Precision calculation in b→c decay process

Jing Gao HISKP, Uni-Bonn

Report in BCTP, 23th Oct, 2023

Framework

Result

Framework

b→c Decay Process

Flavor changing charge current

Semi-leptonic weak decay process

$|V_{cb}|$ Puzzle

R(D) Anomaly

$$\mathbb{Z} \quad R(D) \equiv \frac{B(B \to D\tau v_{\tau})}{B(B \to D\mu v_{\mu})}$$

- Experimental result: $R(D) = 0.357 \pm 0.029$
- SM prediction: $R(D) = 0.298 \pm 0.004$
- Approximately 20 deviation

[HFLAV 2023]

$R(\Lambda_c)$ Anomaly

$$\mathbb{Z} \quad R(\Lambda_c) \equiv \frac{B(\Lambda_b \to \Lambda_c \tau \mathsf{v}_{\tau})}{B(\Lambda_b \to \Lambda_c \mu \mathsf{v}_{\mu})}$$

Approximately 1.4σ deviation

[PRL 128, 191803 (2022)]

 $R(\Lambda_c)$ calculated in different theories Method $R(\Lambda_c)$ Referece [PRD 92, 034503 (2015)] LQCD 0.333 ± 0.013 0.074 ± 0.009 = -0.020 ± 0.070 I CQDe

LUGINS	$0.274_{-0.005}$ 07 $0.239_{-0.021}$	[EPJC 82, 10, 951 (2022)]		
	0.268 ± 0.015	[Chin.Phys.C 46, 11, 113107 (2022)]		
QCDSRs	0.31 ± 0.11	[Phys.Rev.D 97, 7, 074007 (2018)]		
HQET	0.324 ± 0.004	[Phys.Rev.Lett. 121 (2018) 20, 202001]		
LFQM	<i>0</i> .28	[EPJC 79, 6, 540 (2019)]		

Framework

Definitions and Conventions

Form factors :

$$\begin{split} \langle \Lambda_c(p',s') | \bar{c} \, \gamma_\mu \, b | \Lambda_b(p,s) \rangle &= \bar{u}_{\Lambda_c}(p',s') \bigg[f_0(q^2) \, \frac{m_{\Lambda_b} - m_{\Lambda_c}}{q^2} \, q_\mu + f_+(q^2) \, \frac{m_{\Lambda_b} + m_{\Lambda_c}}{s_+} \left((p+p')_\mu - \frac{m_{\Lambda_b}^2 - m_{\Lambda_c}^2}{q^2} \, q_\mu \right) \\ &+ f_\perp(q^2) \, \left(\gamma_\mu - \frac{2 \, m_{\Lambda_c}}{s_+} p_\mu - \frac{2 \, m_{\Lambda_b}}{s_+} p'_\mu \right) \bigg] u_{\Lambda_b}(p,s) \end{split}$$

where $q^2 = (p - p')^2$, $s_{\pm} = (m_{\Lambda_b} \pm m_{\Lambda_c})^2 - q^2$

Power counting :

$$p'_{\mu} = (n \cdot p'/2)\bar{n}_{\mu} + (\bar{n} \cdot p'/2)n_{\mu}$$

$$\swarrow$$

$$\mathcal{O}(1)$$

$$\mathcal{O}(\lambda)$$

$$p_b = (m_b/2)\bar{n}_\mu + (m_b/2)n_\mu$$

$$m_c \sim \mathcal{O}(\sqrt{\lambda}), \quad \lambda = \Lambda_{QCD}/m_b$$

Correlation Function

Correlation Function

Method of regions

 \bigcirc Hard function \rightarrow gluon is hard

$$C_{\perp,V(A)}(n \cdot p',\mu) = 1 - \frac{\alpha_s(\mu) C_F}{4 \pi} \left[2 \ln^2 \frac{\mu}{n \cdot p'} + 5 \ln \frac{\mu}{m_b} - 2 \text{Li}_2 \left(1 - \frac{1}{r} \right) - \ln^2 r + \frac{3r - 2}{1 - r} \ln r + \frac{\pi^2}{12} + 6 \right]$$

$$\begin{split} C_{\bar{n},V(A)}(n \cdot p',\mu_h) \ &= 1 - \frac{\alpha_s(\mu) \, C_F}{4 \, \pi} \bigg[2 \, \ln^2 \frac{\mu}{n \cdot p'} + 5 \, \ln \frac{\mu}{m_b} - 2 \, \text{Li}_2 \left(1 - \frac{1}{r} \right) \\ &- \ln^2 r + \frac{2 - r}{r - 1} \, \ln r + \frac{\pi^2}{12} + 5 \bigg] \,, \end{split}$$

$$C_{n,V(A)}(n \cdot p',\mu) \; = \; - rac{lpha_s(\mu) \, C_F}{4 \, \pi} igg[rac{1}{r-1} \left(1 + rac{r}{1-r} \, \ln r
ight) igg],$$

where $r = n \cdot p'/m_b$

2023-10-19

Correlation Function

2023-10-19

Light-Cone Sum Rules

Correlation function in hadronic level

$$\Pi_{\mu,V}(p,q) = \frac{f_{\Lambda_{c}}(\mu)(n \cdot p')}{m_{\Lambda_{c}}^{2}/n \cdot p' - \bar{n} \cdot p'} \frac{\not}{2} \left[f_{\perp}(q^{2})\gamma_{\perp\mu} + \frac{f_{0}(q^{2}) - f_{+}(q^{2})}{2(1 - n \cdot p'/m_{\Lambda_{b}})} n_{\mu} + \frac{f_{0}(q^{2}) + f_{+}(q^{2})}{2} \bar{n}_{\mu} \right] u_{\Lambda_{b}}(p)$$

$$+ \int_{\omega_{s}}^{+\infty} d\omega \frac{1}{\omega + \omega_{c} - \bar{n} \cdot p'} \times \frac{\not}{2} \left[\rho_{V,\perp}^{h}(\omega, n \cdot p')\gamma_{\perp\mu} + \rho_{V,n}^{h}(\omega', n \cdot p')n_{\mu} + \rho_{V,\bar{n}}^{h}(\omega, n \cdot p')\bar{n}_{\mu} \right] u_{\Lambda_{b}}(p).$$

$$\underbrace{ \mathscr{I} } \text{Dispersion relation} \quad \Pi(q^2) = \frac{1}{\pi} \int_{t_{min}}^{\infty} ds \frac{\text{Im } \Pi(s)}{s - q^2 - i\epsilon}$$

🖉 Quark-hadron duality ansatz

$$\int_{s_0}^{\infty} ds \frac{\rho^h(s)}{s - p^2} \simeq \frac{1}{\pi} \int_{s_0}^{\infty} ds \frac{Im \Pi^{(pert)}(s)}{s - p^2} \quad \longleftrightarrow \quad \text{effctive threshold } s_0$$

💋 Borel transformation

$$\mathcal{B}_{M^2}\left(\frac{1}{(m^2-q^2)^k}\right) = \frac{1}{(k-1)!} \frac{\exp(-m^2/M^2)}{M^{2(k-1)}} \quad \textcircled{\text{Borel mass } M^2}$$

[hep-ph/0010175]

1

Total result

Resummation for hard function [Eur.Phys.J.C 71 (2011) 1818] $C(n \cdot p', \mu) = U(n \cdot p', \mu_h, \mu)C(n \cdot p', \mu_h)$ solve RGEs Resummation improved form factors 7 $\left\{f_{\perp}(q^2), g_{\perp}(q^2)\right\} = \frac{f_{\Lambda_b}^{(2)}(\mu)}{f_{\Lambda_c}(\mu) n \cdot n'} \operatorname{Exp}\left[\frac{m_{\Lambda_c}^2}{n \cdot n' \dots n'}\right]$ $imes \left[U_1(n \cdot p', \mu_h, \mu) \, C_{\perp, V(A)}(n \cdot p', \mu_h)
ight] \, \int_0^{\omega_s} d\omega' \, e^{-\omega'/\omega_M} \, \psi_{4, ext{eff}}(\omega', \mu,
u) \, ,$ $\{f_0(q^2), g_0(q^2)\} = \frac{f_{\Lambda_b}^{(2)}(\mu)}{f_{\Lambda_b}(\mu) n \cdot n'} \exp\left[\frac{m_{\Lambda_c}^2}{n \cdot n' \mu_{\Lambda_c}}\right]$ $\times \Big\{ U_1(n \cdot p', \mu_h, \mu) \, C_{\bar{n}, V(A)}(n \cdot p', \mu_h) \, \int_{0}^{\omega_s} d\omega' \, e^{-\omega'/\omega_M} \, \psi_{4, \text{eff}}(\omega', \mu, \nu) \, ,$ $+\left(1-\frac{n\cdot p'}{m_{\star}}\right)U_{1}(n\cdot p',\mu_{h},\mu)C_{n,V(A)}(n\cdot p',\mu_{h})\int_{0}^{\omega_{s}}d\omega'\,e^{-\omega'/\omega_{M}}\psi_{4,\text{eff}}^{(0)}(\omega',\mu)\bigg\}$ $\{f_+(q^2), g_+(q^2)\} = \frac{f_{\Lambda_b}^{(2)}(\mu)}{f_{\Lambda_b}(\mu) n \cdot n'} \exp\left[\frac{m_{\Lambda_c}^2}{n \cdot n' \dots \cdot n'}\right]$ $\times \Big\{ U_1(n \cdot p', \mu_h, \mu) \, C_{\bar{n}, V(A)}(n \cdot p', \mu_h) \, \int_{0}^{\omega_s} d\omega' \, e^{-\omega'/\omega_M} \, \psi_{4, \text{eff}}(\omega', \mu, \nu) \, ,$ $-\left(1-\frac{n\cdot p'}{m}\right)U_1(n\cdot p',\mu_h,\mu)C_{n,V(A)}(n\cdot p',\mu_h)\int_{0}^{\omega_s}d\omega'\,e^{-\omega'/\omega_M}\psi_{4,\text{eff}}^{(0)}(\omega',\mu)\bigg\}$

2023-10-19

Framework

	Parameter	value/interval	unit	prior	source/comments	
quark mas				ISSES		
	$\overline{m_b}(\overline{m_b})$	4.193 ± 0.035	GeV	Gaussian @ 68%	[Beneke,2014]	
	$\overline{m_c}(\overline{m_c})$	1.288 ± 0.02	GeV	Gaussian $@68\%$	[Dehnadi,2015]	
	$m_b^{ m Pole}$	4.8 ± 0.1	GeV	Gaussian $@68\%$		
	hadron masses					
	m_{Λ_b}	5619.60	MeV	_	[PDG,2020]	
	m_{Λ_c}	2286.46	MeV	_		
	vacuum condensate densities					
	$\langle rac{lpha_{s}}{\pi} {\it G}^{2} angle$	$0.012\substack{+0.006\\-0.012}$	${\sf GeV}^4$	Uniform $@ 100\%$	[Duplancic,2008]	
	parameters of the Λ_b DAs					
ſ	$f^{(2)}_{\Lambda_b}(1{ m GeV})$	$(3.0\pm0.5)\times10^{-2}$	${\sf GeV}^3$	Gaussian @ 68%	[Groote,1997]	
		sum rule parameters and scales				
	μ	[1.0,2.0]	GeV	Uniform @ 100%	[Wang,2015]	
	u	[1.0,2.0]	GeV	Uniform @ 100%		
	μ_h	$[\overline{m_b}/2, 2\overline{m_b}]$	GeV	Uniform $@ 100\%$		
	M^2_{2pt}	2.5 ± 0.5	${\sf GeV}^2$	Uniform@ 100%	[Khodjamirian,2011]	
	$M_{ m SR}^2$	5.0 ± 1.0	${\sf GeV}^2$	Uniform $@100\%$		
	s ₀	[7.0,8.0]	${\sf GeV}^2$	Uniform@ 100%	[Duplancic,2008]	

$\Lambda_{\rm b}$ LCDAs

5

Three-parameter model [JHEP 07 (2018) 154]

$$\phi_4(\omega;\mu_0) = \frac{\Gamma(\beta)}{\Gamma(\alpha)} \frac{\beta(\beta+1)}{\alpha(\alpha+1)} \frac{\mathcal{N}}{\omega_0^2} e^{-\omega/\omega_0} U(\beta-\alpha, 2-\alpha, \omega/\omega_0).$$

Three parameters at $\mu_0 = 1 Gev$ satisfy

$$\lambda_B(\mu) = \frac{\alpha - 1}{\beta - 1} \,\omega_0 \,, \hat{\sigma}_1(\mu) = \psi(\beta - 1) - \psi(\alpha - 1) + \ln\frac{\alpha - 1}{\beta - 1} \,,$$
$$\hat{\sigma}_2(\mu) = \hat{\sigma}_1^2(\mu) + \psi'(\alpha - 1) - \psi'(\beta - 1) + \frac{\pi^2}{6}$$

	ω_0	α	eta	λ_B	$\hat{\sigma}_1$	$\hat{\sigma}_2$	\mathcal{N}
	$0.28(10){ m GeV}$	1.2583	1.2583	$0.28(10) { m GeV}$	0	$\pi^2/6$	1
ϕ_4	$0.329(118){ m GeV}$	1.29771	1.35034	$0.28(10) { m GeV}$	0.40	5.00	1
	$0.264(94){ m GeV}$	1.1361	1.12827	$0.28(10) { m GeV}$	-0.40	-5.00	1

Dependence of parameters

Power correction and Radiative correction

2023-10-19

Form factors in entire momentum region

BGL (BCL) parameterization

LCSR reduce the uncertainty of form factors significantly

$|{V}_{{ m c}b}|$

🖉 Differential decay width

$$\begin{split} \frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} &= \frac{G_F^2 |V_{qb}^L|^2 \sqrt{s_+ s_-}}{768\pi^3 m_{\Lambda_b}^3} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \times \left\{ 4 \left(m_\ell^2 + 2q^2\right) \left(s_+ \left[(1 - \epsilon_q^R)g_\perp\right]^2 + s_- \left[(1 + \epsilon_q^R)f_\perp\right]^2\right) \right. \\ &\left. + 2 \frac{m_\ell^2 + 2q^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 - \epsilon_q^R\right)g_+\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 + \epsilon_q^R\right)f_+\right]^2\right) \right. \\ &\left. + \frac{6m_\ell^2}{q^2} \left(s_+ \left[(m_{\Lambda_b} - m_X)\left(1 + \epsilon_q^R\right)f_0\right]^2 + s_- \left[(m_{\Lambda_b} + m_X)\left(1 - \epsilon_q^R\right)g_0\right]^2\right)\right\}, \end{split}$$

Z Fitting results

Scheme	$V_{cb}(10^{-3})$	Relative uncertainty	
$B_q^{(*)} ightarrow D_q^{(*)}$ [Cui,Huang,Wang,Zhao,2023]	39.63 ± 0.63	1.59%	
$\Lambda_b \to \Lambda_c$	40.10 ± 3.50	8.73%	
$\Lambda_b \to \Lambda_c \otimes B_q^{(*)} \to D_q^{(*)}$	39.79 ± 0.62	1.56%	
$\Lambda_b \to \Lambda_c \ [(Exp. Err)/2]$	40.07 ± 1.91	4.77%	
$\Lambda_b \to \Lambda_c \otimes B_q^{(*)} \to D_q^{(*)} \ [(Exp. Err)/2]$	39.80 ± 0.60	1.51%	

R(D) and $R(\Lambda_c)$ in SM

$$\swarrow R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu_{\tau})}{\mathcal{B}(B \to D\mu\nu_{\mu})} = 0.302 \pm 0.003$$

□ Framework

Summary and Prospect

- $B \to D \text{ NLP correction is 20\% and } \Lambda_b \to \Lambda_c \text{ NLL correction is 17\% }$
- Joint fitting LCSR results in large recoil and LQCD in small recoil, we get the most reliable and accurate form factors in SM
- Improve the accuracy of $|V_{cb}|$, R(D), $R(\Lambda_c)$, A_{FB}^l signifiaently

🐔 Outlook

- $\langle Precision calculation of \Lambda_b LCDAs$
- Appropriate fitting methods

Thanks for your attention!

Forward-backward asymmetry

