Formally and practically accurate Parton Shower Generators

LHC future prospects

- ► <u>LHC</u> represents the <u>future of particle physics</u> for the next <u>2 decades</u>
- Precision measurements in the <u>Higgs sector</u>: success of the <u>Standard Model</u> or <u>New Physics</u>

LHC future prospects

- ► <u>LHC</u> represents the <u>future of particle physics</u> for the next <u>2 decades</u>
- Precision measurements in the <u>Higgs sector</u>: success of the <u>Standard Model</u> or <u>New Physics</u>
- This requires <u>accurate theoretical predictions</u>

and a <u>connection</u> between theory and experiment

Idel world

Silvia Ferrario Ravasio

Shower Monte Carlo Generators

and are the **default tool** for intepreting LHC data

<u>uncertainties</u> entering thousands of papers from the LHC

> Shower Monte Carlo generators have all the ingredients necessary to model complex collider events

Silvia Ferrario Ravasio

Even if very accurate pQCD calculations are available, **<u>SMC</u>** are invariably used for the modelling of **realistic** experimental acceptance and isolation cuts

SMC as limiting factor in HEP: Jet Mea

Any jet physics analysis ($\mathcal{O}(1k)$ papers!!) at c requires the jet energy scale calibration

Parton shower (and its interplay with hadron leading source of systematic uncertainty of JES

Silvia Ferrario Ravasio

quir	eme	ntc	Source	Uncerta
JUI			Trigger	(
			Lepton ident./isolation	(
11• 1			Muon momentum scale	(
Collid	ers		Electron momentum scale	(
			Jet energy scale	
			Jet energy resolution	(
			b tagging	(
			Pileup	(
			tī MĒ scale	(
		LCMS,	tW ME scale	(
		1010 088101	DY ME scale	(
		1910.00019]	NLO generator	(
			PDF	(
			$\sigma_{t\bar{t}}$	(
			Top quark $p_{\rm T}$	(
			ME/PS matching	(
	IEC	largant	UE tune	(
	JES	largest	tī ISR scale	(
	1100	ortainty in tan	tW ISR scale	(
	JES largest uncertainty in mass extractio	ertainty in top-	t ī FSR scale	(
		a autractiona	tW FSR scale	(
mass extrac		55 EXITACTIONS	b quark fragmentation	(
			b hadron BF	(
			Colour reconnection	
			DY background	(
			tW background	(
			Diboson background	(
			W+jets background	(
			tītbackground	(
nicati	on		Statistical	(
iisali	1910.08819 DYME scale NLO generator PDF $\sigma_{t\bar{t}}$ Top quark p_T ME/PS matching UE tune $t\bar{t}$ ISR scale tW ISR scale tW ISR scale tW FSR scale tW FSR scale b quark fragmentat b hadron BF Colour reconnection DY background tW	MC statistical	(
S			Total mMC up contain try	<u> </u>
			iotal m _t - uncertainty	

HEP Theory Seminar, Universität Bonn

ainty [GeV] 0.02 0.02 0.03 0.100.570.09 0.120.09 0.18 0.02 0.06 0.140.05 0.09 0.04 0.16 0.03 0.16 0.020.07 0.02 0.11 0.070.170.240.13 0.02 0.040.02 0.140.36 +0.68 -0.73

SMC as limiting factor in HEP: BSM searches

Unphysical differences in the radiation pattern from quark and gluon jets induced by parton showers jeopardizes Machine Learning applications for boosted objects tagging, limiting new physics searches

Unless you are highly confident in the information you have about the markets, you may be better off ignoring it altogether

Harry Markowitz (1990 Nobel Prize in Economics)

Melissa van Beekveld NIKHEF

Alexander Karlberg CERN

Mrinal Dasgupta Manchester

Pier Monni

CERN

Monash

Gavin Salam Oxford

PanScales

A project to bring logarithmic understanding and accuracy to parton showers

Silvia Zanoli Oxford

Silvia Ferrario Ravasio CERN

Keith Hamilton Univ. Coll. London

Jack Helliwell Oxford

Grégory Soyez IPhT, Saclay

Ludovic Scyboz Monash

Alba Soto-Ontoso CERN

Frédéric Dreyer

Rok Medves

Rob Verheyen

Scarlett Woolnough

Former members

Dipole showers [Gustafson, Pettersson, '88] are the most used shower paradigm

Thr wh:

: : : :

Start with $q\bar{q}$ state produced at a hard scale v_0 . Throw a random number to determine down to

what scale state persists unchanged

$$v_0, v) = \exp\left(-\int_v^{v_0} dP_{q\bar{q}}(\Phi)\right)$$

: : : :

Start with $q\bar{q}$ state produced at a hard scale v_0 . Throw a random number to determine down to

what scale state persists unchanged

$$v_0, v) = \exp\left(-\int_v^{v_0} dP_{q\bar{q}}(\Phi)\right)$$

: : :

- Start with $q\bar{q}$ state produced at a hard scale v_0 .
- Throw a random number to determine down to what **scale** state persists unchanged
- At some point, **state splits** $(2\rightarrow 3, i.e. emits$ gluon) at a scale $v_1 < v_0$. The kinematic (rapidity and azimuth) of the gluon is chosen according to

$$_{q\bar{q}}(\Phi(v_1)) \qquad \Phi = \left\{v, \eta, \varphi\right\}$$

: : :

- Start with $q\bar{q}$ state produced at a hard scale v_0 .
- Throw a random number to determine down to what **scale** state persists unchanged
- At some point, state splits $(2 \rightarrow 3, i.e. \text{ emits}$ gluon) at a scale $v_1 < v_0$.
- The gluon is part of two dipoles (qg), $(g\bar{q})$.
- Iterate the above procedure for both dipoles independently, using v_1 as starting scale.

Q0 g4 **q**5 **q**6 \overline{q}_0 V4 **V**5 **V**6

self-similar evolution continues until it reaches a nonperturbative scale

What should a Parton Shower achieve?

Silvia Ferrario Ravasio

- Parton showers evolve collider events from $Q \approx \mathcal{O}(\text{TeV})$ to $\Lambda \approx 1 \text{GeV}$
- During this evolution, large logarithms $L = \log Q / \Lambda$ will arise.
- Logarithmic accuracy to assess showers

$$\Sigma(\log O < L) = \exp\left(\begin{array}{c} Lg_{LL}(\alpha_s L) + g_{NLL}(\alpha_s L) \\ \text{leading logs} \end{array}\right) + \underbrace{g_{NLL}(\alpha_s L)}_{\text{next-to LL}}$$

E.g. $O = \frac{p_{\perp,Z}}{m_Z}$ and $p_{\perp,Z} \approx 1 \text{ GeV}$,
 $|\alpha_s L| = 0.55$:
Next-to-Leading Logarithms are $\mathcal{O}(1)$

Which degrees of freedom does a parton shower have?

Starting from a $e^+e^- \rightarrow Z^* \rightarrow q\bar{q}$ system, at the evolution scale v a branching occurs

viewed as

Evolution variable: v

HEP Theory Seminar, Universität Bonn

Dissecting the structure of NLL showers

PanScales criterium: a new emission cannot affect previous ones if they are well-separated in at least one direction of the Lund plane

 \overline{q}

To be <u>NLL</u>, a Parton Shower must reproduce the matrix element for the emission of soft partons well-separated in at least one direction of the Lund plane

What do state-of-the-art dipole shower implement?

Evolution variable: transverse momentum $v \sim k_{\perp}$

k_{\perp} recoil

Let's study the $\mathcal{O}(\alpha_s^2)$ -expansion of this shower.

Recoil scheme: fully local, with one parton absorbing the (majority of) the

$$p_{k} = a_{k}\tilde{p}_{i} + b_{k}\tilde{p}_{j} + k_{\perp}$$

$$p_{i} = a_{i}\tilde{p}_{i} + b_{i}\tilde{p}_{j} - k_{\perp} \qquad p_{j} = b_{j}\tilde{p}_{j}$$

Dipole partitioning: $\bar{\eta} = 0$ corresponds to zero rapidity in the dipole rest frame

HEP Theory Seminar, Universität Bonn

How well state-of-the-art dipole shower populate the Lund plane?

Silvia Ferrario Ravasio

 \bar{q}

1st emission recoils

*
$$\vec{k}_{t1} \rightarrow \vec{k}_{t1} - \vec{k}_{t2}$$

1st emission

At NLL, the 1st emission should be unaffected by other emsn when $|\eta_1 - \eta_2| \gg 1$

if $k_{t2} \ll k_{t1}$, the recoil is not an issue: LL is OK!

1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

Building a NLL shower

<u>Dipole-partitioning</u> in the event frame reduces but does not solve the problem

1st emission recoils

$$\vec{k}_{t1} \rightarrow \vec{k}_{t1} - \vec{k}_{t2}$$

At NLL, the 1st emission should be unaffected by other emsn when $|\eta_1 - \eta_2| \gg 1$

if $k_{t2} \ll k_{t1}$, the recoil is not an issue: LL is OK!

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

Building a NLL shower

Deductor by Nagy & Soper <u>0912.4534</u> follows a similar approach (with $\beta = 1$)

Silvia Ferrario Ravasio

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

Dipole-partitioning in the event frame

Building a NLL shower

Deductor by Nagy & Soper <u>0912.4534</u> follows a similar approach (with $\beta = 1$)

Silvia Ferrario Ravasio

HEP Theory Seminar, Universität Bonn

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

Dipole-partitioning in the event frame

Holguin, Forshaw and Plätzer <u>2003.06400</u>, and <u>Alaric</u> by Herren et al. <u>2208.06057</u> follow a similar approach

Initial-state radiation in common dipole showers

In many dipole-showers the final-state colour parter takes it: issue of the recoil even worse!

Silvia Ferrario Ravasio

HEP Theory Seminar, Universität Bonn

Initial-state radiation: assignement of p_T recoil is more delicate as the emitter cannot take it!

Transverse momentum of the Z boson in common dipole showers

Silvia Ferrario Ravasio

Power-scaling behavour of the <u>**Z** boson p_{\perp} </u> in Drell Yan [Parisi, Petronzio NPB 154 (1979) 427-440] not achieved

> Small p_T region enhanced by emissions with "largish" p_T that cancel vectorially

> > van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, 2207.09467

Transverse momentum of the Z boson in common dipole showers

Transverse kick to the incoming parton when it emits, and then perform global boost and rotations to realign it with the z axis. [Plätzer and Gieseke 0909.5593] Change in $k_{t,1}$ as a function of

Power-5 caling behavour of the Z boson p_{\perp} in Drell Yan [Parisi, Petronzio NPB 154 (1979) 427-440]

> Small p_T region enhanced by emissions with "largish" p_T that cancel vectorially

> > van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, 2207.09467

Transverse momentum of the Z boson in common dipole showers

Transverse kick to the incoming parton when it emits, and then perform global boost and rotations to realign it with the z axis. [Plätzer and Gieseke 0909.5593] Change in $k_{t,1}$ as a function of

Power-scaling behavour of the Z boson p in Drell Yan [Parisi, Petronzio NPB 154 (1979) 427-440], but the wrong normalisation!

> Small p_T region enhanced by emissions with "largish" p_T that cancel vectorially

 $p_{tZ} \rightarrow 0$ normalisation of $\Sigma(p_{tZ})$ $\sqrt{s}/m_H = 5$, $y_H = 0$, $\alpha_s \rightarrow 0$ (LC) $-0.4 \quad -0.3 \quad -0.2 \quad -0.1$ 0.0 0.1 $\Sigma_{\rm PS}/\Sigma_{\rm NLL}-1$

van Beekveld, S.F.R., Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, 2207.09467

HEP Theory Seminar, Universität Bonn

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., 2305.08645

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

> Our PanScales showers for <u>Vector</u> **Boson Fusion** represent the first tool to achieve NLL accuracy^{*} for this process, for both global and nonglobal observables!

*NLL at LC, as we miss (unknown!) nonfactorisable corrections, LL at FC

Silvia Ferrario Ravasio

In **DIS**, the final-state quark (and its children) absorbs the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., <u>2305.08645</u>

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

The k_t recoil of an emission is never conserved locally within the dipole

Silvia Ferrario Ravasio

HEP Theory Seminar, Universität Bonn

the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., 2305.08645

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., <u>2305.08645</u>

In **colour-singlet** production, the k_t recoil of all the emissions is taken by the colour-singlet, whose mass and rapidity is preserved at

In **DIS**, we boost all the *final-state partons*, leaving $Q = p_{out} - p_{in}$ unchanged. The boost affects mainly partons close in angle to the original final-state quark.

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

> The k_t recoil is always taken by the emitter. In case of ISR, this misalignes the incoming partons with respect to the beams

PanLocal

the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., <u>2305.08645</u>

The p_T recoil due to ISR is taken by a "hard system", whose definition depends on the process

In **colour-singlet** production, the colour singlet absorbs the k_{\perp} recoil for all the ISR emissions

van Beekveld, S.F.R., Salam, Soto-Ontoso, Soyez, Verheyen, <u>2205.02237</u>

the k_{\perp} recoil for all the ISR emissions.

van Beekveld, S.F.R., <u>2305.08645</u>

In **colour-singlet** production, we apply a Lorentz transformation to the whole event to realign the incoming partons with the beams. The rapidity of the colour-singlet is preserved.

In **DIS**, we apply a Lorentz transformation to all the *partons*, leaving $Q = p_{out} - p_{in}$ unchanged. The transform affects mainly partons close in angle to the original final-state quark.

Silvia Ferrario Ravasio

Exploratory phenomenology for VBF

VBF: boosted Higgs studies, Higgs to invisible/muons measurements. Error budget dominated by PS uncertainty

Table by M. Pellen, 2023 Higgs WG meeting	VBF H	ggH (in VBF-enriched region)
PDF	<1%	<3%
QCD scale	<1%	2-20%
UE	<1.5%	<2-3%
Parton shower	5-15%	4-10%

Comparison with LEP data

- ► Matching from Hamilton, Karlberg, Salam, Scyboz, Verheyen: <u>2301.09645</u>
- preliminary treatment of heavy-quark masses [van Beekveld, SFR, Salam, Soyez, Verheyen, in preparation]
- understand nature of perturbative shower uncertainties
- > and interplay with non-perturbative tuning

Towards NNLL accuracy

Soft emission — i.e. inclusion of **double-soft current** + associated **virtual** corrections

- > any <u>pair of soft emissions</u> with commensurate energy and angles should be produced with the correct [double-soft] matrix element
- probability for any <u>single soft emission</u> should be NLO accurate
- ► NB: Vincia and Sherpa groups have also explored inclusion of the double-soft current; part of novelty here is doing so to get the logaccuracy benefit.

This should maintain NLL accuracy and further achieve

- > NNDL accuracy for [subjet] multiplicities, i.e. terms $\alpha_s^n L^{2n}$, $\alpha_s^n L^{2n-1}$, $\alpha_s^n L^{2n-2}$
- and $\alpha_s^n L^{n-1}$ (at leading- N_c)

NB: done using PanGlobal, so far just in $e^+e^- \rightarrow q\bar{q}$

Ferrario Ravasio, Hamilton, Karlberg, GPS, Scyboz, Soyez,

> Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms $\alpha_s^n L^n$

1. Real corrections: pair of soft emissions

- accept a given emission with exact

Virtual corrections in parton showers

 \succ For a soft emission

► <u>Catani</u>, <u>Marchesini</u> and <u>Webber</u> defined the "CMW" scheme for the coupling in the shower [*Nucl.Phys.B* 349 (1991) 635-654]

At fixed "shower variables", but the rapidity and p_{\perp} of the jet can vary

 $\alpha_s^{\text{CMW}} = \alpha_s \left(1 + \frac{\alpha_s}{2\pi} K_{\text{CMW}} \right)$

This ensures $L\pi$ "on average"

2. Virtual corrections for soft emissions

NNDL subjet multiplicity

Silvia Ferrario Ravasio

- > NNDL ($\alpha_s^n L^{2n-2}$) analytic resummation = Medves, Soto Ontoso, Soyez, 2205.02861
- $\succ \alpha_s \rightarrow 0$ limit to isolate NNDL terms.
- Double soft necessary for NNDL agreement

$$_{s}L^{2}$$

NSL for the energy flow in a rapidity slice

Silvia Ferrario Ravasio

$$\equiv \ln \frac{E_{t,\max}}{Q}$$

HEP Theory Seminar, Universität Bonn

> NSL ($\alpha_s^n L^{n-1}$) = Banfi, Dreyer, Monni, 2104.06416, 2111.02413 ("Gnole")

[NB: see also Becher, Schalch, Xu, 2307.02283]

- NSL agreement with Gnole for $n_f^{\text{real}} = 0$
- > First large- N_c full- n_f results for NSL non-global logs

S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez <u>2307.11142</u>

NSL Pheno outlook

S.F.R., Hamilton, Karlberg, Salam, Scyboz, Soyez 2307.11142

- Energy flow in slice between two 1 TeV jets
- Double-soft reduces uncertainty band

Uncertainty here is estimated varying the renormalisation scale

Silvia Ferrario Ravasio

Conclusions

> PanScales is first validated NLL shower

- \blacktriangleright benefits of LL \rightarrow NLL include reduced uncertainties (reliable estimate uncertainties)
- > NLO matching in place for some simple processes
- ► for realistic applications we also need massive quarks (in progress) and tuning

Higher log accuracy is one of the next frontiers

- first results with double-soft (+ virtual) corrections!
- brings NNDL multiplicity and NSL non-global logarithms

► Public code

https://gitlab.com/panscales/panscales-0.X

BACKUP

Next steps

Towards a complete public shower usable for phenomenology

Going beyond NLL

Silvia Ferrario Ravasio

HEP Theory Seminar, Universität Bonn

Public NLL shower (for lepton collisions, colour-singlet production in pp collisions, DIS, VBF) and interface to Pythia8.3 soon!

SciPost Physics Codebases

Submission

CERN-TH-2023-???, OUTP-23-???

PanScales logarithmic tests and associated numerical techniques

Melissa van Beekveld¹, Mrinal Dasgupta², Silvia Ferrario Ravasio³, Keith Hamilton⁴, Jack Helliwell¹, Basem Kamal El-Menoufi^{2,5}, Alexander Karlberg³, Rok Medves¹, Pier Francesco Monni³, Gavin P. Salam^{1,6}, Ludovic Scyboz^{1,5}, Alba Soto-Ontoso³, Gregory Soyez⁷, Rob Verheyen

Next steps

Towards a complete public shower usable for phenomenology

hadron collisions:

more complex processes & associated tests

Heavy quarks & resonances Essential for phenomenology

Matching to hard matrix elements

Essential for phenomenology, must be done in way that retains NLL accuracy, and possibly augments it. Already achieved for e^+e^- [Karlberg, Hamilton, Salam, Scyboz, Verheyen, 2301.09645], work in progress for e^+e^- with massive quarks, DY, ggH, DIS, VBF

Next steps

Underlying Calculations We need (a) reference results and (b) understanding of NNLL logs in soft & collinear limits

Next-to-leading non-global logarithms in QCD Banfi, Dreyer and Monni, 2104.06416, 2111.02413

Lund and Cambridge multiplicities Medves, Soto-Ontoso, Soyez, 2205.02861, 2212.05076 **Groomed jet mass studies** Anderle, Dasgupta, El-Menoufi, Guzzi, Helliwell, <u>2007.10355;</u> Dasgupta, El-Menoufi, Helliwell <u>2211.03820</u> [see also SCFT work, Frye, Larkow

[see also SCET work, Frye, Larkoski, Schwartz & Yan, <u>1603.09338</u> + ...] **Dissecting the collinear structure of quark splitting at NNLL** Dasgupta, El-Menoufi, <u>2109.07496</u>

It's time for better Parton Showers!

Silvia Ferrario Ravasio

HEP Theory Seminar, Universität Bonn

Slide from G. Salam

	:	:			:
ron coll	iders				
]		N3	LO	
	NNLC		[pai	rts o	f N3LC
summati	on (DY&	Higgs)			
	NNLL[•]	N	3LL	
(many of t	oday's wide	ly-used sho	wers only LL@le	ading	-colour)
f NLL]	
xed-ord	er match	ing of pa	arton showe	rs	
0	NLO		NNLO []	[N3LO
20	00	20	10	20	20

D]

PanScales status:	$e^+e^- \rightarrow jets, pp \rightarrow$	Z/W/H, DIS, VBF (struct	ure function) (w.	massless quarks
phase space region	critical ingredients	observables	accuracy	colour
soft collinear	no long-distance recoil	global event shapes	NLL	full
hard collinear	DGLAP split-fns + amplitude spin- correlations	fragmentation functions & special azimuthal observables	NLL	full
soft commensurate angle	large-N _c dipoles	energy flow in slice	NLL	full up to 2 emsns, then
soft, then hard collinear	soft spin correlations	special azimuthal observables	NLL	full up to 2 emsns, then
all nested		subjet and/or particle multiplicity	NDL	full
Ferrario Ravasio	HEP	Theory Seminar, Universität Bonn	Slide	e from G. Salam

. . . .

how large are the logarithms?

$Q \; [{ m GeV}]$	$\alpha_s(Q)$	$p_{t,\min} \; [\text{GeV}]$	$\xi = \alpha_s L^2$	$\lambda = \alpha_s L$	au
91.2	0.1181	1.0	2.4	-0.53	0.27
91.2	0.1181	3.0	1.4	-0.40	0.18
91.2	0.1181	5.0	1.0	-0.34	0.14
1000	0.0886	1.0	4.2	-0.61	0.36
1000	0.0886	3.0	3.0	-0.51	0.26
1000	0.0886	5.0	2.5	-0.47	0.22
4000	0.0777	1.0	5.3	-0.64	0.40
4000	0.0777	3.0	4.0	-0.56	0.30
4000	0.0777	5.0	3.5	-0.52	0.26
20000	0.0680	1.0	6.7	-0.67	0.45
20000	0.0680	3.0	5.3	-0.60	0.34
20000	0.0680	5.0	4.7	-0.56	0.30

Table 1: Values of $\xi = \alpha_s L^2$, $\lambda = \alpha_s L$ and τ (defined in Eq. (7.10)) for various upper (Q) and lower $(p_{t,\min})$ momentum scales. The coupling itself is in a 5-loop variable flavour number scheme [45–48], while τ is evaluated for 1-loop evolution with $n_f = 5$.

Collinear spin-correlations in showers

Soft and collinear spin in PanScales

Since it does not modify the spin of *i* and *j*, it is possible to **interleave soft spin-correlations** (at leading colour) with **collinear ones** (at full colour), using the eikonal matrix element to update the spin-density tree for soft gluon emissions. [Karlberg, Hamilton, Salam, Scyboz, Verheyen, '21]

Also for hadron-collisions [van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen '22]

Silvia Ferrario Ravasio

Particle Theory Seminar, Universität Bonn

Karlberg, Salam, Scyboz, Verheyen, <u>2011.10054</u> [collinar spin in FSR] Karlberg, Hamilton, Salam, Scyboz, Verheyen, <u>2111.01161</u> [soft spin in FSR] van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

We can have also azimuthal modulations due to the emission of a **soft gluon** $\mathcal{M} \approx \left(\frac{p_i}{p_i \cdot k} - \frac{p_j}{p_i \cdot k}\right) \epsilon_k$

Colour in the PanScales showers

Hamilton, Medves, Salam, Scyboz, Soyez, <u>2011.10054</u> [FSR] van Beekveld, SFR, Salam, Soto-Ontoso, Soyez, Verheyen [generalisation to ISR]

Segment: colour decided looking to which Lund plane the emission belongs: as good as an angular-ordered shower

 $\ln k_t$ $_{\bar{q}}[-\infty, \boldsymbol{C}_{\boldsymbol{F}}, \eta_1^L, \boldsymbol{C}_{\boldsymbol{A}}, \eta_2^L, +\infty]_{g_2}$ $- C_A/2$ $_{g_2}[-\infty, \boldsymbol{C}_{\boldsymbol{A}}, \eta_2^{\boldsymbol{R}}, \boldsymbol{C}_{\boldsymbol{A}}, +\infty]_{g_1}$ $_{g_1}[-\infty, \boldsymbol{C}_{\boldsymbol{A}}, \eta_1^R, \boldsymbol{C}_{\boldsymbol{F}}, +\infty]_q$ $\eta_L = \max(0,\eta), \quad \eta_R = \min(0,\eta)$ $g_2 q_1 q_1$

NODS: nested (double soft) matrix element corrections assuming last emission is the softest

 $\int C_A - 2C_F$ $p(g_5 \mid g_2, g_3) \approx 1$

Silvia Ferrario Ravasio

Exploratory phenomenology for VBF

NLL PanScales showers

► For inclusive observables, differences have the same size of NLO corrections. LL shower lies between the NLL predictions.

► For exclusive observables, the LL shower lies outside the band spanned by the NLL showers

HEP Theory Seminar, Universität Bonn

- ► The "better" LL shower is remarkably
- Scale variations smaller than PanLocal vs

PanScales NLL showers with global [blue] or local [black] recoil. At small pTZ, the spectrum is power-suppressed with the correct normalisation.

LL shower. At small pTZ, the spectrum is power-suppressed, but with the WRONG normalisation

LL shower. At small pTZ, the spectrum is EXPONENTIALLY suppressed!

HEP Theory Seminar, Universität Bonn

Azimuthal correlations between the two leading jets in DY

Silvia Ferrario Ravasio

Azimuthal correlations between the two leading jets in DY

Impossible to tune a LL shower to reproduce a NLL across several energy scales (at 91 GeV subleading effects are more sizeable and the shower is more tunable than at 500 GeV!)
 Difference among PS larger than scale uncertainty, and hence should be used to estimate PS uncertainties, until we gain more analytic understanding is required (i.e. PS differences might not be enough)

The 2021 High Energy and Particle Physics Prize of the EPS for an outstanding contribution to High Energy Physics is awarded to Torbjörn Sjöstrand and Bryan Webber for the conception, development and realisation of parton shower Monte Carlo simulations, yielding an accurate description of particle collisions in terms of quantum chromodynamics and electroweak interactions, and thereby enabling the experimental validation of the Standard Model, particle discoveries and searches for new physics.

Torbjörn Sjöstrand: founding author of Pythia Byran Webber: founding author of Herwig (with Marchesini[†])

Dipole showers [Gustafson, Pettersson, '88] are the most used shower paradigm

Throw a random number to determine down to what **scale** state persists unchanged

: : : : Start with $q\bar{q}$ state.

$\frac{2\nu r}{d\nu} = -f_{2\rightarrow3}^{q\bar{q}}(\nu) P_2(\nu)$

Start with $q\bar{q}$ state.

Throw a random number to determine down to what **scale** state persists unchanged

$\frac{P_2(v)}{dv} = -f_{2\to3}^{q\bar{q}}(v) P_2(v)$

: : : : Start with $q\bar{q}$ state.

Throw a random number to determine down to what scale state persists unchanged

At some point, state splits $(2 \rightarrow 3, i.e. emits)$ gluon). Evolution equation changes

 $\frac{dP_3(v)}{dr_{2\to 3}(v)} = -\left[f_{2\to 3}^{qg}(v) + f_{2\to 3}^{g\bar{q}}(v)\right] P_3(v)$

gluon is part of two dipoles (qg), $(g\bar{q})$, each treated as independent (many showers use a large N_C limit)

Q0 g4 **q**5 **q**6 \overline{q}_0 V4 **V**6 **V**5

self-similar evolution continues until it reaches a nonperturbative scale