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® Path-integral approach for derivation of nuclear forces
® Symmetry preserving regularization

® Status report on construction of 3N interactions



Path-Integral Framework
for Derivation of Nuclear Forces

HK, Epelbaum, arXiv:2311.10893



Why a new Framework?

Difficulties in formulation of regularized chiral EFT

® Regularization should preserve chiral and gauge symmetries
® Regularization should not affect long-range pion physics

Pion-propagator in Euclidean space: g = 6]3 + 6112 + 6122 T q32

P+ M , ,
1 (AT t) 1 %+ M2
>+ M2 T g2+ M2 _q2+M§_F+ AT

all 1/A-corrections are short-range interactions

qo - dependence in exponential requires second and higher order time-derivatives
In pion field in the chiral Lagrangian

~>» Canonical guantization of the regularized theory becomes difficult
(Ostrogradski - approach, Constrains, ...)



Canonical vs Path-Integral Quantization
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Canonical Quantization of QFT
Hamiltonian & Hilbert space

Creation/annihilation operators

Time-ordered perturbation theory

~

)

-

o

Path-Integral Quantization of QFT
Lagrangian & action
Summation over all classical paths

Loop expansion & Feynman rules

~

® Path-Integral approach is a natural choice in pionic and single-nucleon sector

Gasser, Leutwyler, Annals Phys. 158 (1984) 142;
Bernard, Kaiser, Kambor, MeiBBner, Nucl. Phys. B 388 (1992) 315

® In two - and more - nucleon sector Weinberg used canonical quantization language

Weinberg Nucl. Phys. B 362 (1991) 3

In using old-fashioned perturbation theory we must work with the Hamil-

tonian rather than the Lagrangian. The application of the usual rules of

canonical quantization to the leading terms in (1) and (9) yields the total

Can we choose a formulation where we can work with the Lagrangian?



Lagrangian Formulation of Chiral EFT

Lagrangian formulation of chiral EFT so far

® Lagrangian formulation with subtractions: diagrammatic approach

Kaiser, Brockmann, Weise, Nucl. Phys. A 625 (1997) 758

—>» Less transparent in quantification of off-shell ambiguities

the box diagram

---------------- B E Irreducible part of }

® Lagrangian formulation with instant subtractions: T - matrix approach

Gasparyan, Epelbaum, Phys. Rev. C 105 (2022) 2, 024001

® Nucleon-field transformation in a derivation of isospin violating nuclear forces

Friar, van Kolck, Rentmeester, Timmermans, Phys. Rev. C 70 (2004) 044001

® Path-integral formulation of chiral EFT with instant interactions on the lattice
Borasoy, Epelbaum, HK, Lee, MeiBner, EPJA 31 (2007)105

® Instant interactions generate only iterative part of the NN amplitude



Path-Integral over Nucleons and Pions

We start with generating functional:

Zn",nl = J[DNT][DN] [Drlexp <i Jd“x(sz + 7T (XON(x) + N’f(x)n(x))>

Yukawa toy-model:

0 V2 _ 1
L =NT{i -+ - & c-Vr-1 N+—(6ﬂ7z-d”7z—M27z2)
ox, 2m 2F 2

® Perform a Gaussian path-integral over the pion fields

Znt,nl = [ [DN'][DN lexp <i Sy +i [d‘*x(;ﬂ(x)N(x) + N (on(x)) >

2
Sy = Jd4x NT(x)<i i + V_>N(x) — Vyy €= !\Ion-ins_tant one-pion-exchange
oxy 2m Interaction

2
g = R — R
Voy = — ) Jd‘*x d*yV - [INT(0)5t|N@x) Apx — y) V- [NT(»)az| N(y)
d4q e—iq-x

Qo)* g?—M?*+iec

with non-instant pion propagator: Ax(x) = [



Instant Interactions from Path-Integral

To transform V,,, into an instant form we rewrite a pion propagator

1 S B L, o1 1 \/Q2+M2
= — — = — — , ). =

G-0f 0f qg-ei o of Cejg-ep TV
aZ

In coordinate space this corresponds to A (x) = Ay(x) — ﬁAFs(X) with
X0

Ao [ d*q e=i* » )[ d’q 77 o J dlq  e7i*

X) = — = — o(x, : X) =
S Q2n)* w2 V) @2} w2 ks 2n)* 02(g3 — @2)

2

® The decomposition A ,(x) = Ag(x) — ﬁAFS(x) can be generalized
X0

d4

G(x) = J % c)] 4e‘iq'x(~}(q§, g*) and G(q3, ¢*) is differentiable at gy = 0
T

4

d*q d*q -iga G(q3. 9% — G(0,g%)

Defining Gg(x) = J e '97G(0,q%) and Gpg(x) = J

) (2m)* 95

\ 0°
—>» G(x) = Gg(x) — ﬁGFS(X)
X0



Instant Interactions from Path-Integral

Perform an instant decomposition of the pion propagator A .(x) = A(x) — ﬁAFS(x)

X
) 0

Voy = — % J'd4x d4yvx : [NT(X)ET] Nx) Ap(x —y) Vy : [NT()/)ET] N(y)

> Vv = Vorg + Vis

2
Vore = — % [d“x d*yV - [IN"0)67|N@x) Agx —y) V, - [NT(»)67|N(y)  is instant

2 — = 62 g -
Vis = % Jd4x d*yV, - |N"(x)57| N(x) —SApsE =NV, N'(»)az|N(y) is non-instant
0

Vi IS time-derivative dependent and thus can be eliminated
by a non-polynomial field redefinition

2 . 0 _,
N(x) - N'(x) = N(x) +1 % [d“y [6TN(x)] - [ ngAFS(x —-WIV,-IN "(y)6TN(Y)]
0

/ g2 — — a
N'@) > N'(x) = N'(x) — i—= [d“yv - [INTETNWILV ) —Aps(y = 2)] - [N ()5 7]
8F2 Y Y (3y0



Instant Interactions from Path-Integral

Non-local field transformations remove time-derivative dependent two-nucleon
interactions but generate time-derivative dependent three-nucleon interactions.

These contributions can be eliminated by similar field transformations

.
OV, N) >exp <i Syov vy + i Id“x(n*(x)N(NT N)@) + NV, N on() >

v 2 [iovtion
Z[n',nl , [DN "][DN’] det < SOV

- ¥ /
~ | [DNT|[DN] det ( oW, V) ) exp <i Snoviay + i Jd“x(;ﬂ(x)zv’(x) + NT(0)n(x)) )

B 5N, N)
0

Equivalence theorem: nucleon pole-structure is unaffected by the field-transf.

4 & . 0 V2 / 4
Snoviay = |d XN ()| i oxg T o N'(x) — Vopg+ 0(g7)

2
Vopp = — <5 Jd“x d*yV .- [INT(0)ot|N'(x) Agx—y) V- [NT(»o7|N'(y)

R Instant one-pion-exchange interaction



One-Loop Corrections to Interaction

One loop corrections to NN & NNN interaction come from functional determinant

(5(N "N > < S(NT,N") >
et = exp| Trlog
S(NT,N) 6(NT,N)
/T /
o(N ,N)> 41
S(NT,N)

Due to non-local structure of field transformations det <

o V2 3g°M?
+—+

oxy 2m  32xnF?

Nucleon mass-shift Gasser, Zepeda, NPB 174 (1980) 445
IS reproduced from functional determinant

SNV N = Ja"‘x N (x) <i )N (xX) = Vopg + 0(g%

Note: The Z-factor of the nucleon is equal to one. This is due to the replacement

n'N+N'n — n'N'+ N 'y inthe generating functional Z[5", 5]

The original Z-factor of the nucleon is reproduced if we remove this replacement

OM?g? (- 1 M 1 oM
Z=1- A+ log—+——-———)
2F? 1672 u 3 2 u




Generalization to Chiral EFT

We start with generating functional:

ZIn',n) = J [DNT][DN][Dzlexp (z‘ [d“x(fzﬂ + Lov+ Ly + Lawn + 1T ON@) + N (0n(x)) )

® Integrate over pion fields via loop-expansion of the action

—>» expansion of the action around the classical pion solution

® Perform instant decomposition of the remaining interactions between nucleons

® Perform nucleon-field redefinitions to eliminate non-instant part of the interaction

® Calculate functional determinant to get one-loop corrections to few-nucleon forces



Connection to Unitary Transformations

Previous derivation of nuclear forces was based on unitary transformation technique

path-integral approach canonical quantization approach

Field transformations (FT) within , ? . Unitary transformations (UT) within
>

® Interactions generated by FT have ® Interactions generated by UT can be
always a form of heavy-baryon like matched by 4-dim loop-integrals,
tree-level or 4-dim loop-integrals only if some unitary phases are fixed

—3» UT technique is more flexible

In practical calculation we do not want to explore the flexibility of UT in constructing
non-renormalizable nuclear forces

® FT which don’t generate interactions ® Allows to study unitary ambiguities
with time-derivatives describe off-shell of e.qg. relativistic corrections
ambiguities

[UT & FT path-integral approach lead to the same chiral EFT nuclear forces up to N4LOj

Fazit: Path-integral formulation of nuclear forces is as powerful as UT technique,
however it allows consideration of a wider class of theories



Symmetry Preserving Regulator



Call for Consistent Regularization

Violation of chiral symmetry due to different regularizations: Dim. reg. vs cutoff reg.
Epelbaum, HK, Reinert, Front. in Phys. 8 (2020) 98

4 )

“T1 Perr 101 €= 1/m - corrections to TPE 3NF ~ g2

- J
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Vorijm = YZomFE (@2 +M2) (g2 +M2) 'L (T2 X 73)(2k1-q3+4k3 -Gz +1|q1 X 3] 02) S

Naive local cut-off regularization of the current and potential

2 2 2 2 2 2 0 2 71 - 0141 - O 2+ M?
ga- N y,92a g t+My g3 +M; QLA _ ga . q1 141 2 _Q1 T
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First iteration with OPE NN potential

4 2 1 0 0
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No such D-like term in chiral Lagrangian / |»X

qs3

The problematic divergence is canceled by the one V5,1, if calculated via cutoff regularization

In dim. reg. Vor_1r = }» #J + ... is finite




Higher Derivative Lagrangian

To construct a parity-conserving regulator it is convenient to work with building-blocks

| .
Uy, = z'uTVuUuT, D,=0,+1,, T,= 5 [uT,a,Lu] - %uTrﬂu - iul#uT

x+ =u'xul ux'u, x=2B(s+ip), u=+U, adaB = [A, B]

1

Possible ansatz for higher derivative pion Lagrangian

B adD“ad p,—l—lX+ N
(2) (2) F2 1 — exp ( AD2 2 )
P =£® + T |[EOM : EOM
’ 4 adDMadDu + §X_|_
L2 = F—2Tr [u,ut 4+ x4 ] — uy o ! G
= u X+ EOM = — [D,,, v"] + g X— — ZTr (x-)

v~ Leads to regularized nuclear forces up to N4LO

® Leads to unregularized nuclear currents starting from N3LO

—>» We need a better formalism



Problems with Currents

~9% + M? ~9% + M? 1 (! ~9% + M? | —g) =02+ M
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l

—0% + M2 | —g) =02 M
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Additionally there is exponential increase in momenta in four-pion vertex

? =1 L=I1+k Coming from pion-propagators
ll:‘ :'12 l%+M2 l%+M2 _l%+M2 _l%+MZ/ l%+M2 _l%+M2 2k 1+k2
¢----0z---9 ~Jd4l e e N e Ne N 4+...=eNe N 4+...=e N +..
Coming from y2x - vertex ~ Coming from 41 - vertex

® Leads to unregularized nuclear currents starting from N3LO

—>» We need a better formalism



Gradient-Flow Equation (GFE)
Yang-Mills gradient flow in QCD: Liischer, JHEP 04 (2013) 123

aTBﬂ = DVGW with B, | o= A, & G/w = aﬂBy — dyBﬂ +1B8,,B,]
Bﬂ is a regularized gluon field

® Apply this idea to ChPT (Proposed in various talks by D. Kaplan for nuclear forces)

Introduce a smoothed pion field W with W| _ = U satisfying GFE

[afw = i w EOM(7) w with w = y/W and EOM(7) = [D,,, w,] + é X - iTr( ;(_)}

W, = i(wT(aﬂ —ir,)w—w(, — ilM)WT), v =wiyw"—wy'w, y =2B(s+ip)
Note: The shape of regularization is dictated by the choice of the right-hand side of GFE

® Our choice is motivated by a Gaussian regularization of one-pion-exchange in NN



Properties under Chiral Transformation

Replace all pion fields in pion-nucleon Lagrangians Effrl), s ﬁ}fg\)]: U-> W
EZE;\), = NT<DO +gu- S>N — NT<D8, +gw- S)N

Chiral transformation: by induction, one can show

U— RULT —>» W — RWLT

® Regularized pion fields transform under 7 - independent transformations

® Nucleon fields transform in 7 - dependent way

N— KN, K=v/LUR'RJU =» N-KN, K,=VLWRRyW




Gradient-Flow Equation

Analytic solution is possible of 1/F - expanded gradient flow equation:

2 00
W=1+ir- g1 - ag?) - = 1+G—2a)¢2 FOWO), fy= Y ="
n=0

In the absence of external sources we have

0, — (050, — M*)|pV(x, 1) =0, ¢ V(x,0) = m,(x)

T

0, — (@20F = M| P x, D) = (1 = 20)0,6D - 9,6 V" — 4ad, D - p 10,V
M2
+—-(1 =4 - 0, §,7(x0) =0

lterative solution in momentum space: $"(q.7) = Jd“x e p\"(x, 7)

~ (2 M2) ~
PV(q) = e T O7(g)

d*q, d'q, dqq
(2n)* 2r)* 2r)*

T
ds e —(T—S)(q2+M2)e =S 2;21 (q]'2+M2)

2n)*5(q — g, — g, — %)J

$O)(q) =
J 0

B 2
X |4aq, - qgs— (1 =2a)q, - g, + 7(1 — 4a)] 7(qy) - 7(q)7,(gs)

Integration over momenta of pion fields with Gaussian prefactor introduces smearing



lterative solution in Coordinate Space

— — —

YA u g,
' JT‘(?CM)
i C L o
P = . T — +
5 g 5 : >
0 T 0 T T
t ! 4]

lintegrated over X, t;, 7]
Light-shaded area visualizes smearing in Euclidean space of size ~ /2t
Solid line stands for Green-function:
0, — (030} — M?)|G(x — y, T — 5) = 5(x — y)&(z — 5)
4

d 22—
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2r)*

p(x, 7) = Jd“y G(x =y, )m,(y)

P (x,7) = r ds Jd“y Gx—y, 7= 9|1 =20)0,0V(y,5) - 0,6y, )¢V (v, )
0 2

M
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Regularization for Nuclear Forces

To regularize long-range part of the nuclear forces and currents

® Leave pionic Lagrangians Z;z) & 3;4) unregularized (essential)

® Replace all pion fields in pion-nucleon Lagrangians 35[1), s 353\),: U-> W

SZ;%\),zNT<DO+gu - S)N—> NT<D8+gw : S)N

1

_____ \ ——e AU _(2M2) \ —21(g> 2
6% R —> C)"'<> ~ e 2(q+M)q2+M2

Fort = W this regulator reproduces SMS regularization of OPE



Status Report on 3NF



Status Report on 3NF

® Long-range part of 3NF is calculated  .® Short-range part of 3NF is being
up to N3LO calculated up to N3LO

¢ -~ \ L |
, - - I ——- - - - - -\~
Q-0--90 = X + , + ’ + .. + | + + .
1 -—- ---9 ~ -
- N T 0"\’\’\
- -1 :><: | N 2 | \\\
. . _ 4 + 4 + b4+ ' ) + 1 + [ -
-0 P -_——— 1f’ ( \\ 4
¢ *”---

‘* To get a finite 3NF in A — oo limit

4 T we have to perform 5 additional
field-transformations which include
second power of the pion propagator

® In A — oo limit we reproduce dim. reg. results: Bernard, Epelbaum, HK, MeiBner "08, “11
® Partial-wave decomposition is needed for practical implementations

Kai Hebeler (Darmstadt), Andreas Nogga (Julich), Kacper Topolnicki (Krakow)



Summary

® Path-integral approach for derivation of nuclear forces
has been developed

® Applicable for EFT’s with interactions involving
second or higher number of time-derivatives

® All results from unitary transformation technique
are reproduced within path-integral approach

® Symmetry preserving regularization

® Pion fields which couple to nucleons are smoothed
within a gradient-flow equation approach

® Status report on construction of 3N interactions



