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Ab initio nuclear theory

The aim is to predict the properties of nuclear systems from microscopic
nuclear forces

source://people.physics.anu.edu.au/ ecs103/chart3d/

γ

An ab initio nuclear theory that has a “unified
description” of nuclear structure and scattering/reaction
processes with high predictive power.
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Nuclear reactions

□ 4He: fuels the nucleosynthesis of the heavier elements. Direct measurements at the 300
keV, corresponding to helium-burning temperatures, are impossible due to the presence of
the Coulomb barrier between nuclei.

□ To accurately calculate the reaction rate for stellar burning simulations, the reaction cross
section must be determined within the energy range of 0.15 − 3.4 MeV.

□ Therefore, the inaccessible reaction rate depends on extrapolating experimental data
obtained at higher energies, leading to significant uncertainties in stellar evolution models.

and the original angular distributions are not reported.
Differential cross section measurements below Sp are avail-
able only for the ground state transition and only in the limited
energy range around the broad lowest energy 1− resonance
that corresponds to the level at Ex ¼ 9.59 MeV (Dyer and
Barnes, 1974; Redder et al., 1987; Ouellet et al., 1996; Fey,
2004; Assunção et al., 2006; Makii et al., 2009). These data
are used to determine the relative interference between the E1
and E2 components of the cross section, but it is possible that
measurements over other regions, where the two components
are closer in magnitude, would provide better constraint.
Above Sp, measurements are available in Larson and Spear
(1964) and Kernel, Mason, and Wimmersperg (1971) over the
broad states at Ex ¼ 12.45 (1−), 12.96 (2þ), and 13.10 (1−)
MeV. The Q coefficients (Rose, 1953; Longland et al., 2006)
used to correct for the extended geometry of the γ-ray
detectors are listed in Table VIII.
The best fit to the 12Cðα; γ0Þ16O angle-integrated data of

Brochard et al. (1973), Dyer and Barnes (1974), Kettner et al.
(1982), Redder et al. (1987), Kremer et al. (1988), Ouellet
et al. (1996), Roters et al. (1999), Gialanella et al. (2001),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012) is
shown in Fig. 9. The simultaneous fit to the ground state
angular distribution differential cross section data (Dyer and
Barnes, 1974; Redder et al., 1987; Fey, 2004; Assunção et al.,
2006) is shown in Fig. 10 and the differential excitation curves
of Ouellet et al. (1996) and Makii et al. (2009) are shown
in Fig. 11.

C. Cascade transitions

While the cascade cross sections make a small contribution
to the total low-energy cross section (≈5% at Ec:m: ¼
300 keV), at higher energies they can dominate as shown
in Figs. 6 and 7. However, another compelling reason for their
accurate measurement would be to constrain the ANCs of the
subthreshold states, in particular, those of the Ex ¼ 6.92 and

7.12 MeV states, through their external capture contributions.
The Ex ¼ 6.13 MeV transition capture cross section, which is
external capture dominated, is also connected to the β-delayed
α emission spectrum through its ANC as discussed further in
Sec. VI.D.
Cascade transition excitation curves for the 12Cðα; γÞ16O

reaction have been measured by Kettner et al. (1982), Redder
et al. (1987), Matei et al. (2006), and Schürmann et al. (2011).
The measurements of these transitions are complicated exper-
imentally by the close energy spacing of the bound states at

A A A

A

A
A

A

A

A

10
-4

10
-3

10
-2

10
-1

10
0

0 1 2 3 4 5 6
Center of Mass Energy (MeV)

10
-4

10
-3

10
-2

10
-1

S 
fa

ct
or

 (
M

eV
 b

)

E1

E2

(a)

(b)

300 keV

FIG. 9. Fit to the 12Cðα; γ0Þ16O cross section. (a) The E1
contribution from Dyer and Barnes (1974), Redder et al.
(1987), Kremer et al. (1988), Ouellet et al. (1996), Roters
et al. (1999), Gialanella et al. (2001), Kunz et al. (2001), Fey
(2004), Assunção et al. (2006), Makii et al. (2009), Schürmann et
al. (2011), and Plag et al. (2012). (b) The E2 contribution from
Redder et al. (1987), Ouellet et al. (1996), Roters et al. (1999),
Kunz et al. (2001), Fey (2004), Assunção et al. (2006), Makii
et al. (2009), Schürmann et al. (2011), and Plag et al. (2012).
(a) The angle-integrated cross section data of Brochard et al.
(1973) are also shown at high energy for comparison as they are
dominated by E1 capture. Note that the data have been subjected
to overall normalizations as determined by the fitting procedure.

TABLE VIII. Summary of Q coefficients for extended detector geometry corrections. In cases where the coefficients
were not reported they have been approximated using a GEANT4 simulation and the details of the geometry presented in the
reference; the source for these cases is indicated as “this work.”

Reference Detector Q1 Q2 Q3 Q4 Source

Larson and Spear (1964) 0.897 0.719 0.509 0.311 This work
Kernel, Mason, and Wimmersperg (1971) 0.989 0.968 0.937 0.896 This work
Dyer and Barnes (1974) 0.955 0.869 0.750 0.610 Table 5.5 of

Sayre (2011)
Ophel et al. (1976) 0.990 0.969 0.948 0.900 This work
Ouellet et al. (1996) 28° 0.9719 0.9173 0.8395 0.7431 Table 1

60° 0.9675 0.9047 0.8162 0.7061
90° 0.9541 0.8670 0.7474 0.6068
90° 0.9543 0.8675 0.7486 0.6091
120° 0.9762 0.9296 0.8672 0.7787
143° 0.9831 0.9500 0.9017 0.8400

Redder et al. (1987) 0.92 0.75 In text
Assunção et al. (2006) 0.989(2) 0.968(4) 0.936(8) 0.895(14) In text
Makii et al. (2009) 40° 0.980 0.947 0.898 0.837 Table VI

90° 0.980 0.946 0.897 0.835
130° 0.980 0.948 0.901 0.841

Plag et al. (2012) 0.948 0.927 0.862 0.775 Eq. (2)

R. J. deBoer et al.: The 12Cðα; γÞ16O …

Rev. Mod. Phys., Vol. 89, No. 3, July–September 2017 035007-41

12C(α, γ)16O astrophysical S factor.

deBoer et al., Rev. Mod. Phys. 89, 035007.
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Progresses and challenges in ab initio scattering and reactions

□ QMC calculations of n-4He scattering.
Nollett, Pieper, Wiringa, Carlson, & Hale, PRL 99, 022502 (2007).

□ Ab initio many-body calculations of n-3H, n-4He, p-3,4He,and n-10Be
scattering.
Quaglioni & Navratil, PRL 101, 092501 (2008).

□ Ab initio many-body calculations of the 3H(d,n)4He, 3He(d,p)4He fusion.
Navratil & Quaglioni, PRL 108, 042503 (2012).

□ Elastic proton scattering of medium mass nuclei from CC theory.
Hagen & Michel PRC 86, 021602 (2012).

□ Coupling the lorentz integral transform (LIT) and the CC Methods.
Orlandini, G. et al. , Few Body Syst. 55, 907â911 (2014).

□ Ab initio investigations of A=8 nuclei.
Navratil, Kravvaris et al., J.Phys.Conf.Ser. 2586 (2023) 1, 012062
Kravvaris and Volya, PRC 100, 034321 (2019)
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Progresses and challenges in ab initio scattering and reactions

Ab initio calculations of scattering and reactions are limited by the
computational scaling with the number of nucleons in target and projectile
(clusters).

In general, for most of the many-body approaches it remains a challenge to
address important processes relevant for stellar astrophysics.

□ Scattering of alpha particles: 4He + 4He → 4He + 4He
□ Triple- alpha reaction: 4He + 4He + 4He → 12C+ γ

□ Alpha capture: 4He + 12C → 16O+ γ
4He + 16O → 20Ne+ γ

...
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Outline

■ Introduction

■ Chiral effective field theory (chiral EFT)

■ Lattice effective field theory

■ Scattering on the lattice

■ Adiabatic projection method

■ Recent progress in LEFT

■ Summary
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Nuclear forces from QCD

Quarks Nucleons Nucleus Atoms Matter
< 10−16 ∼ 10−13 ∼ 10−12 ∼ 10−8 cm

Quantum chromodynamics (QCD) describes the strong forces by confining
quarks (and gluons) into baryons and mesons.
S. Weinberg, Phys. Lett. B 251 (1990) 288, Nucl. Phys. B363 (1991) 3, Phys. Lett. B 295 (1992) 114.
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Chiral EFT for nucleons: nuclear forces

Chiral effective field theory organizes the nuclear interactions as an expansion in
powers of momenta and other low energy scales such as the pion mass (Q/Λχ)

Rep. Prog. Phys. 75 (2012) 016301 N Kalantar-Nayestanaki et al

2N LO

N LO3

NLO

LO

3N force 4N force2N force

Figure 4. Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting. Solid and dashed lines denote nucleons and
pions, respectively. Solid dots, filled circles and filled squares refer, respectively, to the leading, subleading and sub-subleading vertices in
the effective Lagrangian. The crossed square denotes 2N contact interactions with 4 derivatives.

1 GeV, respectively. A recent review on the methodology and
applications of chiral perturbation theory in the Goldstone–
boson and single-nucleon sectors can be found in [66].

Chiral EFT, however, cannot be directly applied to
low-energy few-nucleon scattering. The strong nature of
the nuclear force that manifests itself in the appearance of
self-bound atomic nuclei invalidates a naive application of
perturbation theory. Weinberg pointed out that the breakdown
of perturbation theory can be traced back to the infrared
enhancement of reducible diagrams that involve few-nucleon
cuts [67, 68]. The irreducible part of the amplitude that gives
rise to the nuclear force is, however, not affected by the infrared
enhancement and is thus accessible within chiral EFT. These
important observations have triggered intense research activity
towards the systematic derivation of the nuclear forces in chiral
EFT and their applications to the nuclear few- and many-body
problem.

It should also be emphasized that an EFT can be
formulated that is only valid at typical momenta well below
the pion mass. This framework allows one to take into
account the unnaturally large NN scattering lengths but loses
the connection with the chiral symmetry of QCD. It has
been used with great success not only for nuclear systems
[69, 14]. This so-called pion-less EFT requires a 3NF in
leading order. The corresponding hard scale is given by
the pion mass and, therefore, intermediate-energy observables
cannot be predicted within this framework. In the following,
we restrict ourselves to chiral EFT.

The EFT expansion of the nuclear force based on
the standard chiral power counting (i.e. assuming that all
operators in the effective Lagrangian scale according to a naive
dimensional analysis) is visualized in figure 4.

It provides a natural qualitative explanation of the
observed hierarchy of two-, three- and more-nucleon forces
with 〈V2N〉 � 〈V3N〉 � 〈V4N〉 . . .. The expansion of the 2NF
has the form

V2N = V
(0)

2N + V
(2)

2N + V
(3)

2N + V
(4)

2N + · · · , (1)

with the superscripts referring to the power of the expansion
parameter Q/�χ . The long-range part of the nuclear
force is dominated by 1π -exchange with the 2π -exchange
contributions starting at next-to-leading order (NLO). The
expressions for the potential up to next-to-next-to-leading
order (N2LO) in the heavy-baryon formulation [70, 71] are
rather compact and have been independently derived by several
authors using a variety of different methods [72–75]. 2π - and
3π -exchange contributions at next-to-next-to-next-to-leading
order (N3LO) have been worked out by Kaiser [76–79] and
are considerably more involved, see also [80]. While the
2π -exchange at NLO and, especially, at N2LO generates a
rather strong potential at distances of the order of the inverse
pion mass [74], the leading 3π -exchange contributions turn out
to be negligible. The N3LO contributions to the 2π -exchange
potential were also derived in the covariant formulation of
chiral EFT [81] by Higa et al [82, 83]. The LECs entering
the pion-exchange contributions up to N3LO are known from
pion–nucleon scattering and related processes [84–86]. We
note that some of them, especially the ones from L(3)

πN , are
presently not very accurately determined. In the isospin
limit, the short-range part of the potential involves 2, 9, 24
independent terms at LO, NLO/N2LO, N3LO, respectively.
The corresponding LECs were fixed from the two-nucleon
data leading to the accurate N3LO potentials of Entem and
Machleidt (EM) [87] and Epelbaum, Glöckle and Meißner
(EGM) [88]. These two potentials differ in the treatment of
relativistic corrections (including the form of the employed
dynamical equation), IB terms and the form of the regulator
functions. There are also differences in the adopted values
of certain pion–nucleon LECs. Finally, EGM provide an
estimation of the theoretical uncertainty by means of the
variation of the cutoffs in some natural ranges. This important
issue is not addressed in [87], where a single excellent
fit to neutron–proton (proton–proton) scattering data with
χ2/datum = 1.10 (χ2/datum = 1.50) in the energy range
from 0 to 290 MeV is given. We refer the reader to [87, 88] for
more details. In figure 5, we compare NN phase shifts obtained
with these models with predictions from phenomenological

5

Fig. courtesy of E.Epelbaum

(Q/Λχ)0

(Q/Λχ)2

(Q/Λχ)3

(Q/Λχ)4

Ordonez et al. ’94; Friar & Coon ’94; Kaiser et al. ’97; Epelbaum et al. ’98,’03,’05,’15; Kaiser ’99-’01;

Higa et al. ’03; ...
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Lattice effective field theory

□ Lattice effective field theory is a powerful numerical method formulated in the
framework of chiral effective field theory.

𝑎 𝐿 

Nucleons
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Lattice effective field theory

Euclidean Time

⟨ψI | |ψI⟩

τ = 0 τ = Ltat

□ construct an initial/final state of nucleons, |ψI⟩, as a Slater
determinant of free-particle standing waves on the lattice.

□ evolve nucleons forward in Euclidean time, e−HLO τ |ψI⟩,
where τ = Ltat.

□ The evolution in Euclidean time automatically incorporates the
induced deformation, polarization and clustering.



11/27

Auxiliary field Monte Carlo

Euclidean Time

⟨ψI | |ψI⟩

τ = 0 τ = Ltat

Use a Gaussian integral identity

exp
[
−C

2

(
N† N

)2
]
=

√
1

2π

∫
ds exp

[
− s2

2
+
√
−C s

(
N† N

)]
s is an auxiliary field coupled to the particle density. Each nucleon evolves as if a
single particle in a fluctuating background of pion fields and auxiliary fields.
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Lattice EFT: (Euclidean time) projection Monte Carlo

Transfer matrix operator formalism M̂ = : exp(−HLO at) :

Microscopic Hamiltonian HLO = Hfree + VLO

Z(Lt) = Tr(M̂Lt) =
∫

Dc Dc∗ exp[−S(c, c∗)]
Creutz, Found. Phys. 30 (2000) 487.

The exact equivalence of several different lattice formulations.
Lee, PRC 78:024001, (2008); Prog.Part.Nucl.Phys., 63:117-154 (2009)



13/27

Lattice Monte Carlo calculations

Projection Monte Carlo uses a given initial state, |ψI⟩, to evaluate a
product of a string of transfer matrices M̂.

Z(Lt) = ⟨ψI |M̂(Lt − 1) M̂(Lt − 2) . . . M̂(1) M̂(0) |ψI⟩

In the limit of large Euclidean time the evolution operator e−HLO τ

suppress the signal beyond the low-lying states, and the ground state
energy can be extracted by

lim
Lt→∞

Z(Lt + 1)
Z(Lt)

= e−E0 at lim
Lt→∞

⟨ψI | M̂Lt/2 HLO M̂Lt/2 |ψI⟩
⟨ψI | M̂Lt |ψI⟩

= E0



14/27

Scattering on the lattice
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Lüscher’s finite volume method:
Lüscher, Comm. Math. Phys. 105 (1986) 153; NPB 354 (1991) 531

p cot δ0(p) = 1
π L

[
∑Λ

n⃗
θ(Λ2−n⃗2)

n⃗2−(Lp/2π)2 − 4π Λ
]

Borasoy, Epelbaum, Krebs, Lee, Meißner, EPJA 34 (2007) 185  

Scattering phase shifts from finite volumes 

𝜓ℓ 𝑟 = 𝑁 [cos 𝛿ℓ 𝑝 𝐹ℓ 𝑝 𝑟 + sin 𝛿ℓ 𝑝 𝐺ℓ(𝑝 𝑟)] 

𝑅wall 

Spherical wall method:

R(p)
ℓ (r) = Nℓ(p)×

{
cot δℓ(p) jℓ(p r)− nℓ(p r)
cot δℓ(p) Fℓ(p r) + Gℓ(p r)

Nucl. Phys. A 424, 47-59 (1984), Eur. Phys. J. A 34, 185-196 (2007).



15/27

Scattering on the lattice

Neutron-alpha scattering at N3LO
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S.E. and Meißner, [in progress].
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Adiabatic projection method

Euclidean Time

⟨ψR
I | |ψR′

I ⟩
τ = 0 τ = Ltat

The method constructs a low energy effective theory for the clusters by using initial
states, |ψR

I ⟩ and |ψR′
I ⟩, parameterized by the relative spatial separation between

clusters, and project them in Euclidean time to get dressed cluster states,
|ψR

I ⟩τ = e−H τ |ψR
I ⟩.

Hamiltonian matrix

[Hτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |H|ψR′
I ⟩J,Jz

τ

Norm matrix

[Nτ ]
J,Jz
R,R′ =

J,Jz
τ ⟨ψR

I |ψR′
I ⟩J,Jz

τ

[Ha
τ ]

J,Jz

R⃗,R⃗′ =
[

N−1/2
τ Hτ N−1/2

τ

]J,Jz

R⃗ R⃗′

Eur.Phys.J.A 52 (2016) 6, 174.
Eur.Phys.J.A 55 (2019) 8, 144.
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Ab-initio alpha-alpha scattering N2LO
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Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247, (1969).

Higa, Hammer, van Kolck, Nucl.Phys. A809, 171 (2008), 0802.3426.

S.E., Lee, Rupak, Epelbaum, Krebs, Lähde, Luu, & Meißner. Nature 528, 111-114 (2015).
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Ab-initio alpha-alpha scattering

Degree of locality of nuclear forces

VA
LO = VsNL

1S0,Q0 + VsNL
3S1,Q0 + VOPE VB

LO = VsNL,sL
1S0,Q0 + VsNL,sL

3S1,Q0 + VOPE
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S.E., Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)
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Ab-initio alpha-alpha scattering in the Multiverse
Alpha-alpha scattering phase shifts under variations of the fundamental parameters of
the Standard Model.

∂Eαα

∂Mπ
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ph
π
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Afzal, Ahmad, Ali, Rev. Mod. Phys. 41, 247, (1969).

S.E., Lähde, Lee, Meißner, Vonk. JHEP 02 (2022) 001.
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Chiral interactions at N3LO – 2NFs + 3NFs

Work Constraints Predictions

NCSM, Barrett et al. BE of 3H and 4He ES of 6Li

NCSM, Nogga et al. BE of 3H and 4He Spectrum of 7Li

NCSM, Navratil et al. 3H, 6Li, 10B, 12C 4He, 6Li, 10,11B, 12,13C

NCSM, Maris et al. BE of 3H and 3H β decay Structures of A = 7, 8

NCSM, Roth et al. BE of 3H and 3H β decay 4He, 6Li, 12C and 16O

CC, Hagen et al. BE of 3H and 3H β decay EoS of nucleonic matter

BMBPT, Tichai et al. BE of 3H and 3H β decay BE of 16−26O, 36−60Ca and 50−78Ni

IT-NCSM, Roth et al. BE of 3H and 4He, and 3H β decay BE of 4He, 16O, 40Ca

CC, Roth et al. BE of 3H and 4He, and 3H β decay BE of 16,24O, 40,48Ca

SCGF, Cipollone et al. BE of 3H and 4He, and 3H β decay BE of 13,27N, 14,28O and 15,29F

AFDMC, Lynn et al. BE of 3H and n-4He P-wave phase shifts EoS of nucleonic matter

CC, Carlsson et al. BE of 3H, 3,4He, 14Li and 16,22,24,25O Rc and BE of nuclei up to 40Ca
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Spin doublet S-wave neutron-deuteron scattering at N3LO
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S.E., Hildenbrand and Meißner, [in progress].
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Triton-β decay at N3LO

(1 + δR) t1/2 fV =
K/G2

V

⟨F⟩2 +
fA
fV

g2
A ⟨GT⟩

⟨F⟩ =
3

∑
n=1

⟨3He∥τn,+∥3H⟩ = 0.9998 ⟨GT⟩ =
3

∑
n=1

⟨3He∥σnτn,+∥3H⟩ = 1.6474(23) .

L ⟨F⟩ ⟨GT⟩
(fm) LO NLO N3LO N3LO LO NLO N3LO N3LO

(2N) (2N) (2N) (2N+3N) (2N) (2N) (2N) (2N+3N)

5.28 0.99996 0.99999 0.99999 0.99999 1.7167 1.6981 1.6976 1.7015
6.60 0.99984 0.99997 0.99997 0.99997 1.7115 1.6937 1.6919 1.6955
7.92 0.99969 0.99989 0.99990 0.99990 1.7099 1.6917 1.6886 1.6919
9.24 0.99967 0.99977 0.99977 0.99978 1.7107 1.6842 1.6801 1.6845
10.6 0.99973 0.99956 0.99958 0.99962 1.7125 1.6808 1.6763 1.6823
11.9 0.99980 0.99940 0.99958 1.7135 1.6764

S.E., Hildenbrand and Meißner, [in progress].
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Neutron-alpha scattering at N3LO
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S.E. and Meißner, [in progress].
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Alpha-carbon scattering at N3LO
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Ab initio alpha-carbon scattering at N3LO
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S.E., Hildenbrand, Meißner, Lee, ... NLEFT [in progress].
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Ab initio alpha-carbon scattering at N3LO
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Summary

□ Nuclear forces in the framework of chiral effective field theory are well-established,
and it is very important time for ab initio methods to make predictions in many-
nucleon system using these forces.

□ Understanding of the connection between the degree of locality of nuclear forces
and nuclear structure has led to a more efficient set of lattice chiral EFT interac-
tions.

□ A recently developed method so called the wave function matching provides a
rapid convergence in perturbation theory for many-body nuclear physics. Using
this new method now we are able to calculate the nuclear binding energies, neu-
tron matter, symmetric nuclear matter and charge radii of nuclei simultaneously
in very good agreements with the experimental results.

□ With the recently developed N3LO lattice action and powerful numerical methods,
we are ready to perform the first ab initio calculation of alpha-carbon scattering,
“holy grail” of nuclear astrophysics.

Thanks!


