Primordial nucleosynthesis with varying $\alpha_{\rm EM}$ ERC EXOTIC Workshop – Frontiers in Nuclear Physics

Helen Meyer

21.11.2023

Helmholtz Institut für Strahlen- und Kernphysik

Introduction			
•0			

Introduction

BBN probe of physics¹: are fundamental constants really constant?²

¹reviews: Olive, Steigman, and Walker, 2000; locco et al., 2009; Cyburt et al., 2016; Pitrou et al., 2018a

²Dirac, 1973 and many others

Helen Meyer

Primordial nucleosynthesis with varying $lpha_{
m EM}$

Introduction			
00			

Introduction

Want to study variation of electromagnetic coupling constant [Meißner, Metsch, and Meyer, 2023; Bergström, Iguri, and Rubinstein, 1999; Nollett and Lopez, 2002; Dent, Stern, and Wetterich, 2007; Coc et al., 2007]

$$lpha_0 = 7.297\,352\,569\,3(11) imes 10^{-3}$$
 [PDG]

Goal: find a bound on $\delta \alpha = \Delta \alpha / \alpha_0$ through comparing calculations with experimental values for light element abundances

Where does α appear in BBN?

- Nuclear Rates: Coulomb barrier → Gamow-factor [Gamow, 1928]
- Weak rates: final state Coulomb interactions in $n \leftrightarrow p$ rates and β -decays
- Indirectly: Neutron-Proton mass difference $Q_n = m_n m_p$, nuclear binding energies (→ reaction "Q-values")

Big Bang Nucleosynthesis			
•00			

Timescales

Weak interactions $n \leftrightarrow p$ with $\frac{n_n}{n_p} = e^{-Q_n/T}$, $Q_n = m_n - m_p = 1.293 \text{ MeV}$

freeze out at $T_f = 1 \text{ MeV} \rightarrow \text{free neutron decay:}$ $\frac{n_n}{n_p} = e^{-Q_n/T_f} e^{-(t-t_f)/\tau_n}$

Big Bang Nucleosynthesis			
000			

Evolution of Abundances

Define abundance $Y_i = n_i/n_b$, with n_i density of species *i* and n_b total baryon density. Evolution depends on

- Cosmoligical model: Hubble expansion
- Particle reactions (rate $\Gamma_{ij \rightarrow kl} \equiv n_b \langle \sigma v \rangle_{ij \rightarrow kl}$) and decays (rate $\Gamma_{i \rightarrow ...}$)

Need to solve system of rate equations

$$\dot{Y}_i \supset -Y_i \Gamma_{i \rightarrow ...} + Y_j \Gamma_{j \rightarrow i + ...} + Y_k Y_l \Gamma_{kl \rightarrow ij} - Y_i Y_j \Gamma_{ij \rightarrow kl}$$

Big Bang Nucleosynthesis			
000			

Evolution of Abundances - Codes

Codes used for solving network of rate equations [Wagoner, Fowler, and Hoyle, 1967]:

- PRIMAT [Pitrou et al., 2018b]
- AlterBBN [Arbey et al., 2020]
- PArthENoPE [Gariazzo et al., 2022]
- NUC123 [Kawano, 1992]
- New: PRyMordial [Burns, Tait, and Valli, 2023]

: PRIMAT

	α -Dependence of Reaction and Decay Rates		
	00000		

Nuclear Reaction Rates – Coulomb Barrier

$$\Gamma_{ab\to cd}(T) = N_A \langle \sigma v \rangle \propto \int_0^\infty \mathrm{d}E \, \sigma_{ab\to cd}(E) \cdot E \cdot e^{-\frac{E}{k_B T}} \,, \quad E = \frac{1}{2} \mu_{ab} v^2$$

(1) Coulomb Barrier

Cross section is proportional to penetration factor [Blatt and Weisskopf, 1979]

$$\sigma \propto v_0 = rac{2\pi\eta}{e^{2\pi\eta}-1}\,,$$

with Sommerfeld parameter

$$\eta = \frac{Z_a Z_b \alpha c}{\hbar v} = \frac{1}{2\pi} \sqrt{E_G/E},$$

and Gamow-energy

$$E_G = 2\mu_{ab}c^2\pi^2 Z_a^2 Z_b^2 \alpha^2, \quad \mu_{ab} = \frac{m_a m_b}{m_a + m_b}$$

Helen Meyer

Primordial nucleosynthesis with varying $\alpha_{\rm EM}$

	α -Dependence of Reaction and Decay Rates		
	00000		

Nuclear Reaction Rates – Radiative Capture

(2) Radiative capture reactions

- Coupling $\propto e \Rightarrow$ Cross section $\sigma \propto \alpha \propto e^2$
- External capture processes [Christy and Duck, 1961]: parameterized in $f(\delta \alpha)$ [Nollett and Lopez, 2002]
- Assume dipole dominance
- For some reactions: Halo EFT cross sections ⇒ work in progress

 α -dependence of cross section ($q_{\gamma} = 1$ for radiative capture, zero else)

$$\sigma(\alpha, E) \propto \left(\frac{\sqrt{E_{G}^{\text{in}}/E}}{e^{\sqrt{E_{G}^{\text{in}}/E}} - 1}\right) \cdot \left(\frac{\sqrt{E_{G}^{\text{out}}/(E+Q)}}{e^{\sqrt{E_{G}^{\text{out}}/(E+Q)}} - 1}\right) \cdot (\alpha f(\delta \alpha))^{q_{\gamma}}$$

$$Q=m_a+m_b-m_c-m_d$$

	α -Dependence of Reaction and Decay Rates		
	00000		

Weak Rates – Fermi Function

 β -decay rate (assume $|M_{fi}|^2$ to be *p*-independent) [Segrè, 1964]:

$$\lambda = \frac{g^2 |M_{fi}|^2}{2\pi^3 c^3 \hbar^7} \underbrace{\int_0^{p_{e,\max}} \left(W - \sqrt{m_e^2 c^4 + p_e^2 c^2}\right)^2 F(Z,\alpha,p_e) p_e^2 \,\mathrm{d}p_e}_{= l(\alpha,Q)}$$

$$p_{e,\max} = \frac{1}{c} \sqrt{W^2 - m_e^2 c^4}, W \approx M_a - M_b = Q$$

Fermi function (for $Z\alpha \ll 1$):
 $F(\pm Z, \alpha, \epsilon_e) \approx \frac{\pm 2\pi\nu}{1 - \exp(\mp 2\pi\nu)}, \quad \nu \equiv \frac{Z\alpha\epsilon_e}{\sqrt{\epsilon_e^2 - 1}}$

Then:

$$\lambda(\alpha) = \lambda(\alpha_0) \frac{I(\alpha, Q)}{I(\alpha_0, Q)}$$

Helen Meyer

Primordial nucleosynthesis with varying α_{EM}

	α -Dependence of Reaction and Decay Rates		
	000000		

$n \leftrightarrow p$ Rates

Free neutron decay: lifetime

$$\tau_n(\alpha) = \tau_n(\alpha_0) \frac{I(\alpha_0, Q)}{I(\alpha, Q)}$$

But: Ignored Fermi-Dirac distribution of neutrino and electron

 \Rightarrow temperature dependence in α -variation for high temperatures

	α -Dependence of Reaction and Decay Rates		
	000000		

Nuclear Reaction Rates – $n + p \rightarrow d + \gamma$

Some corrections due to α variation are energy-dependent

 \Rightarrow need reaction cross section!

For $n + p \rightarrow d + \gamma$:

- Pionless EFT (N⁴LO) approach by Rupak, 2000
- $\sigma(n+p \to d+\gamma) \text{ depends linearly on } \alpha$

Other reaction cross section need to be parameterized by fitting to data EXFOR database

	α -Dependence of Reaction and Decay Rates		
	000000		

Nuclear Reaction Rates - Leading Reactions

This work ; PRIMAT ; AlterBBN ; PArthENoPE; NUC123 ; NACRE II ; (PRyMordial uses the PRIMAT rates)

Helen Meyer

Primordial nucleosynthesis with varying α_{EM}

	Indirect Influence of α		
	•0		

Indirect Effects - Binding energies man

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2022a] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j}\right)}$$

	Indirect Influence of α		
	•0		

Indirect Effects – Binding energies non

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2022a] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\delta \alpha} \left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j} \right)$$

Nuclear reaction cross sections ($p_{\gamma}=3, q_{\gamma}=1$ for radiative capture, $p_{\gamma}=1/2, q_{\gamma}=0$ else)

$$\sigma(E,\alpha) \propto \underbrace{(E+Q(\alpha))^{p_{\gamma}}}_{\text{phase space}} \alpha^{q_{\gamma}} \frac{\sqrt{E_{G}^{\text{in}}(\alpha)/E}}{\exp\left(\sqrt{E_{G}^{\text{in}}(\alpha)/E}\right) - 1} \frac{\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}}{\exp\left(\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}\right) - 1}$$

	Indirect Influence of α		
	00		

Indirect Effects - Neutron-proton mass difference

 $Q_n = m_n - m_p$ has QED contribution [Gasser, Leutwyler, and Rusetsky, 2021]:

$$\Rightarrow \Delta Q_n = Q_n^{\text{QED}} \cdot \delta \alpha = -0.58(16) \text{ MeV} \cdot \delta \alpha$$

Affects

- weak $n \leftrightarrow p$ rates
- Q-values of β -decays
- $m_N = (m_n + m_p)/2$ appearing in $n + p \rightarrow d + \gamma$ cross section? \rightarrow neglect α -dependence!

		Results	
		000	

Results

Baryon-to-photon ratio $\eta = 6.14 \times 10^{-10}$; neutron lifetime $\tau_n(\alpha_0) = 879.4 \text{ s}$ [PDG] Parameter fit

$$\frac{Y(\alpha) - Y(\alpha_0)}{Y(\alpha_0)} = \mathbf{a} \cdot \frac{\Delta \alpha}{\alpha_0} + \mathbf{b} \cdot \left(\frac{\Delta \alpha}{\alpha_0}\right)^2$$

Main results see Meißner, Metsch, and Meyer, 2023:

- For most elements: change in nuclear reaction rates biggest effect.
- ⁴He indeed very sensitive to ΔQ_n .
- Lithium Problem

Differences to existing literature:

- \blacksquare Updated experimental values for masses, physical constants etc., more recent calculation of $Q_n^{\rm QED}$
- Different reaction rates due to parameterization of cross section.
- Calculating the corrections exactly or using temperature-dependent approximations.

		Results	
		000	

Results

		Results	
		000	

Experimental constraints

		Conclusion	
		•	

Conclusion: what we discussed so far

- Goal: Study α -dependence of primordial abundances of *d*, ³H, ³He, ⁴He, ⁶Li, ⁷Li and ⁷Be in BBN
- \blacksquare Considered α in
 - nuclear reaction rates (Coulomb penetration factor)
 - final state Coulomb interactions in weak $n \leftrightarrow p$ and β -decays rates (Fermi function) \rightarrow neutron lifetime τ_n
 - the Coulomb contribution to (binding energies) \rightarrow reaction Q-values
 - the neutron-proton mass difference Q_n
- Parameterized 18 relevant reaction cross sections.
- Computed primordial abundances for different α .
- Constrain α -variation to $|\delta \alpha| < 1.8\%$

			Outlook
			000

Outlook: what we are working on right now

How does a variation of the quark masses (u, d) influence BBN?

- Interesting: combined study of α and m_q -variation \Rightarrow constraints?
- Include Halo EFT results for radiative capture cross sections

Where do quark masses come in?

- Nuclear binding energies depend (mainly) on average quark mass $\hat{m} = \frac{m_d + m_d}{2}$
- **•** This in turn may affect reaction parameters $(a, r_{eff}) \Rightarrow$ Halo EFT rates
- How does quark mass difference change? \Rightarrow changes Q_n

			Outlook
			000

Quark mass dependence of binding energies

Gell-Mann-Oakes-Renner relation: $M_{\pi}^2 \propto \hat{m}$

■ From (pionless) EFT [Bedaque, Luu, and Platter, 2011] or using Nuclear Lattice EFT [Lähde, Meißner, and Epelbaum, 2020; Elhatisari et al., 2022b] ⇒ binding energies depend on $\frac{\partial a_s^{-1}}{\partial M_-}, \frac{\partial a_t^{-1}}{\partial M_-}$ (*N*-*N*-scattering)

			Outlook 00●

Thank you for your attention!

Any Questions?

Halo EFT – Abundances

Halo EFT cross sections for $^{3}{\rm H}+{}^{4}{\rm He}\rightarrow{}^{7}{\rm Li}+\gamma$ and ${}^{3}{\rm He}+{}^{4}{\rm He}\rightarrow{}^{7}{\rm Be}+\gamma$

Helen Meyer Primordial nucleosynthesis with varying $\alpha_{\rm EM}$

Measurement of Primordial Abundances

Deuterium d:

- Almost completely destroyed in stars
- Observe high red-shift, low-metallicity systems

Helium-4⁴He:

- \blacksquare Recombination lines of ${\rm He}$ and ${\rm H}$ in metal-poor extra-galactic HII regions
- Metal Production in stars positively correlated to stellar ${}^{4}\mathrm{He}$ contribution → Primordial abundance found by extrapolation to zero metallicity Lithium-7 ${}^{7}\mathrm{Li}$:
 - Observe stars in the galactic halo with very low metallicities
 - ⁷Li dominant over ⁶Li
 - Lithium problem³: theoretical prediction three times higher

³Fields, 2011

Temperature-Dependent Approximation

Charged particle reactions

- Define $S(E) = \sigma(E) E e^{\sqrt{E_G^{\text{in}}/E}}$ and assume $S \approx \text{const.}$
- Reaction rate

$$\Gamma = \int \mathrm{d}E \, \frac{S(E)}{E} e^{-\sqrt{E_G^{\mathrm{in}/E}}} E e^{E/(k_B T)}$$

E at maximum of integrand

$$E
ightarrow \overline{E}_c = \left(rac{k_B T}{2}
ight)^{rac{2}{3}} \left(E_G^{
m in}
ight)^{rac{1}{3}}.$$

Neutron induced reactions

- Define $R(E) = \sigma(E)\sqrt{E}$ and assume $R \approx \text{const.}$
- Reaction rate

$$\Gamma = \int \mathrm{d}E \, \frac{R(E)}{\sqrt{E}} E e^{E/(k_B T)}$$

• *E* at maximum of integrand

$$E
ightarrow ar{E}_{\gamma} = rac{1}{2}k_BT$$

Reaction Rates for Approximation

Reaction rates for $\delta \alpha = 0, \pm 10\%$ calculated exactly (blue) and with temperature-dependent approximation (red)

Primordial nucleosynthesis with varying α_{EM}

Abundances with Approximation

