

shift must come from the temporal orientation of type A,
we demonstrate how this relates to the Compton amplitude.
Explicitly written out, configuration A gives rise to the 4-
point function:
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ðB22Þ

We insert complete sets of states next to the nucleon interpolating operators, and translate the operator expressions
according to the standard form, χðxÞ ¼ e−iP̂:xχð0ÞeiP̂:x and J μðzÞJ μðyÞ ¼ e−iP̂:yJ μðz − yÞJ μð0ÞeiP̂:y, which leads to
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By adopting the transformation, z0 ¼ z − y, y0 ¼ y, the Fourier integral over y0 can be eliminated, and hence eliminate the
k integral:
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#
þ ðq → −qÞ ðB24Þ

As described above in Eq. (B19), the term involving the momentum transfer between in and out states cannot contribute
to the energy shift, it is only the term involving a p → p matrix element that is of interest. By applying the result of
Eq. (B17), and noting that at large t, the correlator must be dominated by the state EX ¼ EY ¼ EN :
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The second term clearly contains a damped exponential and
hence the integral over Δ converges for large t. In the
first term, the ordering of the levels EXðpþ qÞ and
ENðpþ 2qÞ will govern which contribution dominates at
large t. However in either case, this term is exponentially
suppressed relative to e−ENðpÞt. This example, that does
not exhibit the desired te−ENðpÞt behavior, makes it clear
that in order to generate the coefficient linear in t, one
must have 2 intermediate propagators of the lowest
energy nucleon, such as in Eq. (B14). With three
available time windows and the momentum transfer
through the current insertion, it is only possible to
achieve this with the lowest-energy nucleons separated
by an intermediate, energetic state.
It is then straightforward to conclude that it is not

possible for any of the temporal configurations B to F to
generate a contribution te−ENðpÞt. To highlight how these
other terms contribute, we consider the behavior of the B-
type ordering. One of the contributions would take the form
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remnant of this mass scale can appear in the t-dependent
exponent. And even though the momentum states were
chosen to highlight a e−ENðpÞt contribution, there cannot be
a temporal enhancement since the kinematics are chosen to
ensure EXðpþ qÞ > ENðpÞ.
Given that the contribution to the second-order energy

shift must come from the temporal orientation of type A,
we demonstrate how this relates to the Compton amplitude.
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insert sets of complete states, and use translational invariance,

carrying out the integrals and the remaining algebra,
<latexit sha1_base64="Cy+Lg2/Iv3otJqkzO7/A4uVdP1s="></latexit>
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Nucleon PDFs from Compton Structure Functions

K. U. Can

(for QCDSF Collaboration)

We briefly discuss the inverse problem in the context of PDFs. A Bayesian inference of the

parameters of a phenomenological PDF ansatz based on QCDSF’s Compton amplitude results [1]

is given.

I. THE INVERSE PROBLEM

The Compton structure functions are related to the
ordinary structure functions via the dispersion relations,

F1(!,Q2) = 4!2 � 1

0
dx

xF1(x,Q2)
1 − x2!2

, (1)

F2(!,Q2) = 4!� 1

0
dx

F2(x,Q2)
1 − x2!2

, (2)

where ! = 2p ⋅ q�q2 is the inverse Bjorken variable andF1(!,Q2) = F1(!,Q2)−F1(0,Q2) denotes the once sub-
tracted Compton structure function. We are in the �!� < 1
region so the i✏ prescription is dropped since the singu-
larities are not encountered.

With a particular choice of Lorentz indices µ = ⌫ = 3,
and kinematics p3 = q3 = q4 = 0, the Compton amplitude
is directly related to the structure function F1(x,Q2),

T33(!,Q2) = F1(!,Q2) = 4!2 � 1

0
dx

xF1(x,Q2)
1 − x2!2

(3)

≡ � 1

0
dxK(x,!)F1(x,Q2), (4)

where we have identified the coe�cient of F1 as the ker-
nel function in the second line. The expression in Eq. (4)
is a Fredholm integral equation of the first kind where
the kernel function K is known and there is measured
data (with a certain accuracy and only in a finite set of
points) for the left-hand side. This type of integral equa-
tions are known to be ill-posed problems, i.e. the solution
is extremely sensitive to arbitrarily small perturbations
of the system [2]. In our case this is the number and
precision of the discrete T33(!,Q2) data points.

There are several methods to solve the Fredholm inte-
gral equations of the first kind, such as the singular value
decomposition (SVD) [2], Backus-Gilbert method [3–6],
neural network based reconstruction [7], and methods
based on Bayesian approaches including the maximum
entropy method [8–10], and other reconstruction appli-
cations [11]. In this note, we will be investigating a
Bayesian Markov Chain Monte Carlo (MCMC) approach.
Prior work has been done by Holger et al. [12].

II. THE COMPTON AMPLITUDE

Starting from the dispersion relation given in Eq. (1),
we can derive an analytical expression for the Compton

amplitude assuming the structure function F1(x,Q2) is
described by the phenomenological ansatz,

F1(x,Q2) ≡ pval(a, b, c) = axb (1 − x)c�(b + c + 3)
�(b + 2)�(c + 1) . (5)

Inserting Eq. (5) into Eq. (1) and performing the integral
under the conditions 0 ≤ �!� < 1, b > −2, c > −1 and{b, c} ∈ R, we get

T val
33 (!) =4a!2 ×

3F2 � 1, (b + 2)�2, (b + 3)�2
(b + c + 3)�2, (b + c + 4)�2 ;!2� (6)

for a fixed Q2. Here, pFq[⋅] is a generalized hypergeomet-
ric function which can be written as a hypergeometric
series,

3F2 � a1, a2, a3
b1, b2

;x� = ∞�
k=0

ckx
k (7)

= ∞�
k=0
(a1)k(a2)k(a3)k(b1)k(b2)k

xk

k!
, (8)

where (a)k is the Pochhammer symbol defined as,

(a)k ≡ �(a + k)
�(a) . (9)

Following Eqs. (8) and (9), the analytic form of the
Compton amplitude given in Eq. (6) reduces to,

T val
33 (!) = 4a!2 ( c0(a, b, c) + c1(a, b, c)!2

+ c2(a, b, c)!4 +� + cn(a, b, c)!2n

+ �)
(10)

where the first few coe�cients are,

c0(a, b, c) = 1,
c1(a, b, c) = (b + 2)(b + 3)

(b + c + 3)(b + c + 4) ,
c2(a, b, c) = �(b + 6)�(b + c + 3)

�(b + 2)�(b + c + 7) .
(11)

On the numerical side, the Compton amplitude can be
calculated in a lattice QCD simulation via a second order
Feynman-Hellmann method [1]. In this approach, the full
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T33(!,Q2) = F1(!,Q2) = 4!2 � 1

0
dx

xF1(x,Q2)
1 − x2!2

(3)

≡ � 1

0
dxK(x,!)F1(x,Q2), (4)

where we have identified the coe�cient of F1 as the ker-
nel function in the second line. The expression in Eq. (4)
is a Fredholm integral equation of the first kind where
the kernel function K is known and there is measured
data (with a certain accuracy and only in a finite set of
points) for the left-hand side. This type of integral equa-
tions are known to be ill-posed problems, i.e. the solution
is extremely sensitive to arbitrarily small perturbations
of the system [2]. In our case this is the number and
precision of the discrete T33(!,Q2) data points.

There are several methods to solve the Fredholm inte-
gral equations of the first kind, such as the singular value
decomposition (SVD) [2], Backus-Gilbert method [3–6],
neural network based reconstruction [7], and methods
based on Bayesian approaches including the maximum
entropy method [8–10], and other reconstruction appli-
cations [11]. In this note, we will be investigating a
Bayesian Markov Chain Monte Carlo (MCMC) approach.
Prior work has been done by Holger et al. [12].

II. THE COMPTON AMPLITUDE

Starting from the dispersion relation given in Eq. (1),
we can derive an analytical expression for the Compton

amplitude assuming the structure function F1(x,Q2) is
described by the phenomenological ansatz,

F1(x,Q2) ≡ pval(a, b, c) = axb (1 − x)c�(b + c + 3)
�(b + 2)�(c + 1) . (5)

Inserting Eq. (5) into Eq. (1) and performing the integral
under the conditions 0 ≤ �!� < 1, b > −2, c > −1 and{b, c} ∈ R, we get

T val
33 (!) =4a!2 ×

3F2 � 1, (b + 2)�2, (b + 3)�2
(b + c + 3)�2, (b + c + 4)�2 ;!2� (6)

for a fixed Q2. Here, pFq[⋅] is a generalized hypergeomet-
ric function which can be written as a hypergeometric
series,

3F2 � a1, a2, a3
b1, b2

;x� = ∞�
k=0

ckx
k (7)

= ∞�
k=0
(a1)k(a2)k(a3)k(b1)k(b2)k

xk

k!
, (8)

where (a)k is the Pochhammer symbol defined as,

(a)k ≡ �(a + k)
�(a) . (9)

Following Eqs. (8) and (9), the analytic form of the
Compton amplitude given in Eq. (6) reduces to,

T val
33 (!) = 4a!2 ( c0(a, b, c) + c1(a, b, c)!2

+ c2(a, b, c)!4 +� + cn(a, b, c)!2n

+ �)
(10)

where the first few coe�cients are,

c0(a, b, c) = 1,
c1(a, b, c) = (b + 2)(b + 3)

(b + c + 3)(b + c + 4) ,
c2(a, b, c) = �(b + 6)�(b + c + 3)

�(b + 2)�(b + c + 7) .
(11)

On the numerical side, the Compton amplitude can be
calculated in a lattice QCD simulation via a second order
Feynman-Hellmann method [1]. In this approach, the full

generalised hypergeometric function

evaluate the dispersion integral
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quantile.

the subset with q2 = 2.7 GeV2. Concerning the priors, we are guided by the success of the moments

determination above. We sample the first moment uniformly out of the interval [0 . . .1] and let the

BMC method compute it from to the lattice data. This is supported by our model ansatz (2.4) since

〈x〉=
∫ 1

0
dx x pval(x,a,b,c) = a . (3.2)

For the parameters b and c we choose input intervals suggested by phenomenology. Other prior

schemes will be investigated in a forthcoming paper.

We find using the mean curve and its quantile borders
∫ 1

0 dx x pres
u−d(x) = 0.58+25

−26 , consistent

with the first moment given in Fig. 3. Additionally, inserting the resulting mean values of the

parameters in (2.6) we find c1 ≈ 1.09 – also compatible with the moments. The results are shown

in Fig. 4. One recognizes a strong similarity of the left panel in Fig. 4 with the right panel of Fig.

2 which proves the consistency of both approaches. In order to demonstrate the effect of the BMC

procedure we show in Fig. 5 the change of the parameters from the uniformly input values (blue)

to the final values (red). The histogram in the right panel demonstrates the transition from uniform

input to the peaked distribution triggered by the χ2
k values. One recognizes that the procedure does

not influence very much the values of the parameters b and c but significantly shrinks the range for

parameter a towards the first moment.
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