Spectral Overlap Method for Determining Resonances in Finite Continuum/on Lattice

Lukas Bovermann (lukas.bovermann@rub.de), E. Epelbaum, H. Krebs, D. Lee — NLEFT collaboration —

Institut für Theoretische Physik II Ruhr-Universität Bochum NIVERSITÄT RUB

Workshop "Frontiers in Nuclear Physics" (ERC AdG "EXOTIC")

European Research Council Established by the European Commission

Bethe Center for Theoretical Physics, Bonn, Germany 21-23 November 2023

Outline

2 Method

- Infinite continuum
- Finite continuum
- Lattice

Outlook

- From 1D to 3D
- (In)elastic nuclear scattering

Introduction

• S-matrix *S*(*k*) can have resonance poles in lower complex half plane:

$$k_{\text{pole}} = k_0 - i\kappa, \quad k_0 \in \mathbb{R}, \quad \kappa > 0$$

$$\Rightarrow E_{\text{pole}}^{\text{CMS}} = \frac{k_{\text{pole}}^2}{2\mu} = E_0 - i\frac{\Gamma}{2} + \mathcal{O}(\kappa^2)$$

$$\xrightarrow{\text{resonances}} \text{virtual state}$$

$$[I. Matuschek et al. (2021)]$$

lm(k)

k

Introduction

• S-matrix *S*(*k*) can have resonance poles in lower complex half plane:

$$k_{\text{pole}} = k_0 - \mathrm{i}\kappa, \quad k_0 \in \mathbb{R}, \quad \kappa > 0$$

 $\Rightarrow E_{\text{pole}}^{\text{CMS}} = \frac{k_{\text{pole}}^2}{2\mu} = E_0 - \mathrm{i}\frac{\Gamma}{2} + \mathcal{O}(\kappa^2)$

- resonances also appear in cross section $\sigma(E \in \mathbb{R})$ as Breit-Wigner peaks with center and width roughly given by E_0 and Γ , respectively
 - \Rightarrow measurable in experiment

Introduction

• S-matrix *S*(*k*) can have resonance poles in lower complex half plane:

$$k_{\text{pole}} = k_0 - \mathrm{i}\kappa, \quad k_0 \in \mathbb{R}, \quad \kappa > 0$$

 $\Rightarrow E_{\text{pole}}^{\text{CMS}} = \frac{k_{\text{pole}}^2}{2\mu} = E_0 - \mathrm{i}\frac{\Gamma}{2} + \mathcal{O}(\kappa^2)$

 resonances also appear in cross section σ(E ∈ ℝ) as Breit-Wigner peaks with center and width roughly given by E₀ and Γ, respectively ⇒ measurable in experiment

- new method to determine E_0 and Γ with several advantages compared to Lüscher's formula

• 1D benchmark: particle with reduced mass $\mu = m_{\rm N} = 938.92 \text{ MeV}$ ("deuteron-deuteron scattering") in step-barrier potential

value for $m_{\rm N}$ from [B. Borasoy et al. (2007)]

• 1D benchmark: particle with reduced mass $\mu = m_{\rm N} = 938.92 \text{ MeV}$ ("deuteron-deuteron scattering") in step-barrier potential

value for m_{N} from [B. Borasoy et al. (2007)]

 solve CMS Schrödinger equation to obtain even-parity wave function with asymptotics

$$\psi(x \to \infty) = A \exp(-ikx) + AS \exp(ikx), \quad k = \sqrt{2\mu E}$$

• 1D benchmark: particle with reduced mass $\mu = m_{\rm N} = 938.92~{\rm MeV}$ ("deuteron-deuteron scattering") in step-barrier potential

value for m_{N} from [B. Borasoy et al. (2007)]

 solve CMS Schrödinger equation to obtain even-parity wave function with asymptotics

$$\psi(x \to \infty) = A \exp(-ikx) + AS \exp(ikx), \quad k = \sqrt{2\mu E}$$

• find pole of S-matrix numerically:

 $E_{\text{pole}} = (7.1681 - 1.0484i) \text{ MeV}, \quad E_0 = 7.1681 \text{ MeV}, \quad \Gamma = 2.0968 \text{ MeV}$

 \Rightarrow broad resonance near threshold to explore possibilities of method

• calculate total cross section from S-matrix:

$$\sigma = 2 \left| \frac{S-1}{2} \right|^2$$

(factor of 2 due to "angular integration")

— cross section

• calculate total cross section from S-matrix:

$$\sigma = 2 \left| \frac{S-1}{2} \right|^2$$

(factor of 2 due to "angular integration")

 obtain Breit-Wigner peak from S-matrix pole:

$$\sigma\left(E \approx E_0 - \mathrm{i}rac{\Gamma}{2}
ight) pprox 2rac{\Gamma^2/4}{(E - E_0)^2 + \Gamma^2/4}$$

cross section

--- Breit-Wigner peak from S-matrix pole

 $\bullet\,$ discrepancy caused by broad resonance and non-vanishing background of $\sigma\,$

• enclose system in box of finite length, e.g. L = 200 fm:

• impose periodic boundary conditions for even parity:

$$\psi(-L/2) = \psi(L/2), \quad \psi'(\pm L/2) = 0$$

• impose periodic boundary conditions for even parity:

 $\psi(-L/2) = \psi(L/2), \quad \psi'(\pm L/2) = 0$

⇒ states above threshold become discrete in energy and normalizable $(\int_{-L/2}^{L/2} dx |\psi(x)|^2 = 1)$

• solve CMS Schrödinger equation to obtain even-parity wave function $\psi_E(x)$:

barrier wave function ψ_E

• solve CMS Schrödinger equation to obtain even-parity wave function $\psi_E(x)$:

• solve CMS Schrödinger equation to obtain even-parity wave function $\psi_E(x)$:

\Rightarrow large overlap

\Rightarrow small overlap

• compute overlap $|\langle \psi_{\text{test}} | \psi_E \rangle|^2$ with Gaussian test function $\psi_{\text{test}}(x)$: $|\langle \psi_{\text{test}} | \psi_E \rangle|^2 = \left| \int_{-L/2}^{L/2} \mathrm{d}x \, \psi_{\text{test}}(x) \psi_E(x) \right|^2$, $\psi_{\text{test}}(x) = \exp(-x^2/a_{\text{G}}^2) / \sqrt{a_{\text{G}} \sqrt{\pi/2} \operatorname{erf}(L/(\sqrt{2}a_{\text{G}}))}, \quad a_{\text{G}} = 1 \text{ fm}$

 plot spectral overlap function depending on energy ⇒ must be peaked around *E*₀

 plot spectral overlap function depending on energy ⇒ must be peaked around *E*₀

 plot spectral overlap function depending on energy ⇒ must be peaked around *E*₀

- plot spectral overlap function depending on energy ⇒ must be peaked around E₀
- works if $|\psi_{\rm test}\rangle \approx A |\psi_{E_0-{\rm i}\Gamma/2}\rangle$ so that

$$|\langle \psi_{\text{test}}|e^{-\mathrm{i}\hat{H}\tau}|\psi_{\text{test}}\rangle|^2 \approx |A|^4 e^{-\Gamma t}$$

- plot spectral overlap function depending on energy ⇒ must be peaked around E₀
- works if $|\psi_{\text{test}}\rangle \approx A |\psi_{E_0-i\Gamma/2}\rangle$ so that

$$|\langle \psi_{\text{test}}|e^{-\mathrm{i}\hat{H}\tau}|\psi_{\text{test}}\rangle|^2 \approx |A|^4 e^{-\Gamma t}$$

 expect Breit-Wigner shape to reproduce this proportionality (details on request):

$$\langle \psi_{\text{test}} | \psi_E \rangle = \frac{\langle \psi_{\text{test}} | \psi_{E_0} \rangle \Gamma / 2}{E - E_0 + i\Gamma / 2} \quad \Rightarrow \quad |\langle \psi_{\text{test}} | e^{-i\hat{H}\tau} | \psi_{\text{test}} \rangle|^2 = \cdots \propto e^{-\Gamma t}$$

- plot spectral overlap function depending on energy ⇒ must be peaked around E₀
- works if $|\psi_{\rm test}
 angle pprox A|\psi_{E_0-{
 m i}\Gamma/2}
 angle$ so that

$$|\langle \psi_{\text{test}}|e^{-\mathrm{i}\hat{H}\tau}|\psi_{\text{test}}\rangle|^2 \approx |A|^4 e^{-\Gamma t}$$

 expect Breit-Wigner shape to reproduce this proportionality (details on request):

$$\langle \psi_{\text{test}} | \psi_E \rangle = \frac{\langle \psi_{\text{test}} | \psi_{E_0} \rangle \Gamma / 2}{E - E_0 + i\Gamma / 2} \quad \Rightarrow \quad |\langle \psi_{\text{test}} | e^{-i\hat{H}\tau} | \psi_{\text{test}} \rangle|^2 = \cdots \propto e^{-\Gamma t}$$

• fit Breit-Wigner peak to data (with 95 % fit errors):

$$|\langle \psi_{\text{test}} | \psi_E \rangle|^2 = |\langle \psi_{\text{test}} | \psi_{E_0} \rangle|^2 \frac{\Gamma^2 / 4}{(E - E_0)^2 + \Gamma^2 / 4} \quad \Rightarrow \begin{cases} E_0 = (7.4060 \pm 0.0864) \text{ MeV}, \\ \Gamma = (2.3131 \pm 0.2438) \text{ MeV} \end{cases}$$

- plot spectral overlap function depending on energy ⇒ must be peaked around E₀
- works if $|\psi_{\rm test}
 angle pprox A|\psi_{E_0-{
 m i}\Gamma/2}
 angle$ so that

$$|\langle \psi_{\text{test}}|e^{-\mathrm{i}\hat{H}\tau}|\psi_{\text{test}}\rangle|^2 \approx |A|^4 e^{-\Gamma t}$$

 expect Breit-Wigner shape to reproduce this proportionality (details on request):

$$\langle \psi_{\text{test}} | \psi_E \rangle = \frac{\langle \psi_{\text{test}} | \psi_{E_0} \rangle \Gamma / 2}{E - E_0 + i\Gamma / 2} \quad \Rightarrow \quad |\langle \psi_{\text{test}} | e^{-i\hat{H}\tau} | \psi_{\text{test}} \rangle|^2 = \cdots \propto e^{-\Gamma t}$$

• fit Breit-Wigner peak to data (with 95 % fit errors):

$$|\langle \psi_{\text{test}} | \psi_E \rangle|^2 = |\langle \psi_{\text{test}} | \psi_{E_0} \rangle|^2 \frac{\Gamma^2 / 4}{(E - E_0)^2 + \Gamma^2 / 4} \quad \Rightarrow \begin{cases} E_0 = (7.4060 \pm 0.0864) \text{ MeV}, \\ \Gamma = (2.3131 \pm 0.2438) \text{ MeV} \end{cases}$$

• extrapolate in limit $L \to \infty$ by fitting 1/*L*-expansion of $E_0(L)$, $\Gamma(L)$:

 $\Rightarrow E_0/\text{MeV} = 7.3706 \pm 0.2005$, $\Gamma/\text{MeV} = 2.1629 \pm 0.9562$ (95 % extr. errors)

• extrapolate in limit $L \to \infty$ by fitting 1/*L*-expansion of $E_0(L)$, $\Gamma(L)$:

 $\Rightarrow E_0/\text{MeV} = 7.3706 \pm 0.2005$, $\Gamma/\text{MeV} = 2.1629 \pm 0.9562$ (95 % extr. errors)

• vary width of Gaussian test function as $a_{G} \in \{0.5 \text{ fm}, 1 \text{ fm}, 1.5 \text{ fm}\}$ \Rightarrow methodical error

• extrapolate in limit $L \to \infty$ by fitting 1/*L*-expansion of $E_0(L)$, $\Gamma(L)$:

 $\Rightarrow E_0/\text{MeV} = 7.3706 \pm 0.2005, \Gamma/\text{MeV} = 2.1629 \pm 0.9562 \text{ (95 \% extr. errors)}$

- vary width of Gaussian test function as $a_{G} \in \{0.5 \text{ fm}, 1 \text{ fm}, 1.5 \text{ fm}\}$ \Rightarrow methodical error
- combine all error sources (details on request): $E_0 = (7.3706^{+0.2477}_{-0.2183}) \text{ MeV}, \Gamma = (2.1629^{+1.1075}_{-1.0347}) \text{ MeV}$

• extrapolate in limit $L \to \infty$ by fitting 1/*L*-expansion of $E_0(L)$, $\Gamma(L)$:

 $\Rightarrow E_0/\text{MeV} = 7.3706 \pm 0.2005$, $\Gamma/\text{MeV} = 2.1629 \pm 0.9562$ (95 % extr. errors)

- vary width of Gaussian test function as $a_{G} \in \{0.5 \text{ fm}, 1 \text{ fm}, 1.5 \text{ fm}\}$ \Rightarrow methodical error agrees with
- combine all error sources (details on request): $E_0 = (7.3706^{+0.2477}_{-0.2183}) \text{ MeV}, \Gamma = (2.1629^{+1.1075}_{-1.0347}) \text{ MeV}$

agrees with inf. cont. \checkmark

 $E_0 = 7.1681$ MeV, $\Gamma = 2.0968$ MeV

• introduce lattice with length L = 1973.3 fm & spacing $a = \frac{0.005}{MeV} = 0.98665$ fm:

• introduce lattice with length L = 1973.3 fm & spacing $a = \frac{0.005}{MeV} = 0.98665$ fm:

• require periodic boundary conditions: $\psi(x + nL) = \psi(x) \ \forall n \in \mathbb{Z}$

• introduce lattice with length L = 1973.3 fm & spacing $a = \frac{0.005}{MeV} = 0.98665$ fm:

- require periodic boundary conditions: $\psi(x + nL) = \psi(x) \; \forall n \in \mathbb{Z}$
- discretize second derivative in kinetic-energy term: [D. Lee, R. Thomson (2007)]

$$\begin{aligned} \hat{H}\psi(x) &= \frac{49}{36\mu a^2}\psi(x) - \frac{3}{4\mu a^2}\Big(\psi(x-a) + \psi(x+a)\Big) \\ &+ \frac{3}{40\mu a^2}\Big(\psi(x-2a) + \psi(x+2a)\Big) - \frac{1}{180\mu a^2}\Big(\psi(x-3a) + \psi(x+3a)\Big) \\ &+ V(x)\psi(x) \end{aligned}$$

 step-barrier potential produces strong lattice artifacts

 step-barrier potential produces strong lattice artifacts ⇒ smooth it

- step-barrier potential produces strong lattice artifacts ⇒ smooth it
- compute eigenvalues *E* and eigenvectors $\langle x|\psi\rangle$ of Hamiltonian matrix $\langle x'|\hat{H}|x\rangle$ using Lanczos algorithm

[C. Lanczos (1950)]

- step-barrier potential produces strong lattice artifacts ⇒ smooth it
- compute eigenvalues *E* and eigenvectors $\langle x|\psi\rangle$ of Hamiltonian matrix $\langle x'|\hat{H}|x\rangle$ using Lanczos algorithm

[C. Lanczos (1950)]

• select eigenvectors with even parity (no numerically unstable data at high *E*)

- step-barrier potential produces strong lattice artifacts ⇒ smooth it
- compute eigenvalues *E* and eigenvectors $\langle x|\psi\rangle$ of Hamiltonian matrix $\langle x'|\hat{H}|x\rangle$ using Lanczos algorithm

[C. Lanczos (1950)]

- select eigenvectors with even parity (no numerically unstable data at high *E*)
- calculate cross section from Lüscher's formula: [M. Lüscher (1986)]

$$\sigma = 2 \left| \frac{\exp(2i\delta) - 1}{2} \right|^2, \quad \delta = -\frac{kL}{2} \quad \text{via dispersion relation [D. Lee, R. Thomson (2007)]}$$
$$E = \frac{49}{36\mu a^2} - \frac{3}{2\mu a^2} \cos(ka) + \frac{3}{20\mu a^2} \cos(2ka) - \frac{1}{90\mu a^2} \cos(3ka) = \frac{k^2}{2\mu} + \mathcal{O}(a^6)$$

Method: Lattice (preliminary) – Lüscher

• fit Breit-Wigner peak to Lüscher cross section (check $\sigma(E_0) = 2$):

$$\sigma(E) = \sigma(E_0) \frac{\Gamma^2/4}{(E - E_0)^2 + \Gamma^2/4} \quad \Rightarrow \quad \begin{cases} E_0 = 6.2949 \text{ MeV}, & \Gamma = 3.0615 \text{ MeV}, \\ \sigma(E_0) = 2.0000 \checkmark \end{cases}$$

Method: Lattice (preliminary) - Lüscher

• fit Breit-Wigner peak to Lüscher cross section (check $\sigma(E_0) = 2$):

$$\sigma(E) = \sigma(E_0) \frac{\Gamma^2/4}{(E - E_0)^2 + \Gamma^2/4} \quad \Rightarrow \quad \begin{cases} E_0 = 6.2949 \text{ MeV}, & \Gamma = 3.0615 \text{ MeV}, \\ \sigma(E_0) = 2.0000 \checkmark \end{cases}$$

• extrapolate in limit $a \to 0$ by fitting a^2 -expansion of $E_0(a)$, $\Gamma(a)$:

 $\Rightarrow E_0/\text{MeV} = 6.3530 \pm 0.0186$, $\Gamma/\text{MeV} = 3.1345 \pm 0.0235$ (95 % extr. errors)

 $E_0/\text{MeV} = 6.3530 \pm 0.0186$, $\Gamma/\text{MeV} = 3.1345 \pm 0.0235$ (95 % extr. errors)

• but for small and coarse lattices ($L \in \{17.760 \text{ fm}, 21.706 \text{ fm}\}, a = 1.9733 \text{ fm}$):

 $E_0/\text{MeV} = 6.3530 \pm 0.0186$, $\Gamma/\text{MeV} = 3.1345 \pm 0.0235$ (95 % extr. errors)

• but for small and coarse lattices ($L \in \{17.760 \text{ fm}, 21.706 \text{ fm}\}$, a = 1.9733 fm): Lüscher's formula

 $E_0/\text{MeV} = 6.3530 \pm 0.0186$, $\Gamma/\text{MeV} = 3.1345 \pm 0.0235$ (95 % extr. errors)

• but for small and coarse lattices ($L \in \{17.760 \text{ fm}, 21.706 \text{ fm}\}, a = 1.9733 \text{ fm}$):

• advantage: overlap has nearly no background like cross section

- advantage: overlap has nearly no background like cross section
- used Gaussian test function with width $a_{\rm G} = 1 \text{ fm}$ \Rightarrow normalized it in same way as eigenvectors of \hat{H}

- advantage: overlap has nearly no background like cross section
- used Gaussian test function with width a_G = 1 fm
 ⇒ normalized it in same way as eigenvectors of Ĥ
- caution: $|\langle \psi_{\text{test}} | \psi_E \rangle|_L^2 \propto L^{-1}$ is probability distributed over lattice length!

$$\frac{|\langle \psi_{\text{test}} | \psi_E \rangle|_{L_1}^2}{|\langle \psi_{\text{test}} | \psi_E \rangle|_{L_2}^2} = \frac{L_2}{L_1}$$

 \Rightarrow rescaled spectral overlap functions to $L_{\rm FV} = 200$ fm (only works in 1D)

- advantage: overlap has nearly no background like cross section
- used Gaussian test function with width *a*_G = 1 fm
 ⇒ normalized it in same way as eigenvectors of *Ĥ*
- caution: $|\langle \psi_{\text{test}} | \psi_E \rangle|_L^2 \propto L^{-1}$ is probability distributed over lattice length!

$$\frac{|\langle \psi_{\text{test}} | \psi_E \rangle|_{L_1}^2}{|\langle \psi_{\text{test}} | \psi_E \rangle|_{L_2}^2} = \frac{L_2}{L_1}$$

 \Rightarrow rescaled spectral overlap functions to $L_{\rm FV} = 200$ fm (only works in 1D)

• uncertainty from averaging data for multiple lattice lengths not yet estimated

$$L \approx \frac{17.760 \text{ fm} + 21.706 \text{ fm}}{2} = 19.733 \text{ fm}$$

(Lüscher's formula advantageously yields infinite-volume results)

Method: Lattice (preliminary) – overlap

• repeat simulation for $L/{
m fm} \in \{\sim 50, \sim 100, \ldots, \sim 300\}$ and extrapolate $L \to \infty$

Method: Lattice (preliminary) – overlap

- repeat simulation for $L/{
 m fm} \in \{\sim 50, \sim 100, \ldots, \sim 300\}$ and extrapolate $L \to \infty$
- repeat simulation for different *a*-values and extrapolate $a \rightarrow 0$:

Method: Lattice (preliminary) – overlap

- repeat simulation for $L/{
 m fm} \in \{\sim 50, \sim 100, \ldots, \sim 300\}$ and extrapolate $L \to \infty$
- repeat simulation for different *a*-values and extrapolate $a \rightarrow 0$:

• repeat simulation for $a_G/fm \in \{0.75, 1, 1.25\}$ to determine methodical error

Method: Lattice (preliminary) - overlap

- repeat simulation for $L/{
 m fm} \in \{\sim 50, \sim 100, \ldots, \sim 300\}$ and extrapolate $L \to \infty$
- repeat simulation for different *a*-values and extrapolate $a \rightarrow 0$:

- repeat simulation for $a_G/fm \in \{0.75, 1, 1.25\}$ to determine methodical error
- combine BW-fit, extrapolation & methodical errors: $E_0 = (7.0289^{+0.6586}_{-0.5519}) \text{ MeV}, \Gamma = (3.0429^{+3.1135}_{-2.9350}) \text{ MeV}$

Method: Lattice (preliminary) - overlap

- repeat simulation for $L/{
 m fm} \in \{\sim 50, \sim 100, \ldots, \sim 300\}$ and extrapolate $L \to \infty$
- repeat simulation for different *a*-values and extrapolate $a \rightarrow 0$:

- repeat simulation for $a_G/fm \in \{0.75, 1, 1.25\}$ to determine methodical error
- combine BW-fit, extrapolation & methodical errors: $E_0 = (7.0289^{+0.6586}_{-0.5519}) \text{ MeV}, \Gamma = (3.0429^{+3.1135}_{-2.9350}) \text{ MeV}$
- comparison: Lüscher error still underestimated

Lüscher results (no fit error)
$$E_0/\text{MeV} = 6.3530 \pm 0.0186$$
,
 $\Gamma/\text{MeV} = 3.1345 \pm 0.0235$

• generalize lattice Hamiltonian to three dimensions and non-zero spin: [B. Borasoy et al. (2007)]

$$\begin{split} \hat{H} |\vec{r}\rangle &= -\frac{1}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)_{\text{discretized}} |\vec{r}\rangle \\ &+ V(\vec{r}, \hat{\vec{S}}_1, \hat{\vec{S}}_2) |\vec{r}\rangle \end{split}$$

 generalize lattice Hamiltonian to three dimensions and non-zero spin: [B. Borasoy et al. (2007)]

$$\hat{H}|\vec{r}\rangle = -\frac{1}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
ight)_{\text{discretized}} |\vec{r}\rangle + V(\vec{r}, \hat{\vec{S}}_1, \hat{\vec{S}}_2) |\vec{r}\rangle$$

• define radial states for partial wave ${}^{2s+1}l_j$ (easier for high l and partial-wave mixing than Lüscher's formula): [B.-N. Lu et al. (2016)] [B. Borasoy et al. (2007)]

$$|R
angle_{s,l,j} = \sum_{ec{r}} \sum_{l_z,s_z} \sum_{s_{z,1}} \sum_{s_{z,2}} C_{0,l_z,s_z}^{j,l,s} C_{s_z,s_{z,1},s_{z,2}}^{s,s_{1,s_{2,2}}} Y_{l,l_z}(ec{e}_r) \delta_{r,R} |ec{r}
angle \otimes |s_{z,1},s_{z,2}
angle$$

 generalize lattice Hamiltonian to three dimensions and non-zero spin: [B. Borasoy et al. (2007)]

$$\hat{H}|\vec{r}\rangle = -\frac{1}{2\mu} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
ight)_{\text{discretized}} |\vec{r}\rangle + V(\vec{r}, \hat{\vec{S}}_1, \hat{\vec{S}}_2) |\vec{r}\rangle$$

• define radial states for partial wave ${}^{2s+1}l_j$ (easier for high l and partial-wave mixing than Lüscher's formula): [B.-N. Lu et al. (2016)] [B. Borasoy et al. (2007)]

$$|R
angle_{s,l,j} = \sum_{ec{r}} \sum_{l_{z},s_{z}} \sum_{s_{z,1}} \sum_{s_{z,2}} C^{j,l,s}_{0,l_{z},s_{z}} C^{s,s_{1},s_{2}}_{s_{z},s_{z,1},s_{z,2}} Y_{l,l_{z}}(ec{e}_{r}) \delta_{r,R} |ec{r}
angle \otimes |s_{z,1},s_{z,2}
angle$$

• consider *n* coupled scattering channels, i.e. $_{\alpha'}\langle R'|V|R\rangle_{\alpha}$ is full $n \times n$ block:

$$|R
angle_lpha:=|R
angle_{s_lpha,l_lpha,j_lpha}$$
 for $lpha\in\{1,\ldots,n\}$

• add spherical wall potential [J. Carlson et al. (1984)] to avoid artifacts caused by periodic boundary condition:

 $V_{\text{wall}}(\vec{r}) = \Lambda \theta(r - R_{\text{wall}}), \quad \Lambda \text{ positive and large}$

[B. Borasoy et al. (2007)]

• add spherical wall potential [J. Carlson et al. (1984)] to avoid artifacts caused by periodic boundary condition:

 $V_{\text{wall}}(\vec{r}) = \Lambda \theta(r - R_{\text{wall}}), \quad \Lambda \text{ positive and large}$

• compute norm matrix $[N(R)]_{\alpha',\alpha} = {}_{\alpha'}\langle R|R \rangle_{\alpha}$ and project Hamiltonian onto normalized radial states:

n

[B. Borasoy et al. (2007)]

$$[H_{\mathrm{rad}}(R',R)]_{\alpha',\alpha} = \sum_{\beta,\beta'=1}^{n} [N^{-1/2}(R')]_{\alpha',\beta'\,\beta'} \langle R'|(\hat{H}+V_{\mathrm{wall}})|R\rangle_{\beta} [N^{-1/2}(R)]_{\beta,\alpha}$$

• add spherical wall potential [J. Carlson et al. (1984)] to avoid artifacts caused by periodic boundary condition:

 $V_{\text{wall}}(\vec{r}) = \Lambda \theta(r - R_{\text{wall}}), \quad \Lambda \text{ positive and large}$

• compute norm matrix $[N(R)]_{\alpha',\alpha} = {}_{\alpha'}\langle R|R \rangle_{\alpha}$ and project Hamiltonian onto normalized radial states:

[B. Borasoy et al. (2007)]

$$[H_{\mathrm{rad}}(R',R)]_{\alpha',\alpha} = \sum_{\beta,\beta'=1}^{n} [N^{-1/2}(R')]_{\alpha',\beta'\,\beta'} \langle R'|(\hat{H}+V_{\mathrm{wall}})|R\rangle_{\beta} [N^{-1/2}(R)]_{\beta,\alpha}$$

• obtain wave functions from eigenvectors $|\psi\rangle$ of $H_{\rm rad}$:

n

$$\psi_{\alpha}(\mathbf{R}) = \sum_{\beta=1}^{n} [N^{-1/2}(\mathbf{R})]_{\alpha,\beta\beta} \langle \mathbf{R} | \psi \rangle$$

 guess: n linearly independent solutions of Schrödinger equation needed to get full-rank n × n overlap matrix

- guess: n linearly independent solutions of Schrödinger equation needed to get full-rank n × n overlap matrix
- extended Schrödinger eq. in two-channel case (e.g. ³SD₁): [B.-N. Lu et al. (2016)]

$$\begin{pmatrix} [H_{\text{rad}}]_{1,1} & 0 & [H_{\text{rad}}]_{1,2} & -U_0 \delta_{r,R_{\text{mix}}} \\ 0 & [H_{\text{rad}}]_{1,1} & U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{1,2} \\ [H_{\text{rad}}]_{2,1} & U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{2,2} & 0 \\ -U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{2,1} & 0 & [H_{\text{rad}}]_{2,2} \end{pmatrix} \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix} = E \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix}$$

mixing potential with $R_{\rm mix} \lesssim R_{\rm wall}$ and small U_0 varies initial conditions for $H_{\rm rad}$

- guess: n linearly independent solutions of Schrödinger equation needed to get full-rank n × n overlap matrix
- extended Schrödinger eq. in two-channel case (e.g. ³SD₁): [B.-N. Lu et al. (2016)]

$$\begin{pmatrix} [H_{\text{rad}}]_{1,1} & 0 & [H_{\text{rad}}]_{1,2} & -U_0 \delta_{r,R_{\text{mix}}} \\ 0 & [H_{\text{rad}}]_{1,1} & U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{1,2} \\ [H_{\text{rad}}]_{2,1} & U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{2,2} & 0 \\ -U_0 \delta_{r,R_{\text{mix}}} & [H_{\text{rad}}]_{2,1} & 0 & [H_{\text{rad}}]_{2,2} \end{pmatrix} \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix} = E \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix}$$

mixing potential with $R_{\text{mix}} \leq R_{\text{wall}}$ and small U_0 varies initial conditions for H_{rad}

• decomposition of 2×2 overlap matrix (cf. [J. M. Blatt, L. C. Biedenharn (1952)]):

$$\begin{pmatrix} |\langle \psi_{\text{test}} |\psi_1 \rangle|^2 & |\langle \psi_{\text{test}} |\chi_1 \rangle|^2 \\ |\langle \psi_{\text{test}} |\psi_2 \rangle|^2 & |\langle \psi_{\text{test}} |\chi_2 \rangle|^2 \end{pmatrix} = U^{\dagger} \begin{pmatrix} \cdot & 0 \\ 0 & \cdot \end{pmatrix} U, \quad U^{\dagger}U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- guess: n linearly independent solutions of Schrödinger equation needed to get full-rank n × n overlap matrix
- extended Schrödinger eq. in two-channel case (e.g. ³SD₁): [B.-N. Lu et al. (2016)]

$$\begin{pmatrix} [H_{rad}]_{1,1} & 0 & [H_{rad}]_{1,2} & -U_0 \delta_{r,R_{mix}} \\ 0 & [H_{rad}]_{1,1} & U_0 \delta_{r,R_{mix}} & [H_{rad}]_{1,2} \\ [H_{rad}]_{2,1} & U_0 \delta_{r,R_{mix}} & [H_{rad}]_{2,2} & 0 \\ -U_0 \delta_{r,R_{mix}} & [H_{rad}]_{2,1} & 0 & [H_{rad}]_{2,2} \end{pmatrix} \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix} = E \begin{pmatrix} \psi_1(r) \\ \psi_2(r) \\ \chi_1(r) \\ \chi_2(r) \end{pmatrix}$$

mixing potential with $R_{\rm mix} \lesssim R_{\rm wall}$ and small U_0 varies initial conditions for $H_{\rm rad}$

• decomposition of 2×2 overlap matrix (cf. [J. M. Blatt, L. C. Biedenharn (1952)]):

$$\begin{pmatrix} |\langle \psi_{\text{test}} | \psi_1 \rangle|^2 & |\langle \psi_{\text{test}} | \chi_1 \rangle|^2 \\ |\langle \psi_{\text{test}} | \psi_2 \rangle|^2 & |\langle \psi_{\text{test}} | \chi_2 \rangle|^2 \end{pmatrix} = U^{\dagger} \begin{pmatrix} \cdot & 0 \\ 0 & \cdot \end{pmatrix} U, \quad U^{\dagger}U = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• generalization to n > 2 channels straightforward [LB et al. (2019)]

• chiral lattice EFT calculations for many nucleons are performed as Monte-Carlo simulations (instead of using Lanczos algorithm)

- chiral lattice EFT calculations for many nucleons are performed as Monte-Carlo simulations (instead of using Lanczos algorithm)
- \Rightarrow evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time au

- chiral lattice EFT calculations for many nucleons are performed as Monte-Carlo simulations (instead of using Lanczos algorithm)
- \Rightarrow evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time au
- \Rightarrow evaluate matrix element $|\langle \psi_{\text{test}}| \exp(-\hat{H}\tau) |\psi_{\text{test}} \rangle|^2$ at different points in time to obtain spectral overlap function

- chiral lattice EFT calculations for many nucleons are performed as Monte-Carlo simulations (instead of using Lanczos algorithm)
- \Rightarrow evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time au
- \Rightarrow evaluate matrix element $|\langle \psi_{\text{test}}| \exp(-\hat{H}\tau) |\psi_{\text{test}} \rangle|^2$ at different points in time to obtain spectral overlap function
- Lüscher's formula not accurate enough here because error of Monte-Carlo energy levels is larger than separation between these levels [B.-N. Lu et al. (2016)]

- chiral lattice EFT calculations for many nucleons are performed as Monte-Carlo simulations (instead of using Lanczos algorithm)
- \Rightarrow evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time au
- \Rightarrow evaluate matrix element $|\langle \psi_{\text{test}}| \exp(-\hat{H}\tau) |\psi_{\text{test}} \rangle|^2$ at different points in time to obtain spectral overlap function
- Lüscher's formula not accurate enough here because error of Monte-Carlo energy levels is larger than separation between these levels [B.-N. Lu et al. (2016)]
- extension to inelastic scattering (not possible with Lüscher): use two-cluster state

$$|\psi_{\text{test}}(\vec{R}\,)
angle = \sum_{\vec{r}} |\vec{r} + \vec{R}\,
angle_{ ext{cluster 1}} \otimes |\vec{r}\,
angle_{ ext{cluster 2}}$$

 \Rightarrow interpret Breit-Wigner peak width Γ as decay rate of compound nucleus

[S. Elhatisari et al. (2015)]

Summary

- presented spectral overlap method for determining finite-continuum/lattice resonances
- several advantages compared to Lüscher's formula:
 - more reliable Breit-Wigner fit for small and coarse lattices
 - overlap has nearly no background like cross section
 - easy generalization for high orbital angular momenta and partial-wave mixing
 - suitable for chiral lattice EFT simulations of heavy nuclei
 - extendable to inelastic scattering
- additional work in progress:
 - 3D single-channel benchmark by C. Wang (Bochum, NLEFT collaboration)
 - realistic nuclear systems by A. Sarkar (Jülich, NLEFT collaboration)

Thank you for your attention!