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Introduction

@ S-matrix S(k) can have resonance poles Im(k)
in lower complex half plane: |£
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in lower complex half plane: |£
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@ resonances also appear in cross section ‘7 d [~
o(E € R) as Breit-Wigner peaks with FESONAances  x virtual state

center and width roughly given by Ey
and T, respectively
= measurable in experiment [I. Matuschek et al. (2021)]
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Introduction

@ S-matrix S(k) can have resonance poles Im(k)
in lower complex half plane: |£

kpole = ko —1k, ko€ R, k>0 bound state

ko) T Re(k)
= ESe = ;‘: = Ey—iz + O(x?) o

@ resonances also appear in cross section 8 ‘7 d [~
o(E € R) as Breit-Wigner peaks with FESONAances  x virtual state
center and width roughly given by Ey
and T, respectively

= measurable in experiment [1. Matuschek et al. (2021)]

@ new method to determine Ey and I" with several advantages compared to
Lischer’s formula
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Method: Infinite continuum

@ 1D benchmark: particle with reduced
mass p = my = 938.92 MeV
(“deuteron-deuteron scattering”) in
step-barrier potential

value for my from [B. Borasoy et al. (2007)]
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Method: Infinite continuum

@ 1D benchmark: particle with reduced
mass p = my = 938.92 MeV
(“deuteron-deuteron scattering”) in
step-barrier potential

value for my from [B. Borasoy et al. (2007)]

@ solve CMS Schrddinger equation to
obtain even-parity wave function with 5
asymptotics X [fm]
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P(x — 00) = Aexp(—ikx) + ASexp(ikx), k= +/2uE


https://doi.org/10.1140/epja/i2007-10500-9

Method: Infinite continuum

@ 1D benchmark: particle with reduced
mass p = my = 938.92 MeV
(“deuteron-deuteron scattering”) in
step-barrier potential

value for my from [B. Borasoy et al. (2007)]

@ solve CMS Schrddinger equation to
obtain even-parity wave function with
asymptotics X [fm]
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P(x — 00) = Aexp(—ikx) + ASexp(ikx), k= +/2uE
@ find pole of S-matrix numerically:
Epole = (7.1681 — 1.0484i) MeV, Ey=7.1681 MeV, I =2.0968 MeV

= broad resonance near threshold to explore possibilities of method
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Method: Infinite continuum

@ calculate total cross section from
S-matrix:
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| f—
- \2

(factor of 2 due to “angular integration”)
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Method: Infinite continuum

@ calculate total cross section from
S-matrix:

s—1)?
| f—
- \2

(factor of 2 due to “angular integration”)

@ obtain Breit-Wigner peak from S-matrix 5 55 6 65 7 75 8
pole: EMev]
cross section
o E ~ E() _ IE ~ 2 F2/4 — — — Breit-Wigner peak from S-matrix pole
2 (E—Eo)>+12/4

@ discrepancy caused by broad resonance and non-vanishing background of o



Method: Finite continuum

@ enclose system in box of finite length, e.g. L = 200 fm:

Vv [MeV]
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Method: Finite continuum

@ enclose system in box of finite length, e.g. L = 200 fm:

Vv [MeV]

x [fm]

@ impose periodic boundary conditions for even parity:

(=L/2) = (L/2), (£L/2) =0



Method: Finite continuum

@ enclose system in box of finite length, e.g. L = 200 fm:

Vv [MeV]

x [fm]

@ impose periodic boundary conditions for even parity:
(=L/2) = ¥(L/2), ' (£L/2)=0

= states above threshold become discrete in energy

and normalizable (ffﬁzdx lp(x)> = 1)



Method: Finite continuum

@ solve CMS Schrddinger equation to obtain even-parity wave function ¢g(x):

1 ‘ ‘ ‘ ‘ barrier
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Method: Finite continuum

@ solve CMS Schrddinger equation to obtain even-parity wave function ¢g(x):
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Method: Finite continuum

@ solve CMS Schrddinger equation to obtain even-parity wave function ¢g(x):

1 T T T T 1 T T T T (FETTE)
0.8 — quasi-bound state for £ ~ E;, & 0.8 f non-bound state for £ % E;, &
PR (decays with litetime 1/7) [ — oslk i wave function
b = VE
£ o4l - £ oal .
> > e
0.2 0.2 E .
Gaussian
0 | | | | 0 | | | | test function
0 1 2 3 4 5 0 1 2 3 4 5 Drest
x [fm] x [fm]
= large overlap = small overlap

@ compute overlap | {1y |vx)|> with Gaussian test function .. (x):

2
(e ) P = | [, dr e () (1)

¢test(x) = eXp(—XQ/Clé)/ ag 7T/2 erf(L/(\@aG))7 ag = 1 fm




Method: Finite continuum

@ plot spectral overlap function depending
on energy = must be peaked around E



Method: Finite continuum

@ plot spectral overlap function depending 0.18

on energy = must be peaked around E 015 oe
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Method: Finite continuum

@ plot spectral overlap function depending
on energy = must be peaked around E
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Method: Finite continuum

@ plot spectral overlap function depending
on energy = must be peaked around E

@ works if |wtest> %A|¢E0—il—‘/2> so that

’ <wtest’e_iHT ‘wtest> ‘2 ~ ‘A’46_Ft
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Method: Finite continuum

@ plot spectral overlap function depending 0.18
on energy = must be peaked around E 015 |- © .
@ works if |wtest> ~ A|¢E0—if‘/2> so that Ng 0121 o advantage: nearly no
g E 0.09 ¢ © background as for o
| (trest|e IHTWtestHZ ~ ‘A[46_F' L 006 o o 1
0.03 | o OOOO ]
. . @]
@ expect Breit-Wigner shape to reproduce oW 6 8 1‘0 ;2 1‘4
this proportionality (details on request): £ Mev]
O data points
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Method: Finite continuum

@ plot spectral overlap function depending 0.18
on energy = must be peaked around E 015 oe 1
@ works if |wtest> ~ A|¢E il 2> so that NTL,_. 012 - advantage: nearly no
o—il'/
% 0.09 1 o © background as for o
’<¢test’e_iHT‘wtest>‘2 ~ ‘A’46—F1 v 0.06 [ 5 oo m
0.03 - o o6 o 1
@ expect Breit-Wigner shape to reproduce OW P ——
this proportionality (details on request): £ [Mev]
O data points
st|E,)T/2 iF .
(Wielte) = lgwiegg’o —i?>iF§2 = [(trestle 1HTWtestHz = oxce

o fit Breit-Wigner peak to data (with 95 % fit errors):

T2 /4 Eo = (7.4060 % 0.0864) MeV
2 2 9
(Wheal )" = [healven) =y 72 {r = (2.3131 £ 0.2438) MeV



Method: Finite continuum

@ plot spectral overlap function depending 0.18 —
on energy = must be peaked around E 015 |- oo .
© works if [¢hes) & A|¢E0—ir/2> so that NT# 012 ¢ / \ advantage: nearly no
- E 0.09 1 A background as for
sl ) AT R
@ expect Breit-Wigner shape to reproduce OW — 1‘0\?72@%
this proportionality (details on request): EMeV]
O datapoints ——— Breit-Wigner fit
<7/Jtest|¢}E> = l% = |<wtest|€_iHT’wtest>|2 =X e_rt

o fit Breit-Wigner peak to data (with 95 % fit errors):

I2/4 Ey = (7.4060 £+ 0.0864) MeV,
el E) 2 = | (sl o) 2 / { 0= ) Me

(E— Eo)? +12/4 T = (2.3131 + 0.2438) MeV



Method: Finite continuum

@ extrapolate in limit L — oo by fitting 1/L-expansion of Ey(L), I'(L):

T 3 °
75 | l a 2.4 l i 7 fitted data
23 T O
% ‘ % O ® non-fitted data
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= Ey/MeV = 7.3706 + 0.2005, I'/MeV = 2.1629 £ 0.9562 (95 % extr. errors)



Method: Finite continuum

@ extrapolate in limit L — oo by fitting 1/L-expansion of Ey(L), I'(L):

T 3 °
75 | l a 2.4 l i 7 fitted data
23 T O

% ‘ % O ® non-fitted data
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= Ey/MeV = 7.3706 + 0.2005, I'/MeV = 2.1629 £ 0.9562 (95 % extr. errors)

@ vary width of Gaussian test function as ag € {0.5 fm, 1 fm, 1.5 fm}
= methodical error



Method: Finite continuum

@ extrapolate in limit L — oo by fitting 1/L-expansion of Ey(L), I'(L):
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= Ey/MeV = 7.3706 + 0.2005, I'/MeV = 2.1629 £ 0.9562 (95 % extr. errors)
@ vary width of Gaussian test function as ag € {0.5 fm, 1 fm, 1.5 fm}
= methodical error

@ combine all error sources (details on request):
Eo = (7.3706792477y MeV, I’ = (2.16297 11975y Mev



Method: Finite continuum

@ extrapolate in limit L — oo by fitting 1/L-expansion of Ey(L), I'(L):

| ‘ °
®

75 | l a 2.4 l i 7 fitted data
23 T O

% % O ® non-fitted data
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= Ey/MeV = 7.3706 + 0.2005, I'/MeV = 2.1629 £ 0.9562 (95 % extr. errors)
@ vary width of Gaussian test function as ag € {0.5 fm, 1 fm, 1.5 fm}
= methodical error agrees with inf. cont. v/

@ combine all error sources (details on request): Ey = 7.1681 MeV,
Eo = (7.3706503153) MeV, T' = (2.162971635) MeV T = 2,0968 MeV




Method: Lattice (preliminary)
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Method: Lattice (preliminary)

; ; : : 0.005 .
@ introduce lattice with length L = 1973.3 fm & spacing a = §y = 0.98665 fm:
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Method: Lattice (preliminary)

; ; : : 0.005 .
@ introduce lattice with length L = 1973.3 fm & spacing a = §y = 0.98665 fm:

T ey x/a
fd] - s [

@ require periodic boundary conditions: ¢ (x +nL) = ¢ (x) Vn € Z

]
_
\®)
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Method: Lattice (preliminary)

@ introduce lattice with length L = 1973.3 fm & spacing a = S5 = 0.98665 fm:
[ i Ve Ve |
w w 1 1 1 | x/a
L/a—1 L/a—1
“EE 2 0 1 23 457

@ require periodic boundary conditions: ¢ (x +nL) = ¢ (x) Vn € Z
@ discretize second derivative in kinetic-energy term: (p. Lee, . Thomson (2007)]

AO() = 350 = s (W= ) + 0+ )
+ 402612 (7/1()6 —2a) +P(x+ 2a)) — 1801ua2 (1/}()6 —3a) +Y(x + 3a))

+ V(0)p(x)
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Method: Lattice (preliminary)

@ step-barrier potential produces strong

. . 15 1
lattice artifacts ol |
g 70 ]
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Method: Lattice (preliminary)

@ step-barrier potential produces strong sl .
lattice artifacts = smooth it ol |

V [MeV]
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— hill-canyon potential
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Method: Lattice (preliminary)

@ step-barrier potential produces strong r
lattice artifacts = smooth it 12 |
@ compute eigenvalues E and
eigenvectors (x|¢)) of Hamiltonian matrix
(x'|H|x) using Lanczos algorithm

[C. Lanczos (1950)]
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Method: Lattice (preliminary)

@ step-barrier potential produces strong
lattice artifacts = smooth it

@ compute eigenvalues E and
eigenvectors (x|¢)) of Hamiltonian matrix
(x'|H|x) using Lanczos algorithm
[C. Lanczos (1950)]

@ select eigenvectors with even parity (no o 1 2 3 4 s
numerically unstable data at high E) X [fm]

step-barrier potential
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Method: Lattice (preliminary)

@ step-barrier potential produces strong r
lattice artifacts = smooth it 12 i |
@ compute eigenvalues E and s 9
eigenvectors (x|¢)) of Hamiltonian matrix = °
(x'|H|x) using Lanczos algorithm z
[C. Lanczos (1950)] 3
@ select eigenvectors with even parity (no 0 . 2 s s 5
numerically unstable data at high E) X [fm]
@ calculate cross section from Luscher’s — step-barrier potential
formula: m. Lischer (1986)] — hill-canyon potential
2i0) — 1] kL. . :
c=2 eXp(lz) , 0= - via dispersion relation (p. Lee, r. Thomson (20071
49 3 3 1 K? 6
= W — m COS(ka) -+ ZOMQZ COS(Zka) — W COS(3kCl) = ﬂ + O(a )
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Method: Lattice (preliminary) — Lischer

@ fit Breit-Wigner peak to LUscher cross section (check o(Ey) = 2):

U(E) = O‘(E())

I2/4 Eop = 6.2949 MeV, T =3.0615MeV,
(E—Ep)?+12/4 o (Ep) = 2.0000 v



Method: Lattice (preliminary) — Lischer

@ fit Breit-Wigner peak to LUscher cross section (check o(Ey) = 2):

U(E) = O‘(E())

(E—Eo)>+T1?%/4 o(Ey) = 2.0000 v

@ extrapolate in limit @ — 0 by fitting a>-expansion of Ey(a), I'(a):

6.5

32 B
6.4 - B
S &
_ oo o @ 31k L o g X |
3 63f 23 . s ¢
= = 3r
g 62 — L
29 B
6.1 - b
28 1
6 Il Il Il Il Il Il Il Il
0 0.5 1 1.5 2 0 0.5 1 1.5 2
a [fm] a [fm]

= Eyp/MeV = 6.3530 + 0.0186, I'/MeV = 3.1345 £+ 0.0235 (95 % extr

I2/4 {EO = 6.2949 MeV, T =3.0615MeV,

*

fitted data

. errors)



Method: Lattice (preliminary) — Lischer vs. overlap

Ey/MeV = 6.3530 £ 0.0186, I'/MeV = 3.1345 £ 0.0235 (95 % extr. errors) J

@ but for small and coarse lattices (L € {17.760 fm,21.706 fm}, a = 1.9733 fm):




Method: Lattice (preliminary) — Lischer vs. overlap

Ey/MeV = 6.3530 £ 0.0186, I'/MeV = 3.1345 £ 0.0235 (95 % extr. errors)

@ but for small and coarse lattices (L € {17.760 fm,21.706 fm}, a = 1.9733 fm):

LUscher’s formula
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= Ep = 2.6572 MeV,
I' =1.4233 MeV,
o(Ey) = 7.2325 4
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Method: Lattice (preliminary) — Lischer vs. overlap

Ey/MeV = 6.3530 £ 0.0186, I'/MeV = 3.1345 £ 0.0235 (95 % extr. errors) J
@ but for small and coarse lattices (L € {17.760 fm,21.706 fm}, a = 1.9733 fm):
Lischer’s formula overlap method
S T - 0.09
,’ ? > 0075 b ©
1.6 *<>¢ \‘ T S 0.06 - qé’\\ i Luischer data
o M) ? i N 0045 - / \ . o
0.8 ,// \\\ - 2@ 003 I /// \\® i overlap data
0.4 AN B Y 0.015 /// \\\ o B T
0 | | | \\\\“‘r e 0 Ja®N! | | | \\\“\“‘f— Breit-Wigner
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 fit
E [MeV] E [MeV]
= Ey = 2.6572 MeV, = Eyp = 4.9136 MeV,
I' =1.4233 MeV, I' =3.2428 MeV,
o(Ey) =7.2325 4 | (Wrest| Vg, ) |* = 0.068012 v/ 5




Method: Lattice (preliminary) — Lischer vs. overlap

@ advantage: overlap has nearly no background like cross section



Method: Lattice (preliminary) — Lischer vs. overlap

@ advantage: overlap has nearly no background like cross section

@ used Gaussian test function with width ag = 1 fm
= normalized it in same way as eigenvectors of H



Method: Lattice (preliminary) — Lischer vs. overlap

@ advantage: overlap has nearly no background like cross section

@ used Gaussian test function with width ag = 1 fm
= normalized it in same way as eigenvectors of H

@ caution: |(vrest|tE)|? oc L~! is probability distributed over lattice length!

| <¢test|¢E> |IZ4 _ 2
’<'¢test‘¢E>‘%2 L

= rescaled spectral overlap functions to Lgy = 200 fm (only works in 1D)



Method: Lattice (preliminary) — Lischer vs. overlap

@ advantage: overlap has nearly no background like cross section

@ used Gaussian test function with width ag = 1 fm
= normalized it in same way as eigenvectors of H

@ caution: |(vrest|tE)|? oc L~! is probability distributed over lattice length!

| <¢test|¢E> |I%1 _ 2
’<'¢test‘¢E>‘%2 L

= rescaled spectral overlap functions to Lgy = 200 fm (only works in 1D)
@ uncertainty from averaging data for multiple lattice lengths not yet estimated

I 7 17.760 fm + 21.706 fm

= 19.733 1
5 m

(LUscher’s formula advantageously yields infinite-volume results)



Method: Lattice (preliminary) — overlap

@ repeat simulation for L/fm € {~ 50,~ 100,...,~ 300} and extrapolate L — oo



Method: Lattice (preliminary) — overlap

@ repeat simulation for L/fm € {~ 50,~ 100,...,~ 300} and extrapolate L — oo
@ repeat simulation for different a-values and extrapolate a — 0:

"R ] f “TUIT I

7r 3 4

6.9 E ®
251 i fitted dat

6.8 [ - itted data

g 3
= =
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Method: Lattice (preliminary) — overlap

35

3

25

2

15

1

Uil !
I

0.5 1
a [fm]

@ repeat simulation for L/fm € {~ 50,~ 100,...,~ 300} and extrapolate L — oo
@ repeat simulation for different a-values and extrapolate a — 0:

fitted data

@ repeat simulation for ag/fm € {0.75, 1, 1.25} to determine methodical error
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Method: Lattice (preliminary) — overlap

35

3

25

2

15

1

0.5 1
a [fm]

@ repeat simulation for L/fm € {~ 50,~ 100,...,~ 300} and extrapolate L — oo
@ repeat simulation for different a-values and extrapolate a — 0:

did !

I

fitted data

@ repeat simulation for ag/fm € {0.75, 1, 1.25} to determine methodical error

@ combine BW-fit, extrapolation & methodical errors:
Ep = (7.028970:8380) MeV, T = (3.042973130) MeV



Method: Lattice (preliminary) — overlap

@ repeat simulation for L/fm € {~ 50,~ 100,...,~ 300} and extrapolate L — oo
@ repeat simulation for different a-values and extrapolate a — 0:

SRR RN

3 4
6.9 - b ®
25 b
68 | a fitted data

2
6.7

Eo [MeV]
I [MeV]

6.6 4 15

65 Il Il Il Il 1 Il Il Il
0 0.5 1 15 2 0 0.5 1 15 2

a [fm] a [fm]

@ repeat simulation for ag/fm € {0.75, 1, 1.25} to determine methodical error

Ey = (7.028970:5315) MeV, T' = (3.0429739:3) MeV £ /Mev = 6.3530 £ 0.0186,
@ comparison: Luscher error still underestimated I'/MeV = 3.1345 + 0.0235




Outlook: From 1D to 3D
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Outlook: From 1D to 3D

@ generalize lattice Hamiltonian to three
dimensions and non-zero Spin: (s. sorasoy et al. (2007)]

H
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Outlook: From 1D to 3D

@ generalize lattice Hamiltonian to three L
dimensions and non-zero Spin: (s. sorasoy et al. (2007)]

R 1 /0> 07 82
HF) = — < + = > I7)
axz 8 8Z discretized

+V(?7S1782)|7> ’

at L-a

Yy
’/

@ define radial states for partial wave >*1J; (easier for high / and partial-wave
mixing than Lischer’s formula): [B.-N. Lu et al. (2016)] [B. Borasoy et al. (2007)]

.0 - N
Rietj =3 D 33"l ot i, (@)0,kI7) @ [521,520)
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Outlook: From 1D to 3D

@ generalize lattice Hamiltonian to three L
dimensions and non-zero Spin: (s. sorasoy et al. (2007)]

R 1 /9> 92 82
A= -5 (et petas) I
axz 8 8Z discretized

+V(?7S1782)|7> ’

at L-a

Yy
’/

@ define radial states for partial wave >*1J; (easier for high / and partial-wave
mixing than Lischer’s formula): [B.-N. Lu et al. (2016)] [B. Borasoy et al. (2007)]

il - N
Ry = > 3 3G Cov Y11 (8,)0r-[F) @ Isz1,522)

7Foolysz Sz Sz2
@ consider n coupled scattering channels, i.e. _,(R'|V|R) , is full n x n block:

R)e == |R)so sy for ae{l,... .n}
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Outlook: From 1D to 3D

@ add spherical wall potential 1. carison et al. (1984 t0 avoid
artifacts caused by periodic boundary condition:

Vwan(F) = AO(r — Ryan), A positive and large [ b ]

[B. Borasoy et al. (2007)]
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@ add spherical wall potential 1. carison et al. (1984 t0 avoid
artifacts caused by periodic boundary condition:

Vwal(F) = AO(r — Ryan), A positive and large [ b ]

@ compute norm matrix [N(R)]. .« = ,,(R|R), and project
Hamiltonian onto normalized radial states:

[B. Borasoy et al. (2007)]

[Heaa (R, R)] Z N=V2(R) w7 (R | (H + Via) IR) 5N "2 (R)] 5,0
B,8'=1
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Outlook: From 1D to 3D

@ add spherical wall potential 1. carison et al. (1984 t0 avoid
artifacts caused by periodic boundary condition:

Vwal(F) = AO(r — Ryan), A positive and large [ b ]

@ compute norm matrix [N(R)]. .« = ,,(R|R), and project
Hamiltonian onto normalized radial states:

n [B. Borasoy et al. (2007)]

HeadR R)|ora = > INT2(R)]ar,pr oo (R (H + Vi) |R) s [N *(R)] g0
B8,8'=1

@ obtain wave functions from eigenvectors [i) of Hag:

n

Ya(R) =Y _IN"2(R)a,s4(RIv)
B=1
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Outlook: From 1D to 3D

@ guess: n linearly independent solutions of Schrédinger equation needed to
get full-rank n x n overlap matrix
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@ guess: n linearly independent solutions of Schrédinger equation needed to
get full-rank n x n overlap matrix

@ extended Schrédinger eq. in two-channel case (e.g. >SD1): .. Luetal. 2016)]
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mixing potential with Ryix < Rwan and small Uy varies initial conditions for H;ag
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Outlook: From 1D to 3D

@ guess: n linearly independent solutions of Schrédinger equation needed to
get full-rank n x n overlap matrix

@ extended Schrédinger eq. in two-channel case (e.g. >SD1): .. Luetal. 2016)]

[Hrad]1,1 0 [Hradliz  —Uolr g, 1 (r) Py (r)
0 [Hrad)1,i UodrRyy [Hrad)i2 Ua(r) | _ £ U (r)
Hradl2g  Uobrryy  [Hrad)22 0 xi(r) | x1(r)
—Uo0rRyie  [Hradl2,1 0 [Hrad)2,2 x2(r) x2(r)

mixing potential with Ryix < Rwan and small Uy varies initial conditions for H;ag
@ decomposition of 2 x 2 overlap matrix (Cf. (. m. piatt, L. c. Biedenharn (1952)1)

|<¢test‘1/1l>|2 |<1/1test|X1>|2>_ T<' 0> ; _<1 O)
<‘<¢test‘w2>|2 ’<wtest|X2>‘2 =U 0 - u, U'U= 01
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Outlook: From 1D to 3D

@ guess: n linearly independent solutions of Schrédinger equation needed to
get full-rank n x n overlap matrix

@ extended Schrédinger eq. in two-channel case (e.g. >SD1): .. Luetal. 2016)]

[Hrad]1,1 0 [Hradliz  —Uolr g, 1 (r) Py (r)
0 [Hrad)1,i UodrRyy [Hrad)i2 Va(r) | _ £ U (r)
Hradl2g  Uobrryy  [Hrad)22 0 x1(r) x1(r)
—Uo0rRyie  [Hradl2,1 0 [Hrad)2,2 x2(r) x2(r)

mixing potential with Ryix < Rwan and small Uy varies initial conditions for H;ag
@ decomposition of 2 x 2 overlap matrix (Cf. (. m. piatt, L. c. Biedenharn (1952)1)

|<¢test‘1/1l>|2 |<1/1test|X1>|2>_ T<' 0> ; _<1 O)
<‘<¢test‘w2>|2 ’<wtest|X2>‘2 =U 0 - u, U'U= 01

@ generalization to n > 2 channels straightforward s etal. 2019y
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Outlook: (In)elastic nuclear scattering

@ chiral lattice EFT calculations for many nucleons are performed as
Monte-Carlo simulations (instead of using Lanczos algorithm)
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= evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time 7
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Outlook: (In)elastic nuclear scattering

@ chiral lattice EFT calculations for many nucleons are performed as
Monte-Carlo simulations (instead of using Lanczos algorithm)

= evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time 7

= evaluate matrix element | (s | exp(—HT)|es)|? at different points in time
to obtain spectral overlap function
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Outlook: (In)elastic nuclear scattering
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chiral lattice EFT calculations for many nucleons are performed as
Monte-Carlo simulations (instead of using Lanczos algorithm)

evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time 7

evaluate matrix element |(ies| exp(—HT)|1rest)|? at different points in time
to obtain spectral overlap function

Lischer’s formula not accurate enough here because error of Monte-Carlo
energy levels is larger than separation between these levels g.n. Luetal. 2016y


https://doi.org/10.1016/j.physletb.2016.06.081
https://doi.org/10.1038/nature16067

Outlook: (In)elastic nuclear scattering

@ chiral lattice EFT calculations for many nucleons are performed as

=
=

Monte-Carlo simulations (instead of using Lanczos algorithm)
evolve Hamiltonian in Euclidean (i.e. Wick-rotated) time 7

evaluate matrix element |(ies| exp(—HT)|1rest)|? at different points in time
to obtain spectral overlap function

Lischer’s formula not accurate enough here because error of Monte-Carlo
energy levels is larger than separation between these levels g.n. Luetal. 2016y

extension to inelastic scattering (not possible with
Lischer): use two-cluster state **%\%\
N 7
|¢test Z ‘r + R cluster 1 ® |r>cluster 2 7 \\%%_

= interpret Breit-Wigner peak width I" as decay rate

[S. Elhatisari et al. (2015)]
of compound nucleus
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@ presented spectral overlap method for determining finite-continuum/lattice
resonances

@ several advantages compared to Lischer’s formula:

more reliable Breit-Wigner fit for small and coarse lattices

overlap has nearly no background like cross section

easy generalization for high orbital angular momenta and partial-wave mixing
suitable for chiral lattice EFT simulations of heavy nuclei

extendable to inelastic scattering

@ additional work in progress:

e 3D single-channel benchmark by C. Wang (Bochum, NLEFT collaboration)
e realistic nuclear systems by A. Sarkar (Julich, NLEFT collaboration)
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Thank you for your attention!
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