Improving multi-parton calculations with a $1/N_c$ expansion

FEYNRULES/MADGRAPH MEETING 15 NOVEMBER 2021 - ANDREW LIFSON

IN COLLABORATION WITH OLIVIER MATTELAER; RIKKERT FREDERIX, AND TIMEA VITOS; FABIO MALTONI, AND STEFANO FRIXIONE

Outline of Presentation

Introduction

- Colour Kinematics
- color_ordering branch
- Results
- Remove Factoria Growth
- Conclusions

- The QCD Colour bottleneck
- Remind about colour ordering and 1/N_c expansion
- Remind about Berends-Giele recursions
- Introduce the color_ordering branch
 - Calculates matrix elements at given order in N_c
 - Uses Berends-Giele recursion
 - Show some results
- Use phase-space symmetry to remove factorial growth
 - Work in progress

Colour: the QCD Bottleneck

Colour Kinematics		$aa ightarrow tar{t}$	$aa ightarrow tar{t}aa$	$aa ightarrow tar{t}aaa$
color_ordering		Instructions	Instructions	Instructions
Results	madevent	11G	180G	5T
Remove Factorial Growth	matrix1	1G (9.3%)	160G (90%)	4.9T (98%)
Conclusions	→ ext	76M (<1%)	100M (<1%)	110M (<1%)
	L→ int	540M (4.8%)	16G (8.9%)	180 G (3.6%)
	L→ amp	280M (2.6%)	77G (42%)	1.7T (33%)
	Mattelaer and	Ostralenk, 2021		

- Calculating kinematics of Feynman diagrams up to $\sim 50\%$
- Factorial-squared colour matrix/sum takes up most of remaining time
- Can we improve speed without large impact on accuracy?

Colour ordering in the Trace-basis

Introduction

Colour

Kinematics

color_ordering **branch**

Results

Remove Factoria Growth

Conclusions

Colour and kinematics factorise

$$\sum_{col} |M|^2 = A_i^* C_{ij} A_j$$

 $C_{ij} \equiv colour matrix, A_i \equiv colour-ordered amplitude$

MadGraph calculates colour matrix in trace basis

pros:

- Nice symmetries of kinematics
- Easy to understand physically

cons:

- Overcomplete basis
- Not orthogonal
- Planar diagrams and $1/N_c$ expansion Squaring $\sim n! \times n!$ matrix

1/N_c expansion

Introduction

Colour

Kinematics

color_ordering **branch**

Results

Remove Factorial Growth

Conclusions

Schematic example

The n-gluon colour matrix C in fundamental basis

$$\mathcal{C} \sim \mathcal{N}_{c}^{n} egin{pmatrix} \mathcal{O}(1) & \ldots & \mathcal{O}(rac{1}{\mathcal{N}_{c}^{2}}) & \ldots & \mathcal{O}(rac{1}{\mathcal{N}_{c}^{4}}) & \ldots \ dots & & & dots & dots & & dots &$$

- Colour matrix elements are polynomials in N_c
- Diagonal is leading in colour
- Off-diagonal elements at least 2 powers of N_c smaller than diagonal.

1/N_c expansion

Introduction

Colour

Kinematics

color_ordering **branch**

Results

Remove Factoria Growth

Conclusions

Schematic example

The n-gluon colour matrix C in fundamental basis

- Colour matrix elements are polynomials in N_c
- Diagonal is leading in colour
- Off-diagonal elements at least 2 powers of N_c smaller than diagonal.

Introduction

Colour

Kinematics

color_ordering **branch**

Results

Remove Factorial Growth

Conclusions

Schematic example

The n-gluon colour matrix C in fundamental basis

- Colour matrix elements are polynomials in N_c
- Diagonal is leading in colour
- Off-diagonal elements at least 2 powers of N_c smaller than diagonal.

Introduction

Colour

Kinematics

color_ordering **branch**

Results

Remove Factorial Growth

Conclusions

Schematic example

The n-gluon colour matrix C in fundamental basis

- Colour matrix elements are polynomials in N_c
- Diagonal is leading in colour
- Off-diagonal elements at least 2 powers of N_c smaller than diagonal.

$\mathbf{Feynman} \ \mathbf{Diagrams} \rightarrow \mathbf{Berends}\textbf{-}\mathbf{Giele} \ \mathbf{Recursion}$

Introduction

Colour

Kinematics

color_ordering branch

Remove Factoria Growth

Conclusions

Keys results of Berends-Giele recursion

Berends-Giele recursion = supercharging power of off-shell currents Leads to shorter and quicker kinematics/programs

E.g. all-gluon Berends-Giele current

$$\begin{aligned} J_{n,\mu}(1^{h_1},\ldots,n^{h_n}) &= \frac{-i}{P_{1,n}^2} \left\{ \sum_{i=1}^{n-1} V_{3,\mu,\nu\rho}(P_{1,i},P_{i+1,n}) J^{\nu}(1^{h_1},\ldots,i^{h_i}) J^{\rho}((i+1)^{h_{i+1}},\ldots,n^{h_n}) \right. \\ &+ \left. \sum_{j=i+1}^{n-1} \sum_{i=1}^{n-2} V_{4,\mu\nu\rho\sigma} J^{\nu}(1^{h_1},\ldots,i^{h_i}) J^{\rho}((i+1)^{h_{i+1}},\ldots,j^{h_i}) J^{\sigma}((j+1)^{h_{j+1}},\ldots,n^{h_n}) \right\} \end{aligned}$$

Introduction to the color_ordering Branch

Introduction

Colour Kinematics

color_ordering branch

Result

Remove Factoria Growth

Conclusions

Uses Berends-Giele to calculate matrix element to any order in $1/N_c$

- One of the first branches ever in MadGraph, now revived
 - Nice to see version control working
- Validated, but still in optimisation phase
- So far mostly for standalone
 - Plans to combine with phase-space symmetry for MadEvent (Rikkert Frederix and Timea Vitos)

Speed of $1/N_c$ expansion

Introduction

Colour

color_ordering **branch**

Results

Remove Factorial Growth

Conclusions

Preliminary standalone speed tests (some optimisation remains)

■ NⁿLC eval speeds \sim std mg

• NⁿLC gen speeds \ll std mg

 $gg \rightarrow 5g$, single phase-space point

Colour	ME E-7	Gen time	Eval time
full	6.674	6m 25s	0.491s
LC	6.591	2m 31s	0.350s
NLC	5.794	2m 44s	0.426s
N ² LC	6.612	2m 46s	0.453s
N ³ LC	6.671	2m 48s	0.513s
N ⁴ LC	6.674	2m 50s	0.544s

Speed of $1/N_c$ expansion

Introduction

- Colour Kinematics
- color_ordering branch
- Results
- Remove Factorial Growth
- Conclusions

Preliminary standalone speed tests (some optimisation remains)

- NⁿLC eval speeds ~ std mg
- NⁿLC gen speeds \ll std mg
- Can go one particle further, e.g.
 - 2g
 ightarrow 6g now possible

gg
ightarrow 5g, single phase-space point

Colour	ME E-7	Gen time	Eval time
full	6.674	6m 25s	0.491s
LC	6.591	2m 31s	0.350s
NLC	5.794	2m 44s	0.426s
N ² LC	6.612	2m 46s	0.453s
N ³ LC	6.671	2m 48s	0.513s
N⁴LC	6.674	2m 50s	0.544s

Speed of $1/N_c$ expansion

Introduction

- Colour Kinematics
- color_ordering **branch**
- Results
- Remove Factorial Growth
- Conclusions

Preliminary standalone speed tests (some optimisation remains)

- NⁿLC eval speeds ~ std mg
- NⁿLC gen speeds ≪ std mg
- Can go one particle further, e.g. $2g \rightarrow 6g$ now possible
- Phase-space symmetry in MadEvent allows ⇒ lose factorial growth ⇒ further improvement Frederix, Vitos 2021

gg
ightarrow 5g, single phase-space point

Colour	ME E-7	Gen time	Eval time
full	6.674	6m 25s	0.491s
LC	6.591	2m 31s	0.350s
NLC	5.794	2m 44s	0.426s
N ² LC	6.612	2m 46s	0.453s
N ³ LC	6.671	2m 48s	0.513s
N ⁴ LC	6.674	2m 50s	0.544s

Conclusion from speed

Similarly fast so far Often allows to go one particle further

Accuracy of $1/N_c$ expansion: all-gluon

Introduction

- Colour
- Kinematics
- color_ordering **branch**
- Results
- Remove Factorial Growth
- Conclusions

Definitions

LC: Is modified s.t. $|M|_{LC}^2 = N_c^{n-2}(N_c^2 - 1)\sum_i |A_i|^2$ not LC: standard trace-basis definition

Accuracy in RAMBO flat phase space

Process	NEvents	Ave FC/LC	SD FC/LC	Ave FC/NLC	SD FC/NLC
2g >2g	1E05	1.0	0	1.0	0
2g >3g	1E05	1.0	0	1.031	2E-11
2g > 4g	1E04	1.011	0.019	1.085	0.013
2g > 5g	1E04	1.042	0.043	1.154	0.018

Conclusions: all-gluon amplitudes

Modified LC better than NLC

Low multiplicity, modified LC at few percent level or better

Accuracy of $1/N_c$ expansion: single quark line

Introduction

Colour

color_orderin

Results

Remove Factoria Growth

Conclusions

Definitions

Use standard trace-basis definition

Accuracy in RAMBO flat phase space

Process	NEvents	Ave FC/LC	SD FC/LC	Ave FC/NLC	SD FC/NLC
$u\bar{u}>$ 2g	1E05	0.929	0.040	1.0	0
<i>uū</i> >3g	1E05	0.979	0.054	1.011	0.007
$uar{u}$ >4g	1E04	1.072	0.085	1.005	0.009
<i>uū</i> >5g	1E04	1.208	0.116	1.008	0.012

Conclusions: single quark line

NLC about percent level or better in flat phase space

Andrew Lifson (Lund/UC Louvain)

1/N_c expansion

15th November 2021 10/15

Accuracy of $1/N_c$ expansion: 2 quark lines

Introduction

Colour

Results Remove Factorial

Definitions

Use standard trace-basis definition

Process	NEvents	Ave FC/LC	SD FC/LC	Ave FC/NLC	SD FC/NLC
$uar{u}> dar{d}$ Og	1E05	0.889	0	1.0	0
$uar{u} \! > \! dar{d}$ 1g	1E05	0.974	2.399	1	0
$uar{u} \! > \! dar{d}$ 2g	1E05	1.098	1.678	1.009	0.025
$uar{u}>\!dar{d}$ 3g	1E04	1.225	2.064	1.017	0.039

Accuracy of $1/N_c$ expansion: 2 quark lines

Introduction

Colour

Results Remove Factorial

Definitions

Use standard trace-basis definition

Process	NEvents	Ave FC/LC	SD FC/LC	Ave FC/NLC	SD FC/NLC
$uar{u} \! > \! dar{d}$ 0g	1E05	0.889	0	1.0	0
$uar{u} \! > \! dar{d}$ 1g	1E05	0.974	2.399	1	0
$uar{u} \! > \! dar{d}$ 2g	1E05	1.098	1.678	1.009	0.025
$uar{u} \! > \! dar{d}$ 3g	1E04	1.225	2.064	1.017	0.039

Conclusions: two quark lines

LC horribly unstable! NLC about percent level or better in flat phase space

Modified colour ordering for multiple quark lines

Introduction

Colour Kinematic

color_ordering branch

Results

Remove Factorial Growth

Conclusions

LC: only consider diagonal (off-diagonal is sub-leading, set to 0)

Andrew Lifson (Lund/UC Louvain)

1/N_c expansion

Modified colour ordering for multiple quark lines

Introduction

Colour Kinematio

color_ordering branch

Results

Remove Factorial Growth

Conclusions

LC: only consider diagonal (off-diagonal is sub-leading, set to 0)

Accuracy of $1/N_c$ expansion: 2 quark lines mod col

Introduction

Colour

Results

Definitions

_

Use full diagonal, modified colour ordering

Remove Factorial Growth

Conclusions

Process	NEvents	Ave FC/LC	SD FC/LC
$uar{u} \! > \! dar{d}$ Og	1E05	0.8	0
$uar{u} \! > \! dar{d}$ 1g	1E05	0.740	0.089
$uar{u} \! > \! dar{d}$ 2g	1E05	0.743	0.120
$uar{u}>\!dar{d}$ 3g	1E04	0.785	0.159

Accuracy of $1/N_c$ expansion: 2 quark lines mod col

Introduction

Colour

Results Remove Factorial

Definitions

Use full diagonal, modified colour ordering

Process	NEvents	Ave FC/LC	SD FC/LC
$uar{u}>\!dar{d}$ 0g	1E05	0.8	0
$uar{u} \! > \! dar{d}$ 1g	1E05	0.740	0.089
$uar{u} \! > \! dar{d}$ 2g	1E05	0.743	0.120
$uar{u} \! > \! dar{d}$ 3g	1E04	0.785	0.159

Conclusions: two quark lines mod colour

LC now stable, systematically about 25% too small, can correct?

Phase-Space Symmetry and Faster Colour Factors

Introduction

- Colour Kinematics
- color_ordering **branch**
- Results

Remove Factorial Growth

Conclusions

- Frederix, Vitos 2021 show how to quickly find which kinematic amplitudes are LC, NLC
 - Plan to put this into color_ordering branch
- Interchanging momenta of identical final-sate particles gives same ME
 - ⇒ don't need to compute ME twice in PS integral
 - \blacksquare \Rightarrow only need small subset of colour matrix for cross-section
 - Have power-like growth of colour, not factorial-like!
- Plan is to combine this with color_ordering branch
 - Currently in preliminary stages

Conclusion and Outlook

Introduction

Colour Kinematic

color_ordering branch

- Dranc
- Results
- Remove Factorial Growth
- Conclusions

- For faster code, higher multiplicity, need to improve colour treatment
- $1/N_c$ expansion allows this for good accuracy
- New color_ordering branch can do this expansion for you, with good and improving speed
- Including phase-space symmetry \Rightarrow cross-section scale like n^4 , not n!
- color_ordering branch will be completed/released soon (in few months)
- phase-space symmetry is a longer project which builds on it

The Current Limits of MadGraph

Backup Slides

Status Algorithm

- Multi-jet processes at every increasing energies ⇒ many hard partons
- MG currently limited in being able to deal with that
- Say boundaries for many processes, e.g. all-gluon = dominant
- Can we push this boundary back somewhat?
- Can we improve speed without large impact on accuracy?

Current Code Status and Future Plans

Backup Slides Status

- Currently can calculate any non-decay-chain process SA ME to a given colour order
- Can also be used in MadEvent but not as well tested/optimised
- 1 major optimisation remains, then plan to publish (many smaller optimisations still available)

Basics of the Algorithm: Flow definition

Backup Slides Status Algorithm

- Explain the concept of a flow in this branch (go through all-g, 2q, 4q examples to illuminate)
- Say that each flow is calculated separately

Basics of the Algorithm: the 'Colour' matrix

Backup Slides Status Algorithm

- For a given flow, calculate all JAMPS once
- Calculate the colour for the first row of the colour matrix to a specified power of 1/N_c, calculate ME for that row explicitly
- Go through rows of colour matrix by permuting JAMP numbers

Colour: the QCD Bottleneck

Backup Slides

Status

Algorithm

- Show results from Olivier/Kiran's paper
- Conclude summing over colour matrix starts to dominate the time taken
- Remind that adding partons is theoretically possible, but in practice already at 2 → 6 gluons the code is too large to compile in a reasonable amount of time
- Can we improve speed without large impact on accuracy?

	$gg ightarrow t \overline{t}$	$gg ightarrow t ar{t} gg$
	Instructions	Instructions
madevent	11G	180G
matrix1	1G (9.3%)	160G (90%)