

HELMHOLTZ

# Probing heavy element nucleosynthesis through electromagnetic observations

Gabriel Martínez-Pinedo ERC EXOTIC workshop – Frontiers in Nuclear Physics Bethe Center for Theoretical Physics, Bonn November 22, 2023







#### Signatures of nucleosynthesis







Benchmark against observations:

- Indirect: Solar and stellar abundances (contribution many events, chemical evol.)
- Direct: Kilonova electromagnetic emission (single event, sensitive Atomic and Nuclear Physics)



Heavy elements produced by the r-process. Radioactive decay liberates energy



Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

## Kilonova: signature of the r-process

#### Kilonova: An electromagnetic transient due to long term radioactive decay of





GSIFA

UNIVERSITÄT

**HELMHOLTZ** 

- Electromagnetic counterpart to Gravitational Waves
- Diagnostics physical processes at work during merger
- Direct probe of the formation r-process nuclei
- Information elements
  produced single event

# **Pipeline for r-process in mergers**

14.5

13.5

13

12.5

12 11.5

11

10

9.5

15.167 ms

50

10.5

14

- Properties ejecta: proton-tonucleon ratio  $(Y_e)$
- Role of equation of state
- Role of neutrinos

Bauswein et al, ApJ 773, 78 (2013)

Infer components ejecta  $(Y_{e})$ 

50

40

30

20

-10

-30

-40

-50 -50

y [km]

 Physics of neutron-rich and heavy nuclei

forward modelling

r-process

backward modelling



- Radioactive energy deposition
- Thermalization decay products (Barnes+ 2016, Kasen+ 2019)
- Spectra formation: atomic data depends on ejecta evolution (LTE vs NLTE)



- Which r-process elements are produced in mergers?
- Are mergers the (main) r-process site?



### **Kilonova modelling**





- Complete transition data: total opacity
- Color evolution: High vs Low opacity material
- Presence of Lanthanides/Actinides (high opacity)



- Accurate data
  - LTE: line list bound-bound transitions
  - NLTE: + electron ion and photoionization cross sections, recombination coef

**HELMHOLTZ** 

• Several elements observed Sr (Watson+22), Y, Zr, La, Ce (Domoto+22, Gillanders+23, Sneppen+23)



Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

## **Neodymion and Uranium opacities**



**HELMHOLTZ** 

- U has larger opacity than Nd (similar behaviour expected for other Actinides)
- Confirmed by independent calculations HFR code (U. Mons) and Los Alamos suite (Fontes+2023)



Silva et al, Atoms 10, 18 (2022); Flörs, Silva, et al, MNRAS 524, 3083 (2023)

Offers a method to identify presence of Actinides in spectra.



**HELMHOLTZ** 

### Neutron star mergers: Different ejection mechanisms



### **Dynamical ejecta (simulations)**

- Initially dynamical ejecta was assumed to be very neutron rich ( $Y_e \leq 0.1$ ).
- Starting with the work of Wanajo et al 2014, several studies have shown that weak processes modify the neutron-toproton ratio
- Largest impact in the polar regions

no neutrinos

10-

10<sup>-2</sup>

10

10-

10<sup>-5</sup>

10<sup>-6</sup>

10-7

60

80

100

Abundance at 1 Gyr



Mendoza-Temis, et al, PRC 92, 055805 (2015)

120

### **Self-consistent 3D radiative transfer**

- Monte Carlo 3D radiative transfer using the ARTIS code. <u>https://github.com/artis-mcrt/artis</u>
- Matter distribution based on SPH Dynamical ejecta (0.005  $M_{\odot}$ )
- LTE simulation: follows 2591 nuclei (283 ions with gamma-ray transport and electron thermalization, 44 millions atomic transitions lines AD1: Japan-Lithuania database Z=28-88, Tanaka+ 2020 AD2: AD1 + calibrated lines for Sr, Y, and Zr, Kurucz 2018



Shingles et al, ApJ 954, L41 (2023)





#### Angular dependence spectra





Shingles et al, ApJ 954, L41 (2023)

#### **Comparison AT2017gfo**



**HELMHOLTZ** 



Similar spectral evolution that AT2017gfo once differences in brightness are accounted Shingles et al, ApJ 954, L41 (2023)

#### **Asymmetry observables**





Temperature [K]

3000

3100

3200

3300

3400

2900

2600

2700

2800

#### Line-of-sight velocity



#### • Strong asymmetry observables

• Is this consistent with observations?

Shingles et al, ApJ 954, L41 (2023)

#### Benchmark against AT2017gfo



Analysis of AT2017gfo Sr II P-Cygni feature shows kilonova is highly spherical at early epochs [Sneppen et al, Nature 614, 436 (2023)]



Similar analysis based on 3D radiative transfer simulations suggest sphericity depends on observer line of sight [Collins et al, arXiv:2309.05579]



#### Long term merger simulations



Long-term simulations with neutron star lifetimes 0.1-1 s and describe all components of the ejecta: dynamical, NS-torus ejecta, and final viscous ejecta from BH torus.

0.6

0.5

0.4

لحر 0.3

0.2

0.1

0.0



*R* [km]



cleosynthesis through electromagnetic observations

#### End to end kilonova models



- Based on grey opacities using approximate radiative transfer model • (generalization ALCAR neutrino module)
- Promising agreement with AT2017gfo after times of several days ullet
- Accounting for all ejecta components fundamental to reproduce light curve



#### Nucleosynthesis beyond iron





- The *vr*-process (arXiv:2305.11050): a new nucleosynthesis process that operates under strong neutrino fluxes when nuclei are present: charged-current neutrino-nucleus reactions faster than  $\beta^-$  decays.
- Novel mechanism for production of p-nuclei from neutron-rich nuclei.

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

# Possible source of light p-nuclei and <sup>92</sup>Nb



γ-process fails to produce light pnuclei <sup>92,94</sup>Mo and <sup>96,98</sup>Ru in solar proportions (Raucher+2013)

Supernova neutrino winds:

- Ejecta with  $Y_e \sim 0.48$  produce <sup>92</sup>Mo (Hofmann+1992)
- $\nu p$ -process ( $Y_e \gtrsim 0.55$ ) produces <sup>94</sup>Mo, <sup>96,98</sup>Ru (Fröhlich+2006)

Long-lived <sup>92</sup>Nb present in early solar system (Harper+1996).

Cannot be produced by the  $\nu p$ process nor  $\nu$ -process (Hayakawa+2013, Sieverding+2018)

Can we produce all these nuclei in the same environment including heavier p-nuclei?

#### r-process vs vr-process



Weak freeze-out: proton-to-nucleon ratio determined by

(anti)neutrino absorption and their inverses

- Seed production: Charged particle reactions operating for  $T \gtrsim 2 GK$  produce the seed nuclei and neutrons
- Neutron-capture phase: neutrons are captured on the available seed nuclei on a typical times of ~ 1 s. Different equilibria are achieved:
  - $(n, \gamma) \rightleftharpoons (\gamma, n)$  equilibrium defines the r-process path that is mainly sensitive to the nuclear masses
  - Beta-flow equilibrium: abundance given element is proportional to the beta-decay half-lives. R-process peaks associated to nuclei with longest half-lives.
- Freeze-out and decay to stability: fully dynamical phase in which competition between neutroncaptures, beta-decay (and fission) determines the final abundance pattern. Most sensitive phase to the nuclear input

- Seed production: Strong neutrino fluxes drive material to  $Y_e \sim 0.5$
- Neutron-capture phase: neutrons are used relatively fast by two competing mechanisms:
  - n(v<sub>e</sub>, e<sup>-</sup>)p converts neutrons into protons
  - $A(v_e, e^-X) X = n, p, \alpha$  speeds up the build up of heavy nuclei
- Fast "decay" to stability and beyond:  $A(v_e, e^-X)$  reactions drive material to beta-stability and beyond
  - Neutrons, protons and alphas produced by both charged-current and neutral current spallation reactions.

**HELMHOLTZ** 

 Equilibrium between A(v<sub>e</sub>, e<sup>-</sup>X) and A(n, γ) determines final abundance

#### Nucleosynthesis (no neutrino-nucleus)





Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

# Nucleosynthesis (with neutrino-nucleus) E S 1 FAR C UNIVERSITAT



Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

#### **Dependence on neutrino fluence**



**HELMHOLTZ** 

Dependence  $Y_e$  and neutrino fluence

Increasing neutrino fluence allows to produce heavier p-nuclei



Current neutrino-hydrodynamical models are far from the necessary conditions A non-thermal ejection mechanism is necessary (magnetic fields?)

#### **Coproduction of all p-nuclei**





- All p-nuclei can be consistently produced
- Assuming the same astrophysical site produces both r-process and p-nuclei around 1% of the ejecta should reach vr-process conditions



#### **Pions in neutron-star mergers**

Remnant has large temperatures and is very neutron-rich

 $\mu_n - \mu_p > m_\pi$ 

Pions included in EoS assuming non-interacting boson-gas in thermal and chemical equilibrium

 $\mu_{\pi^{\pm}} = \mp (\mu_n - \mu_p)$ 

Pions can form a condensate 





Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations

#### Results

- Increase post-merger gravitational wave frequency by up to 150 Hz.
- Pronounced increase ejected mass



4.00

3.75

X

X

SFHo

3.50 3.25 2.56 [kHz] 3.00

2.75

Gabriel Martínez-Pinedo / Probing heavy element nucleosynthesis through electromagnetic observations



Base +  $\pi$ ,  $m_{\pi}$  = Vac. mass

Base +  $\pi$ ,  $m_{\pi} = 170 \,\mathrm{MeV}$ 

Base +  $\pi$ ,  $m_{\pi} = 200 \,\mathrm{MeV}$ 

X

X

X

Base

 $1.35-1.35 \ M_{\odot}$ 

### Summary



- Multi-messenger observations (Gravitational and Electromagnetic waves) from binary neutron star mergers provide unique opportunities to study the production of heavy elements:
  - Neutron star mergers identified as one astrophysical site where the r-process operates
  - Kilonova observations provide direct evidence of the "in situ operation of the r-process"
  - 3D radiative transfer allows to benchmark models with observations.
- Challenges:
  - Impact of weak processes and EoS in the ejecta properties
  - Improved nuclear and atomic input
  - Kilonova spectral modelling
- vr-process: new mechanism production p-nuclei



#### Collaborators



HELMHOLTZ







Ciências ULisboa





#### UNIVERSITÄT BIELEFELD





Max-Planck-Institut für Astrophysik

| A. | Bauswein, C. Collins, A. Flörs, |
|----|---------------------------------|
| 0. | Just, G. Leck, L. Shingles,     |
| N. | Rahman, V. Vijayan, Z. Xiong    |

P. Amaro, J. P. Marques, J. M. Sampaio, **R. Silva** 

S. Sim

- J. Deprince, M. Godefroid, S. Goriely
- H. Carvajal, P. Palmeri, P. Quinet

C. Robin

S. Giuliani, L. Robledo

A. Sieverding