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LHC future prospects

2

➤ LHC represents the future of particle physics for the next 2 decades 

➤ Precision measurements in the Higgs sector: success of the Standard Model or New Physics
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LHC future prospects

3

➤ LHC represents the future of particle physics for the next 2 decades 

➤ Precision measurements in the Higgs sector: success of the Standard Model or New Physics 

➤ This requires accurate theoretical predictions

and a connection between theory and experiment 

Idel world Reality
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Shower Monte Carlo Generators

4

➤ Shower Monte Carlo generators have all the ingredients necessary to model complex collider events 
and are the default tool for intepreting LHC data
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Hard
Scattering
Q ≈ 100GeV

HadronizationFixed-order calculations 

Parton shower Underlying Event

Perturbative QCD Non-perturbative QCD

➤ The flexibility of these tools comes at a cost of a poor formal accuracy that causes systematic 
uncertainties entering thousands of papers from the LHC

Pythia

Herwig

Sherpa
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SMC as limiting factor in HEP: Standard Candles

[LHCb JHEP 01 (2022) 036]
mW = 80363 ± 23stat ± 10exp ± 17theory ± 9PDF MeV

require a theory description of the boson transverse momentum distribution
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Electroweak precision measurements in Drell-Yan processes at the LHC such as

Even if very accurate pQCD 
calculations are available, 
SMC are invariably used for 
the modelling of realistic 
experimental acceptance 
and isolation cuts

https://link.springer.com/article/10.1007/JHEP01(2022)036
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SMC as limiting factor in HEP: Jet Measurements

Why controlling the formal accuracy of parton showers
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ATLAS
-1 = 13 TeV, 80 fbs

µµ → Z+jet, Z
 = 0.4R tkAnti-

PFlow+JES
| < 0.8jetη|

Here: Pythia8 vs Sherpa2

[2007.02654]

Dominant systematic for the Jet
Energy Scales Uncertainty?
Difference between PS!
)Enters thousands of experimental
LHC papers!
(e.g. dominant systematic in mt:
�tot ⇡ 600 MeV, �JES ⇡ 400 MeV)

Silvia Ferrario Ravasio — April 6th, 2022 Accurate Monte Carlo generators for precision collider physics 6/23

Any jet physics analysis (  papers!!) at colliders 
requires the jet energy scale calibration

𝒪(1k)

[CMS, 
1910.08819] 

[ATLAS, 2007.02654] 

Parton shower (and its interplay with hadronisation) 
leading source of systematic uncertainty of JES

JES largest 
uncertainty in top-
mass extractions
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SMC as limiting factor in HEP: BSM searches
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Z → q–q H → gg

simulation / truth

Difference in the azimuthal
angle between the two 
hardest emissions  

Nonphysical 
quark/gluon 
differences in 
common dipole 
showers

Unless you are highly 
confident in the 
information you have 
about the markets, 
you may be better off 
ignoring it altogether

Harry Markowitz (1990 
Nobel Prize in Economics)Plot from F. Dreyer within PanScales
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Z → q–q H → gg

simulation / truth

Difference in the azimuthal
angle between the two 
hardest emissions  

Nonphysical 
quark/gluon 
differences in 
common dipole 
showers

Unless you are highly 
confident in the 
information you have 
about the markets, 
you may be better off 
ignoring it altogether

Harry Markowitz (1990 
Nobel Prize in Economics)Plot from F. Dreyer within PanScales[Plot by Frederic Dreyer]

Unphysical differences in the 
radiation pattern from quark and 

gluon jets induced by parton showers 
jeopardizes Machine Learning 
applications for boosted objects 

tagging, limiting new physics searches

Unless you are highly confident in the information you have 
about the markets, you may be better off ignoring it 
altogether  
Harry Markowitz (1990  Nobel Prize in Economics)  
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Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0

q

q
_

Parton Showers in a nutshell

Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

Δ(v0, v) = exp (−∫
v0

v
dPqq̄(Φ))
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Parton Showers in a nutshell

v 

Dipole showers 
Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

Δ(v0, v) = exp (−∫
v0

v
dPqq̄(Φ))

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0
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At some point, state splits (2→3, i.e. emits 
gluon) at a scale . The kinematic (rapidity 
and azimuth) of the gluon is chosen according to

v1 < v0

Parton Showers in a nutshell

v 

Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

dPqq̄(Φ(v1))

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0

Φ = {v, η, φ}
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The gluon is part of two dipoles , . 
 
Iterate the above procedure for both dipoles 
independently, using  as starting scale.

(qg) (gq̄)

v1

Parton Showers in a nutshell

v 

Dipole showers [Gustafson, 
Pettersson, ’88] are the most 
used shower paradigm

At some point, state splits (2→3, i.e. emits 
gluon) at a scale .v1 < v0

Start with  state produced at a hard scale .  

Throw a random number to determine down to 
what scale state persists unchanged

qq̄ v0
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What should a Parton Shower achieve?

1 TeV

10 GeV

energy
scale

1 GeV

100 GeV

hadronisation

shower

hard process

parton

PanScales 
project

PanScales 
project[ ]
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timeZ'
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10 GeV

energy
scale

1 GeV
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hadronisation
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parton

PanScales 
project

PanScales 
project[ ]
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➤ Parton showers evolve collider events from 
 to   

➤ During this evolution, large logarithms 
 will arise. 

➤ Logarithmic accuracy to assess showers 
                                  

  

E.g.  and , 

:  
Next-to-Leading Logarithms are 

Q ≈ 𝒪(TeV) Λ ≈ 1GeV

L = log Q/Λ

Σ(log O < L) = exp( LgLL(αsL)

leading logs

+ gNLL(αsL)

next-to LL

+ …)

O =
p⊥,Z

mZ
p⊥,Z ≈ 1 GeV

|αsL | = 0.55
𝒪(1)
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Which degrees of freedom does a parton shower have?

Starting from a  system, at the evolution scale   a branching occurs e+e− → Z* → qq̄ v

d𝒫ĩ j̃→ijk ∼
αs

2π
dv2

v2
dη̄

dφ
2π [g(η̄)ziPik(zi) + g(−η̄)zjPjk(zj)]

Phase-space

Partitioning of dipole:Evolution variable:  v Recoil scheme: p̃i,j → pi,j,k η̄1 2 3

Splitting factor

viewed as

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19

p̃i

p̃j

pi

pj

pk

These choices affect the logarithmic accuracy of the shower

Basic picture of dipole showers

I Many showers are dipole/antenna showers where gluon emissions
correspond to dipole splittings.

I Squared amplitudes obtained from recursive chain of emissions.

Two key ingredients:

I kinematic mapping ?̃8 , ?̃ 9 ! ?8 , ?9 , ?: .
I evolution variable E defining order of

emissions.

Frédéric Dreyer 6/19
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To be NLL, a Parton Shower must reproduce the matrix element for the emission 
of soft partons well-separated in at least one direction of the Lund plane

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

PanScales criterium: a new 
emission cannot affect 

previous ones if they are 
well-separated in at least 
one direction of the Lund 

plane 

Dissecting the structure of NLL showers

Primary Lund plane

Secondary leaves
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What do state-of-the-art dipole shower implement?

1 Evolution variable: transverse momentum v ∼ k⊥

2 Recoil scheme: fully local, with one parton absorbing the (majority of) the 
 recoilk⊥

3 Dipole partitioning:  corresponds to zero rapidity in the dipole rest frameη̄ = 0

pk = ak p̃i + bk p̃j + k⊥

pj = bj p̃j
x

pi = ai p̃i + bi p̃j−k⊥

Let’s study the -expansion of this shower. 𝒪(α2
s )
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

How well state-of-the-art dipole shower populate the Lund plane?

qq̄

1 2

The  or  recoilq q̄

1st emission

1st emission recoils

 

At NLL, the 1st emission 
should be unaffected by other 
emsn when 

⃗kt1 → ⃗kt1 − ⃗kt2

|η1 − η2 | ≫ 1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

if , the recoil is not an issue: LL is OK!kt2 ≪ kt1

https://arxiv.org/abs/1805.09327
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Building a NLL shower

qq̄

1 2

The  or  recoilq q̄

1st emission

Primary Lund plane

Dipole-partitioning in the event frame reduces but does not solve the problem

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

1st emission recoils

if , the recoil is not an issue: LL is OK!kt2 ≪ kt1

 

At NLL, the 1st emission 
should be unaffected by other 
emsn when 

⃗kt1 → ⃗kt1 − ⃗kt2

|η1 − η2 | ≫ 1

https://arxiv.org/abs/2002.11114
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Building a NLL shower
Dipole-partitioning in the event frame

PanLocal( )0 < β < 1

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

Deductor by Nagy & Soper 0912.4534 follows a 
similar approach (with )β = 1

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2002.11114
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Building a NLL shower
Dipole-partitioning in the event frame

PanGlobal( )0 ≤ β < 1

Recoil:  is redistributed among all the 
partons in the event (mainly the hardest)

k⊥

Holguin, Forshaw and Plätzer 2003.06400, and Alaric 
by Herren et al. 2208.06057 follow a similar approach 

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

Deductor by Nagy & Soper 0912.4534 follows a 
similar approach (with )β = 1

PanLocal( )0 < β < 1

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/0912.4534
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Initial-state radiation in common dipole showers

Initial-state radiation: assignement of 
 recoil is more delicate as the emitter 

cannot take it!
pT

In many dipole-showers the final-state colour parter takes it: issue of the recoil even worse! 

22

hard
scattering

q1 ≈ p = xP

q0 ≈
p

z

q2 ≈
1−z

z
p

P
ro
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n
P

Backward evolution xP

p p

g1

Drell-Yan: 
qq̄ → Z

p
g1DIS: 

qe+ → qe+

ln kt

⌘
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⌘
g1

g2

g3
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Transverse momentum of the Z boson in common dipole showers

Power-scaling behavour of the Z boson  in Drell Yan [Parisi, 
Petronzio NPB 154 (1979) 427-440] not achieved

p⊥

van Beekveld, S.F.R., 
Hamilton, Salam, Soto-

Ontoso, Soyez, Verheyen, 
2207.09467 

23

Wrong exponential 
dampening!

Simple dipole shower

Z
Small  region enhanced by emissions 
with “largish”  that cancel vectorially

pT
pT

https://arxiv.org/abs/2207.09467
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Two-emission contours for state-of-the-art dipole showers

What happens to the first gluon and to the Z boson transverse momentum after a second
emission is added for state-of-the art dipole showers?

Silvia Ferrario Ravasio — June 13th, 2022 Improving Parton Showers for the LHC 20/33

PanLocal starting point

Giving transverse momentum recoil to the
incoming parton and the apply a global boost
seems the less worse option...

pa

pb

pZ

pk

To get PanLocal:
1 Measure the rapity in the Z boson rest frame
2 Ordering variable v2 =

p
k2t q

2

Transverse momentum of the Z boson in common dipole showers

Power-scaling behavour of the Z boson  in Drell Yan [Parisi, 
Petronzio NPB 154 (1979) 427-440]

p⊥

van Beekveld, S.F.R., 
Hamilton, Salam, Soto-

Ontoso, Soyez, Verheyen, 
2207.09467 

Transverse kick to the incoming parton when it emits, and then 
perform global boost and rotations to realign it with the z axis.                 
                                                [Plätzer and Gieseke 0909.5593 ]

24

Correct power-
scaling 

Wrong exponential 
dampening!

Simple dipole shower
Dipole shower with  kickpISR

⊥

Z
Small  region enhanced by emissions 
with “largish”  that cancel vectorially

pT
pT

https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/0909.5593
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Two-emission contours for state-of-the-art dipole showers

What happens to the first gluon and to the Z boson transverse momentum after a second
emission is added for state-of-the art dipole showers?

Silvia Ferrario Ravasio — June 13th, 2022 Improving Parton Showers for the LHC 20/33

PanLocal starting point

Giving transverse momentum recoil to the
incoming parton and the apply a global boost
seems the less worse option...

pa

pb

pZ

pk

To get PanLocal:
1 Measure the rapity in the Z boson rest frame
2 Ordering variable v2 =

p
k2t q

2

Transverse momentum of the Z boson in common dipole showers

Power-scaling behavour of the Z boson  in Drell Yan [Parisi, 
Petronzio NPB 154 (1979) 427-440], but the wrong normalisation!

p⊥

van Beekveld, S.F.R., 
Hamilton, Salam, Soto-

Ontoso, Soyez, Verheyen, 
2207.09467 

Transverse kick to the incoming parton when it emits, and then 
perform global boost and rotations to realign it with the z axis.                 
                                                [Plätzer and Gieseke 0909.5593 ]
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Correct power-
scaling 

Wrong exponential 
dampening!

Simple dipole shower
Dipole shower with  kickpISR

⊥

Z
Small  region enhanced by emissions 
with “largish”  that cancel vectorially

pT
pT

https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/0909.5593
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Initial-state radiation in the PanScales showers
The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT

q
p

Q

ℓ

q′

ℓ′

pq q̄
p

V

p p p

In colour-singlet production, the colour singlet 
absorbs the  recoil for all the ISR emissionsk⊥

In DIS, the final-state quark (and its children) absorbs 
the  recoil for all the ISR emissions.  VBF=DISk⊥

2
van Beekveld, S.F.R., Salam, Soto-Ontoso, 

Soyez, Verheyen, 2205.02237 van Beekveld, S.F.R., 2305.08645 

26

https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2305.08645
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Initial-state radiation in the PanScales showers

Our PanScales showers for Vector 
Boson Fusion represent the first tool 

to achieve NLL accuracy  for this 
process, for both global and non-

global observables! 

*

q

e

q

eNLL at LC, as we miss (unknown!) non-
factorisable corrections, LL at FC
*

27

q

q

q

q

H

The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT

q
p

Q

ℓ

q′

ℓ′

pq q̄
p

V

p p p

In colour-singlet production, the colour singlet 
absorbs the  recoil for all the ISR emissionsk⊥

In DIS, the final-state quark (and its children) absorbs 
the  recoil for all the ISR emissions.  VBF=DISk⊥

2
van Beekveld, S.F.R., Salam, Soto-Ontoso, 

Soyez, Verheyen, 2205.02237 van Beekveld, S.F.R., 2305.08645 

https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2305.08645
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PanGlobal

Initial-state radiation in the PanScales showers

The  recoil of an 
emission is never 
conserved locally 
within the dipole

kt

28

The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT

q
p

Q

ℓ

q′

ℓ′

pq q̄
p

V

p p p

In colour-singlet production, the colour singlet 
absorbs the  recoil for all the ISR emissionsk⊥

In DIS, the final-state quark (and its children) absorbs 
the  recoil for all the ISR emissions.  VBF=DISk⊥

2
van Beekveld, S.F.R., Salam, Soto-Ontoso, 

Soyez, Verheyen, 2205.02237 van Beekveld, S.F.R., 2305.08645 

https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2305.08645
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PanGlobal

Initial-state radiation in the PanScales showers

van Beekveld, S.F.R., 2305.08645 

In DIS, we boost all the final-state partons, leaving  
unchanged. The boost affects mainly partons close in angle to the 
original final-state quark. 

Q = pout − pin

The  recoil of an 
emission is never 
conserved locally 
within the dipole

kt

In colour-singlet production, the  recoil of all the emissions is 
taken by the colour-singlet, whose mass and rapidity is preserved at 
each stage.

kt

29

The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT

q
p

Q

ℓ

q′

ℓ′

pq q̄
p

V

p p p

In colour-singlet production, the colour singlet 
absorbs the  recoil for all the ISR emissionsk⊥

In DIS, the final-state quark (and its children) absorbs 
the  recoil for all the ISR emissions.  VBF=DISk⊥

2
van Beekveld, S.F.R., Salam, Soto-Ontoso, 

Soyez, Verheyen, 2205.02237

https://arxiv.org/abs/2305.08645
https://arxiv.org/abs/2205.02237


Silvia Ferrario Ravasio HEP Theory Seminar, Universität Bonn

PanLocal

Initial-state radiation in the PanScales showers

The  recoil is always 
taken by the emitter. 
In case of ISR, this 
misalignes the 
incoming partons with 
respect to the beams 

kt

30

The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT

q
p

Q

ℓ

q′

ℓ′

pq q̄
p

V

p p p

In colour-singlet production, the colour singlet 
absorbs the  recoil for all the ISR emissionsk⊥

In DIS, the final-state quark (and its children) absorbs 
the  recoil for all the ISR emissions.  VBF=DISk⊥

2
van Beekveld, S.F.R., Salam, Soto-Ontoso, 

Soyez, Verheyen, 2205.02237 van Beekveld, S.F.R., 2305.08645 
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PanLocal

Initial-state radiation in the PanScales showers

In DIS, we apply a Lorentz transformation to all the partons, 
leaving  unchanged. The transform affects mainly 
partons close in angle to the original final-state quark. 

Q = pout − pin

The  recoil is always 
taken by the emitter. 
In case of ISR, this 
misalignes the 
incoming partons with 
respect to the beams 

kt
In colour-singlet production, we apply a Lorentz transformation 
to the whole event to realign the incoming partons with the 
beams. The rapidity of the colour-singlet is preserved.
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The  recoil due to ISR is taken by a “hard system’’, whose definition depends on the processpT
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All-orders validation of the PanScales showers

     at fixed lim
αs→0

ΣPS
ΣNLL

λ = αsL Σ(O < eL) = exp(LgLL(αsL) + gNLL(αsL)+αsgNNLL(αsL) + …)
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Z boson  in   
collisions, 2207.09467 

p⊥ pp

DIS Broadening, 
2305.08645 

In DIS/VBF, the 
“  kick” is 
never used as 

it does not 
preserve 

pISR
⊥

qμDipole shower with  kickpISR
⊥

Simple dipole shower

Simple dipole shower

https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/2305.08645
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Exploratory phenomenology for VBF

33

Rapidity of 
the third 

jet

NLL PanScales showers

Simple 
dipole 

shower: LL

VBF: boosted Higgs 
studies, Higgs to 
invisible/muons 
measurements. 

Error budget dominated 
by PS uncertainty

q

q

q

q

H

Table by M. Pellen, 
2023 Higgs WG 

meeting

LO+PS  
(NLO matching 

is work in 
progress)
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PanLocal β=0.5 
+ Pythia 8.3 
(for hadronisation)

preliminary

4-
je
t 
re
gi
on
 (u
nm
at
ch
ed
)

e+e– thrust

➤ Matching from Hamilton, Karlberg, Salam, 
Scyboz, Verheyen: 2301.09645  

➤ preliminary treatment of heavy-quark 
masses [van Beekveld, SFR, Salam, Soyez, 
Verheyen, in preparation] 

➤ understand nature of perturbative shower 
uncertainties 

➤ and interplay with non-perturbative tuning 

Comparison with LEP data

https://arxiv.org/abs/2301.09645
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Soft emission — i.e. inclusion of double-soft current + associated virtual 
corrections 

➤ any pair of soft emissions with commensurate energy and angles 
should be produced with the correct [double-soft] matrix element  

➤ probability for any single soft emission should be NLO accurate 
➤ NB: Vincia and Sherpa groups have also explored inclusion of the 

double-soft current; part of novelty here is doing so to get the log-
accuracy benefit.
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Ferrario Ravasio, Hamilton, 
Karlberg, GPS, Scyboz, Soyez, 

2307.11142

This should maintain NLL accuracy and further achieve 

➤ NNDL accuracy for [subjet] multiplicities, i.e. terms , ,  

➤ Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms  
and  (at leading- ) 

NB: done using PanGlobal, so far just in 

αn
s L2n αn

s L2n−1 αn
s L2n−2

αn
s Ln

αn
s Ln−1 Nc

e+e− → qq̄

Towards NNLL accuracy

https://arxiv.org/abs/2307.11142
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➤ a given two-emission configuration can 
come from several shower histories 

➤ accept a given emission with exact 
double-soft  divided by shower’s 
effective double-soft matrix element 
summed over the histories h that could 
have produced that configuration

M(DS)
exact

36
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by
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Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|
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P
h |Mshower,h|
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. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
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shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F
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ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
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ds , then we swap the colour connection
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
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shower � F
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability
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2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
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relative weights of the a12b and a21b colour connec-
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the

1. Real corrections: pair of soft emissions

Paccept =
M(DS)

exact

∑h M(DS)
h,PS

Double-soft acceptance Paccept

ϕ 2
−

ϕ 1
+

π

y2

y1 = 7; ln kT,1/kT,2 = 1
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Virtual corrections in parton showers

➤For a soft emission

V
=

αs

2π
KCMW+ R∫

y, p⊥

fixed

VPS

≡
αs

2π
KCMW −

At fixed “shower variables”, but the 
rapidity and  of the jet can varyp⊥

∫ RPS

➤Catani, Marchesini and Webber defined the 
“CMW” scheme for  the coupling in the shower                                           
[Nucl.Phys.B 349 (1991) 635-654]

This ensures  

 

“on average”

VPS + ∫ RPS =
αs

2π
KCMW

αCMW
s = αs (1 +

αs

2π
KCMW)
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2. Virtual corrections for soft emissions
With our double soft acceptance we have .  
To ensure

RPS = R

VPS

=
αs

2π
KCMW − R∫

y, p⊥

fixed

KCMW → KCMW + ΔK(Φ(1)
PS)

R∫
y, p⊥

fixed−
αs

2π
ΔK(Φ(1)

PS) = ∫ R

fixed “shower variables”

We modify the 
CMW scheme

10

FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.

yPS

Δ
K

(y
PS

)

 vanishes for large rapidities since 
virtual corrections to soft-collinear 
emissions are OK for NLL showers

ΔK
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non-trivial ⌘̄ dependence in Eq. (2) and the way in which
it connects with the overall event momentum Q. There-
fore we need to generalise Kcmw ! K(�1̃,ab), where the

full K is a function of the kinematics of 1̃ and of the
opening angle of the ab dipole. In the same vein as the
MC@NLO [65] and POWHEG [66, 67] methods and their
MINLO [68, 69] extension, the correct NLO normalisa-
tion for the emission is given by

K(�1̃,ab) = V (�1̃,ab) +

Z
d�ps

12/1̃|M
(ps)

12/1̃
|
2
��(ps,1)

1̃
. (5)

Here, V is the exact QCD 1-loop contribution for a
single soft emission, renormalised at scale µ = kt,1̃;

d�ps
12/1̃

|M
(ps)

12/1̃
|
2 is the product of shower phase space and

matrix element associated with real 1̃ ! 12 branching,

including double-soft corrections; and �(ps,1)

1̃
is the co-

e�cient of ↵s/(2⇡) in the fixed-order expansion of the
shower Sudakov factor. To aid in the evaluation of
K(�1̃,ab) we make use of two main elements: firstly, in
the soft-collinear limit,K(�1̃,ab) ! Kcmw; secondly, both

V (�1̃,ab) and �(ps,1)

1̃
are independent of the rapidity of

1̃, as long as 1̃ is soft and (for �(ps,1)

1̃
) kept at some fixed

value of the evolution scale. We can therefore reformulate
Eq. (5) as K = Kcmw +�K, with

�K =

Z

r
d�(ps)

12/1̃
|M

(ps)

12/1̃
|
2
�

Z

rsc

d�(ps)

12/1̃sc
|M

(ps)

12/1̃sc
|
2
. (6)

In the second term, 1̃sc is at the same shower scale v

as 1̃, but shifted by a constant in rapidity with respect
to ab so as to be in the soft-collinear region, wherein
K(�1̃sc,ab

) ! Kcmw. The labels r and rsc indicate a reg-
ularisation of the phase space, which should be equivalent
between the two terms. Specifically, we separate MDS in
Eq. (3) into correlated and uncorrelated parts, respec-
tively those involving CFCA versus C2

F colour factors for
the q̄ggq matrix element. For the correlated part, we cut
on the relative transverse momentum of 1 and 2, while for
the uncorrelated part, we cut on the transverse momen-
tum with respect to the ab dipole and impose |�y12| <

�ymax. In practice we tabulate �K as a function of
✓ab, ⌘̄1̃, and �1̃, though one could also envisage on-the-
fly evaluation. We incorporate �K in Eq. (2), through
a multiplicative factor 1 + tanh[↵s

2⇡ �K(1� ak)(1� bk)].
This form keeps the correction positive and bounded. It
also leaves the shower unmodified in the hard-collinear
region.

We study the above approach with several variants of
the PanGlobal shower. All have been adapted relative
to Ref. [2] with regards to the precise way in which they
restore momentum conservation after the map of Eq. (1).
This was motivated by the discovery that in higher-order
shower configurations involving three similarly collinear
hard particles, the original recoil prescription could lead
to unwanted long-distance kinematic side e↵ects. Details
are given in the supplemental material [60], § 1.

FIG. 2. The result of Eq. (7) for three variants of the Pan-
Global shower without double-soft corrections (left) and with
them (right). The latter are consistent with NNDL accuracy.
The bands represent statistical errors in an ↵s ! 0 extrapo-
lation based on four finite ↵s values.

We will consider three variants of the PanGlobal
shower: two choices of the ordering variable, ⇠ kt✓

� with
� = 0 (PG�=0) and 1/2 (PG�=1/2), and also a “split-
dipole-frame” � = 0 variant (PGsdf

�=0), which replaces

f(±⌘̄) ! f(±⌘) in Eq. (2), with ⌘ = 1
2 log ak/bk. The

⌘ = 0 transition region bisects the dipole in its rest frame
rather than the event frame. This makes the 1̃ ! 12
branching independent of the 1̃ rapidity in the dipole
frame, resulting in �K = 0. Illustrative plots of �K

and its impact are given in Ref. [60], § 2 c.
All results, both with and without double-soft correc-

tions, include NLO 2-jet matching [70], which is required
for the NNDL/NSL accuracy that we aim for. Spin cor-
relations [71, 72] are turned o↵, because we have yet
to integrate them with the double-soft corrections. The
double-soft corrections are implemented at large-Nc, in
such a way as to preserve the full-Nc NLL/NDL accu-
racies obtained in Ref. [73] for global observables and
multiplicities. All events have (positive) unit weight.
To test the enhanced logarithmic accuracy of the

shower, the first observable that we consider is the Lund
subjet multiplicity [43] in e

+
e
�

! qq̄ events. This is
a perturbatively calculable observable that is conceptu-
ally close to the experimentally important total charged-
particle multiplicity. For a centre-of-mass energy Q and
a transverse momentum cuto↵ kt, the subjet multiplicity
has a double-logarithmic resummation structure ↵

n
sL

2n

with L = ln kt/Q. The PanGlobal showers already re-
produce terms up to NDL ↵

n
sL

2n�1. The addition of the
double-soft corrections and matching [70] is expected to
bring NNDL accuracy, ↵n

sL
2n�2. To test this, in Fig. 2,

we examine

lim
↵s!0

Nps �Nnndl

↵sNdl

����
fixed ↵sL

2

, (7)

where Nps is the parton-shower result and Nnndl (Ndl) is
the known analytic NNDL (DL) result [43]. The ↵s ! 0
limit follows the procedure from earlier work [2]. Eq. (7)

no double soft with double soft
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.

no double soft double soft

nreal
f = 0

double soft

full nf

NSL for the energy flow in a rapidity slice

S.F.R., Hamilton, Karlberg, 
Salam, Scyboz, Soyez 

2307.11142 

https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2111.02413
https://arxiv.org/abs/2307.02283
https://arxiv.org/abs/2307.11142
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NSL Pheno outlook

➤ Energy flow in slice 
between two 1 TeV jets 

➤ Double-soft reduces 
uncertainty band 
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.

S.F.R., Hamilton, Karlberg, 
Salam, Scyboz, Soyez 

2307.11142 

αCMW
s (kt; xR) = αs(xRkt)(1 +

αs(xRkt)
2π

(KCMW+ΔK(Φ))+2αs(xRkt)b0(1 − z)ln xR)
Uncertainty here is 
estimated varying the 
renormalisation scale

https://arxiv.org/abs/2307.11142
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Conclusions
➤ PanScales is first validated NLL shower 

➤ benefits of LL → NLL include reduced uncertainties (reliable estimate uncertainties) 

➤ NLO matching in place for some simple processes 

➤ for realistic applications we also need massive quarks (in progress) and tuning 

➤ Higher log accuracy is one of the next frontiers 

➤ first results with double-soft (+ virtual) corrections! 

➤ brings NNDL multiplicity and NSL non-global logarithms 

➤ Public code 

➤ https://gitlab.com/panscales/panscales-0.X
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Next steps

44

Going beyond NLL

Public NLL shower (for lepton 
collisions, colour-singlet production 
in pp collisions, DIS, VBF) and 
interface to Pythia8.3 soon!

Towards a complete 
 public shower usable for 

phenomenology
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Next steps
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Towards a complete 
 public shower usable for 

phenomenology

hadron collisions: 
more complex processes & associated tests

Matching to hard matrix elements 
Essential for phenomenology, must be done in way 

that retains NLL accuracy, and possibly augments it. 
Already achieved for  [Karlberg, Hamilton, Salam, 
Scyboz, Verheyen, 2301.09645], work in progress for 

 with massive quarks, DY, ggH, DIS, VBF 

e+e−

e+e−

Heavy quarks & resonances 
Essential for phenomenology

Interface 
to Pythia 

uncertainty 
estimates

https://arxiv.org/abs/2301.09645
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Next steps
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Underlying Calculations 
We need (a) reference results 

and (b) understanding of NNLL logs in 
soft & collinear limits 

Next-to-leading non-global 
logarithms in QCD 
Banfi, Dreyer and Monni,  
2104.06416, 2111.02413 

Lund and Cambridge multiplicities  
Medves, Soto-Ontoso, Soyez, 
2205.02861, 2212.05076 

Dissecting the collinear structure 
of quark splitting at NNLL 
Dasgupta, El-Menoufi, 2109.07496

Groomed jet mass studies 
Anderle, Dasgupta, El-Menoufi, 
Guzzi, Helliwell, 2007.10355; 
Dasgupta, El-Menoufi, Helliwell 
2211.03820  
[see also SCET work, Frye, Larkoski, 
Schwartz & Yan, 1603.09338 + …]

https://arxiv.org/abs/2104.06416
https://arxiv.org/abs/2111.02413
https://arxiv.org/abs/2205.02861
https://arxiv.org/abs/2212.05076
https://arxiv.org/abs/2109.07496
https://arxiv.org/abs/2007.10355
https://arxiv.org/abs/2211.03820
https://arxiv.org/abs/1603.09338
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It’s time for better Parton Showers!

47

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

1980 1990 2000 2010 20201970

Drell-Yan (γ/Ζ) & Higgs production at hadron colliders
NLOLO NNLO[……………….] N3LO

transverse-momentum resummation (DY&Higgs)
NLL[……]LL NNLL[…] N3LL

fixed-order matching of parton showers
LO NLO NNLO […….] [N3LO]

parton showers
[parts of NLL…………………………………………..]LL

(many of today’s widely-used showers only LL@leading-colour)

Slide from G. Salam
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PanScales status: e+e– → jets, pp→ Z/W/H, DIS, VBF (structure function) (w. massless quarks)

48

phase space  region critical ingredients observables accuracy colour

soft collinear no long-distance 
recoil global event shapes NLL full

hard collinear
DGLAP split-fns 

+ amplitude spin-
correlations

fragmentation functions 
& special azimuthal 

observables
NLL full

soft commensurate 
angle large-Nc dipoles energy flow in slice NLL full up to 2 

emsns, then LC 

soft, then hard 
collinear soft spin correlations special azimuthal 

observables NLL full up to 2 
emsns, then LC 

all nested – subjet and/or particle 
multiplicity NDL full

Slide from G. Salam
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how large are the logarithms?

49

Q [GeV] ↵s(Q) pt,min [GeV] ⇠ = ↵sL2 � = ↵sL ⌧

91.2 0.1181 1.0 2.4 �0.53 0.27

91.2 0.1181 3.0 1.4 �0.40 0.18

91.2 0.1181 5.0 1.0 �0.34 0.14

1000 0.0886 1.0 4.2 �0.61 0.36

1000 0.0886 3.0 3.0 �0.51 0.26

1000 0.0886 5.0 2.5 �0.47 0.22

4000 0.0777 1.0 5.3 �0.64 0.40

4000 0.0777 3.0 4.0 �0.56 0.30

4000 0.0777 5.0 3.5 �0.52 0.26

20000 0.0680 1.0 6.7 �0.67 0.45

20000 0.0680 3.0 5.3 �0.60 0.34

20000 0.0680 5.0 4.7 �0.56 0.30

Table 1: Values of ⇠ = ↵sL2, � = ↵sL and ⌧ (defined in Eq. (7.10)) for various upper

(Q) and lower (pt,min) momentum scales. The coupling itself is in a 5-loop variable flavour

number scheme [45–48], while ⌧ is evaluated for 1-loop evolution with nf = 5.

For example to test NkDL accuracy we will study a quantity such as12

�VNkDL = lim
↵s!0

 
VPS(↵s,�

p
⇠/↵s)� VNkDL(↵s,�

p
⇠/↵s)

↵k/2
s

!
, (7.2)

where VNkDL is the known NkDL prediction from resummation and VPS is the result from

the parton shower. For a parton shower that is correct to NkDL accuracy, �VNkDL should

be zero. Values of ⇠ for di↵erent momentum ranges are shown in table 1. In practice we

will often use ⇠ = ↵sL2 = 5, which is towards the upper end of the phenomenologically

relevant combinations of ↵s and L accessible at the LHC. We perform such studies for

multiplicities (section 7.1) and event shapes (section 7.2.1).

For observables whose logarithmic prediction exponentiates, Eq. (1.1), we can study

lnV (↵s, L), taking the limit of ↵s ! 0 with fixed

� = ↵sL . (7.3)

To test NkLL accuracy we can examine

� lnVNkLL = lim
↵s!0

✓
lnVPS(↵s,�/↵s)� lnVNkLL(↵s,�/↵s)

↵k�1
s

◆
, (7.4)

12We could use a variant of (7.2) where the denominator is taken as VNkDL � VNk�1DL, except when

it vanishes. This has the advantage of providing a meaningful relative deviation at NkDL for situations

where �VNkDL does not converge to zero as ↵s ! 0, and it is the choice that we will adopt for some of our

multiplicity tests below.

– 29 –
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Collinear spin-correlations in showers

50

Shower emission probability are polarisations-averaged at every step, so we get 

                                      
~n1 ~n2

� 12

P1

P2

� 12

~p1
~p3

~p2
~p4

~p5

×|ℳ |2
PS = ∑

λ′￼̃ik

|ℳλ′￼̃ik
g |2 × ∑

λĩk

∑
λi,λj

|ℳλĩkλiλk
g→i,j |2 =

|ℳ |2 = ∑
λi,λj

|∑
λ ĩk

ℳλ ĩk
g ℳλĩkλiλk

g→i,j |2 = |ℳ |2
PS (1+a cos Δψ)

instead of

Spin-correlations capture 
the azimuthal modulations

Collin (’88, FSR) Knowles (’88, ISR) algorithm. 
For every emission,  is decided on the basis of a spin-density 
matrix, which is then updated after the branching. 

Implemented in the Herwig7 angular-ordered, Herwig7 
dipole [Richardson, Webster ’18], and PanScales [Karlberg, 
Salam, Scyboz, Verheyen ’21]  showers. 

ϕ
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Soft and collinear spin in PanScales
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Karlberg, Salam, Scyboz, Verheyen, 2011.10054    [collinar spin in FSR] 
Karlberg, Hamilton, Salam, Scyboz, Verheyen, 2111.01161    [soft spin in FSR] 
van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

We can have also azimuthal modulations due to the emission of a soft gluon ℳ ≈ ( pi

pi ⋅ k
−

pj

pj ⋅ k ) ϵk

Since it does not modify the spin of i and j, it is possible to interleave soft spin-correlations (at 
leading colour) with collinear ones (at full colour), using the eikonal matrix element to update the 
spin-density tree for soft gluon emissions. [Karlberg, Hamilton, Salam, Scyboz, Verheyen, ’21] 

Also for hadron-collisions [van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen ’22] 

https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/2111.01161
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Colour in the PanScales showers
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Hamilton, Medves, Salam, Scyboz, Soyez, 2011.10054    [FSR] 
van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

Segment: colour decided looking to which Lund plane the 
emission belongs: as good as an angular-ordered shower 

ln kt

⌘

CF

CA/2

g1

g2

q̄ q
g2 g1

q̄[−∞, CF, ηL
1 , CA, ηL

2 , + ∞]g2

g2
[−∞, CA, ηR

2 , CA, + ∞]g1

g1
[−∞, CA, ηR

1 , CF, + ∞]q

ηL = max(0,η), ηR = min(0,η)

NODS: nested (double soft) matrix element corrections 
assuming last emission is the softest 

p(g5 |g2, g3) ≈ 1 − ( CA − 2CF

CA ) (1,4)
(1,2) + (2,3) + (3,4)q̄ q

1
2 3

45

2 q̄ 3 31 2 4 2 q 3

Segment

NODS
PanScales shower

Ratio to  
exact ME

https://arxiv.org/abs/2011.10054
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Exploratory phenomenology for VBF

53

➤ For inclusive observables, differences have the same size of NLO corrections. LL shower lies 
between the NLL predictions. 

➤ For exclusive observables, the LL shower lies outside the band spanned by the NLL showers

q

q

q

q

HRapidity difference 
between the two 

leading jets Rapidity of 
the third jet

LO events obtained thanks to 
our Pythia8.3 [2203.11601] 

interface!

NLL PanScales showers

Dipole-  (local): LLkt

https://arxiv.org/abs/2203.11601
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All-orders validation of the PanScales showers

(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.

– 15 –

Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

forW mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.

– 13 –

Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL2 for all

showers, two di↵erent energies (
p
s = 5mX , left, and

p
s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵k/2
s hk+1(↵sL2) resums terms of ↵n

sL
2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower �NNDL

NNDL �NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.

– 19 –

NLL event shapes  
& Z/H pt

single-logs 
(PDFs, non-global, spin)

 NLL showers at LC: 2002.11114  
Colour in  2011.10054 and in  2205.02237  

Spin in  2103.16526, 2111.01161  and in  2205.02237  
All-orders tests for  2207.09467  

DIS NLL tests 2305.08645  
 

e+e−

e+e− pp
e+e− pp

pp

fixed order (kinematics, spin, colour)

NDL multiplicities
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https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/2011.10054
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2103.16526
https://arxiv.org/abs/2111.01161
https://arxiv.org/abs/2205.02237
https://arxiv.org/abs/2207.09467
https://arxiv.org/abs/2305.08645
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All-orders validation of the PanScales showers

(a) (b)

Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.

It is useful to recall the structure of the standard b-space result for the resummation

of the transverse-momentum distribution [15, 59, 60],

d⌃

dp2
tX

=

Z 1

0

db

2
bJ0(bptX)⌃V (b0/b) , (5.1)

with b0 = 2e��E , ⌃V the b-space resummed distribution, and J0 the Bessel function of

the first kind and order 0. Observe that for ptX ! 0 the result tends to a non-zero

constant, whose value can be straightforwardly obtained by replacing J0(bptX) ! 1 in

Eq. (5.1). Fig. 6a shows the small-ptX behaviour of the distribution for Z production, in

four showers. Three of them, PanGlobal, PanLocal and Dipole-kt(global), indeed tend to

a non-zero constant. In contrast the variant of Dipole-kt with local recoil for IF dipoles

tends to zero in this limit, i.e. it has the wrong scaling behaviour. This is because, after

the first emission, the event consists of two IF dipoles, and from that point onwards, no

further transverse recoil is taken by the Z boson. Therefore the only mechanism for ptZ to

be small is Sudakov suppression of the first emission, which is a much stronger suppression

than the vector cancellation.13

13For processes such as gg ! H with two II dipoles, one does recover the correct power-dependence of

the scaling (i.e. the plateau), because the Higgs recoil induced by an emission o↵ one II dipole can have a

vector cancellation with recoil induced by an emission o↵ the other II dipole. However the normalisation

of the plateau is still expected to be wrong, as is the whole shape of the distribution for ↵sL ⇠ 1.
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Figure 4: Summary of deviations from NLL for several global observables for the process

qq̄ ! Z and � = �0.5. Red squares denote a clear NLL failure; amber triangles indicate a

NLL fixed-order failure that is masked at all orders; green circles are used when the shower

passed both the numerical NLL tests and the fixed-order recoil tests. The ↵s ! 0 result is

obtained by quadratically extrapolating the shower results at ↵s = 0.00625, 0.003125 and

0.0015625, and includes a systematic error that is evaluated as the change in the ↵s ! 0

extrapolation when one uses ↵s = 0.0125 instead of ↵s = 0.003125. The showers include a

dynamic cuto↵ � = 18, which functions as discussed in our earlier e+e� tests [8, 11].

and the PanScales showers, so as to concentrate on the impact of recoil. In contrast,

standard dipole showers choose the colour factor according to whether the emitting dipole

end that is closer (in the dipole centre-of-mass frame) is a gluon (CA/2) or a quark (CF ).

This results in incorrect terms already at LL, in analogy with the final-state discussion in

Ref. [10]. The numerical impact will be the same as in the all-order final-state study [8].

5 The transverse momentum of the colour-singlet system

The next observable that we discuss is the cumulative distribution for the transverse mo-

mentum of a massive colour singlet (here, Z or H boson) produced in proton collisions. It

has wide relevance for LHC phenomenology, and for example its understanding is critical

forW mass extractions [40–42].10 It is also widely used in matching showers and fixed-order

calculations [44, 54–56].

10One should keep in mind, that in many applications parton showers are reweighted so that the colour-

singlet transverse momentum distribution agrees with high-order matched resummed and fixed order predic-

tions, such as [43–53]. Still, even if such a procedure results in a correct colour-singlet transverse momentum

distribution for the reweighted shower, it will not in general correctly account for correlations between the

colour singlet and the full pattern of hadronic energy deposition. We leave the detailed study of such

questions to future, more phenomenological work.
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Figure 8: Extrapolation of Nshower�NNDL
NNDL�NDL

to ↵s = 0 at a fixed value of ⇠ = ↵sL2 for all

showers, two di↵erent energies (
p
s = 5mX , left, and

p
s = 1000mX , right), and the two

processes under study, i.e. pp ! Z and pp ! H.

⌃ rather than ln⌃. The analogue of Eq. (4.1) for such non-exponentiating observables is

⌃(L) = h1(↵sL
2) +

p
↵sh2(↵sL

2) + . . . , (7.1)

where the NkDL function ↵k/2
s hk+1(↵sL2) resums terms of ↵n

sL
2n�k. That is, the function

h1 captures the double logarithmic (DL) enhancement, h2 the next-to-double-logarithmic

(NDL) contribution and so on. In the multiplicity case, the logarithm that needs to be

resummed is L = ln(kt,cut/mX), where, up to NDL accuracy, kt,cut may be either a shower

transverse momentum cuto↵ (for particle multiplicities) or a jet algorithm transverse mo-

mentum cut for a suitably defined subjet multiplicity.

Recently, the subjet multiplicity in colour singlet production has been computed up

to NDL accuracy [69] (earlier calculations gave similar structures [70–72]). In a shower

context, up to NDL, it applies equally well to the number of particles in the event (Nshower)

when one sets the strong coupling to zero below a given value of kt,cut.

To test the NDL terms in Eq. (7.1), we compute the following ratio

Nshower �NNDL

NNDL �NDL
, (7.2)

which vanishes in the ↵s ! 0 limit if the shower is correct at NDL accuracy.16 The result

of computing Eq. (7.2) with all showers, at two di↵erent energies and for two di↵erent hard

processes (pp ! Z and pp ! H) is shown in Fig. 8. We observe that all showers are con-

sistent with the full-colour NDL expectation, within the small statistical errors. Relative

16Practically, we run the shower for di↵erent values of kt,cut, i.e. ln kt,cut = {�31.25,�62.5,�125,�1000},

keeping ⇠ ⌘ ↵sL
2 = 5 fixed (L = ln kt,cut/mX) and use all four points to perform a cubic polynomial

extrapolation down to ↵s ! 0. The error that we quote on Nshower is purely statistical.
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All-orders validation of the PanScales showers
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Figure 5: Ratio of the cumulative distribution for the colour-singlet transverse momentum

to the NLL analytic result, in the ↵s ! 0 limit, for (a) qq̄ ! Z and (b) gg ! H events. The

results are shown for Dipole-kt with local (red dashed line) and global recoil (green dotted

line), PanGlobal with �PS = 0 (blue solid line) and �PS = 0.5 (blue circles), and PanLocal

with �PS = 0.5, both for the antenna (black triangles) and dipole (black squares) variants.

For clarity, the PanLocal antenna (dipole) points have been slightly shifted towards the

left (right), with respect to the values actually used, which coincide with the PanGlobal

�ps = 0.5 ones.
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Transverse-momentum of the Z boson

57

PanScales NLL 
showers with global 
[blue] or local [black] 
recoil. At small pTZ, 

the spectrum is 
power-suppressed 

with the correct 
normalisation.

LL shower. At small 
pTZ, the spectrum is 

power-suppressed, but 
with the WRONG 

normalisation

LL shower. At small 
pTZ, the spectrum is 

EXPONENTIALLY 
suppressed!

s = 13.6TeV, mZ = 91GeV, yZ = 0

➤ The “better’’ LL shower is remarkably 
similar from the other NLL showers. 
➤ Is NLL important? Can we live with LL 

tuned showers? 
➤ Scale variations smaller than PanLocal vs 

PanGlobal differences.  
➤ How to estimate PS uncertainties? 

PanLocal vs PanGlobal? Is this enough?

Dipole shower with  kickpISR
⊥

Simple dipole shower
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Azimuthal correlations between the two leading jets in DY
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MZ = 91 GeV

Dipole shower with  kickpISR
⊥

Simple dipole shower
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Azimuthal correlations between the two leading jets in DY
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MZ = 91 GeV

➤ Impossible to tune a LL shower to reproduce a NLL across several energy scales (at 91 GeV subleading 
effects are more sizeable and the shower is more tunable than at 500 GeV!)   

➤ Difference among PS larger than scale uncertainty, and hence should be used to estimate PS uncertainties, 
until we gain more analytic understanding is required (i.e. PS differences might not be enough)

MZ = 500 GeV

Dipole shower with  kickpISR
⊥ Dipole shower with  kickpISR

⊥

Simple dipole shower Simple dipole shower
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2. Get the colour ordering

➤ There are two colour orderings 
a12b, a21b 

➤ relative fractions  and  of the two 
must be correct in order to get correct next 
soft emission (large- ) 

➤ If shower produces more of the 12 ordering 
than is correct, then allow for swap of 
ordering (similarly for  v. )

F(12) F(21)

Nc

gg qq̄
60
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by

dPn!n+1

d ln v
=

X

{ı̃,|̃}2dip

Z
d⌘̄

d�

2⇡

↵s(kt)

⇡

✓
1 +

↵s(kt)Kcmw

2⇡

◆

⇥ [f(⌘̄)akPı̃!ik(ak) + f(�⌘̄)bkP|̃!jk(bk)] . (2)

Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability
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The numerator and denominator in Eq. (3) are evalu-
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ensures that Paccept = 1 when 1 and 2 are well separated,
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The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
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tem, as required for NSL accuracy. To address this prob-
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
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elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.
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well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.
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bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-
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cepted with probability
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for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-
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We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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correct double-soft matrix element when two particles are
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for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
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correct.
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the a21b connection. In practice, we precede the colour
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tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 5. Left: rate of emission before (dashed-dot red) and after (solid blue) double-soft matrix-element corrections at O(↵2
s).

Right: decomposition in terms of colour flows and flavour channels.

Finally, the contribution to the total e↵ective squared shower matrix element arising from the a12b colour ordering,P
h2a12b |M

(12)
shower,h|

2, is given by swapping a $ b everywhere on the right-hand side of Eq. (12).

b. Real double-soft matrix-element corrections

In Fig. 5 (left) we provide an illustration of one of the matrix element tests that we have carried out. It is shown for
the PGsdf

�=0 shower. We start with a dipole ab with an opening angle of ✓ab = ⇡� 2 in the event centre-of-mass frame.
From that system, we generate two soft emissions, and select those configurations where the higher-kt emission (1)
is in a window �12 < ln kt1/Q < �11 and 1 < y1 < 3, while the lower-kt emission (2) satisfies ln kt2/kt1 > �1. We
determine transverse momenta and rapidities in the dipole centre-of-mass frame and, for the purpose of Fig. 5, restrict
our attention to configurations for which, in that frame, the two emissions are both in the ab dipole’s primary Lund
plane [12]. The upper panel shows the di↵erential distribution of the rapidity di↵erence between the two emissions,
�y21 = y2 � y1.

The results in Fig. 5 have been normalised to 2(↵sCA/⇡)2 which is the expected result for large �y21, at large-Nc,
as long as particle 2 is still soft. The red (dot-dashed) curve shows the default shower, without any double-soft
correction, while the black curve shows the actual double-soft matrix element. Both are shown averaged over �2, the
azimuth of particle 2. The shower and exact double-soft matrix element di↵er for �y21 in the vicinity of zero. The
red dot-dashed curve in the lower panel shows the ratio of the two curves, illustrating the need for O (1) corrections
at small and moderate �y12 values. As |�y21| becomes larger, all curves tend to the same limit corresponding to
independent emission. Once particle 2 starts to become hard, and the physical phase space boundary is approached,
�y21 & 6, all three predictions begin to depart from that of the independent emission picture, with small technical
kinematic cuts also playing a role in that region. Crucially, however, throughout this hard-collinear region the shower
predictions with and without double-soft corrections are seen to be in perfect agreement.

When the shower is run with the (fully-di↵erential) double-soft correction factor (upper panel, blue solid line), one
sees that it agrees perfectly with the double-soft matrix element for moderate �y21. One important point is that at
large positive �y21, the correction factor does not modify the shower, even though the shower and the double-soft
matrix element di↵er: in that limit, where the hard-collinear splitting function corrections are relevant, the shower
already provides the correct answer, and it is important to maintain that correct answer.

The right-hand plot shows the same di↵erential distribution but broken into flavour and colour channels. Let us
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