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Motivation
Why is understanding hypernuclear interactions interesting? 
• „phenomenologically“  

• hyperon contribution to the EOS, neutron stars, supernovae 
• Λ as probe to nuclear structure 
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only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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stimulating discussions. The work of D. L. and S. G. was
supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under the NUCLEI
SciDAC grant and A. L. by the Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357. The work of S. G.
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FIG. 2 (color online). Mass-radius relations. The key is the
same as of Fig. 1. Full dots represent the predicted maximum
masses. Horizontal bands at ∼2M⊙ are the observed masses of
the heavy pulsars PSR J1614-2230 [18] and PSR J0348þ 0432
[19]. The grey shaded region is the excluded part of the plot due
to causality.

TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)
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ρΛ ¼ xρ are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

EHNMðρ; xÞ ¼ ½EPNMðð1 − xÞρÞ þmn&ð1 − xÞ

þ ½EPΛMðxρÞ þmΛ&xþ fðρ; xÞ: ð2Þ

To deal with the mass difference Δm≃ 176 MeV between
neutrons and lambdas the rest energy is explicitly taken into
account. The energy per particle of PNM EPNM has been
calculated using the AFDMC method [42,43] and it reads

EPNMðρnÞ ¼ a
!
ρn
ρ0

"
α
þ b

!
ρn
ρ0

"
β
; ð3Þ

where the parameters a, α, b, and β are reported in Table I.
We parametrized the energy of pure lambda matter EPΛM

with the Fermi gas energy of noninteracting Λ particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no ΛΛ potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, EHNMðρ; xÞ can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (Nn ¼ 66; 54; 38) and hyperons
(NΛ ¼ 1; 2; 14) in the simulation box giving momentum
closed shells. Hence, the function fðρ; xÞ provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ; x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopting
the same technique described in Ref. [61]. Possible addi-
tional finite-size effects for the hypernuclear systems have
been reduced by considering energy differences between
HNM and PNM calculated in the same simulation box, and
by correcting for the (small) change of neutron density.
As can be inferred by Eq. (2), both hyperon-nucleon

potential and correlations contribute to fðρ; xÞ, whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametrization is

fðρ; xÞ ¼ c1
xð1 − xÞρ

ρ0
þ c2

xð1 − xÞ2ρ2

ρ20
: ð4Þ

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one

Λ. We checked that contributions coming from clusters of
two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for fðx; ρÞ, including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
parametrization and on the fit range, in particular for the
hyperon threshold density. The resulting EOSs and mass-
radius relations are represented by the shaded bands in
Fig. 1 and Fig. 2. The parameters c1 and c2 corresponding
to the centroids of the figures are listed in Table II.
Once fðρ; xÞ has been fitted, the chemical potentials for

neutrons and lambdas are evaluated via

μnðρ; xÞ ¼
∂EHNM

∂ρn ; μΛðρ; xÞ ¼
∂EHNM

∂ρΛ ; ð5Þ

where EHNM ¼ ρEHNM is the energy density. The hyperon
fraction as a function of the baryon density, xðρÞ, is
obtained by imposing the condition μΛ ¼ μn. The Λ
threshold density ρthΛ is determined where xðρÞ starts being
different from zero.
In Fig. 1 the EOS for PNM (green solid curve) and HNM

using the two-body ΛN interaction alone (red dotted curve)
and two- plus three-body hyperon-nucleon force in the
original parametrization (I) (blue dashed curve) are dis-
played. As expected, the presence of hyperons makes the
EOS softer. In particular, ρthΛ ¼ 0.24ð1Þ fm−3 if hyperons

TABLE I. Fitting parameters for the neutron matter EOS of
Eq. (3) [42].

a½MeV& α b½MeV& β

13.4(1) 0.514(3) 5.62(5) 2.436(5)
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FIG. 1 (color online). Equations of state. Green solid curve
refers to the PNM EOS calculated with the AV8’þ UIX
potential. The red dotted curve represents the EOS of hypermatter
with hyperons interacting via the two-body ΛN force alone. The
blue dashed curve is obtained including the three-body hyperon-
nucleon potential in the parametrization (I). Shaded regions
represent the uncertainties on the results as reported in the text.
The vertical dotted lines indicate the Λ threshold densities ρthΛ . In
the inset, neutron and lambda fractions corresponding to the two
HNM EOSs.
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FIG. 4. (Color online) Maximum masses as functions of the
g8/g1 ratio z for NL3, GM1, and TM1 parameter sets. For each
parametrization, the case of pure nucleonic matter is also displayed.

masses of these stars seem to approach the maximum masses
of the corresponding pure nucleonic stars for all parameter sets
studied. A look at the particle number fractions for the GM1
parameter set at z = 0.8 [which we plot in Fig. 5(a)] shows that
the first hyperons to appear in the hadronic matter are the !−

and the " at total baryon number densities of nb ≈ 0.28 fm−3

and nb ≈ 0.29 fm−3 respectively, while the !0 appears much
later at nb ≈ 0.76 fm−3. On increasing z to its SU(6) value
[Fig. 5(b)], the " hyperon appears first at nb ≈ 0.36 fm−3,
followed by !− at nb ≈ 0.4 fm−3 and !0 at nb ≈ 0.89 fm−3.
At z = 0 [Fig. 5(c)], the threshold of appearance of hyperons
is pushed to even higher densities: nb ≈ 0.73 fm−3 for ",
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FIG. 6. (Color online) Maximum masses of hyperonic neutron
stars as functions of effective nucleon mass m∗
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of the g8/g1 ratio z. For comparison, a line for nucleonic stars and
points to mark RMF sets (e.g., TM1, NL3) corresponding to the SU(6)
case are also given.

nb ≈ 0.74 fm−3 for !−, and nb ≈ 1.38 fm−3 for !0. Thus,
for z = 0 the neutron stars consist mainly of nuclear matter,
which is why the maximum masses are so close to those of
the pure nucleonic stars. For the case of the parameter sets
NL3 and TM1, the particle fractions are qualitatively the same
as in the GM1 case. In the case of NL3 parametrization,
a well-known instability occurs at high densities when the
effective nucleon mass becomes zero [33]. The critical density
for the appearance of the instability depends on the value
of the hyperon coupling constants. However, for the present
investigation, this instability plays no role as it appears beyond
the maximum densities reached in the neutron star interior.

1. Combining m∗
N and z variations

The impact of z on the maximum mass of neutron stars is as
comparably large as the influence of the effective nucleon mass
at saturation m∗

N as investigated in our previous study [34].
We therefore combine both parameters in a single plot, Fig. 6,
where we show the maximum neutron star mass as a function
of m∗

N/mN for different z values. The incompressibility in
this case is fixed to K = 240 MeV, but the exact value is
irrelevant as shown in our previous paper [34]. We see in Fig. 6
that the effective mass has basically the same effect for all z
values and z the same effect for all effective masses: For fixed
z, the maximum masses decrease drastically for increasing
effective mass. For low z values, where the EoS is stiffer than
for higher z values, the dependence of the maximum mass
on the effective mass is slightly larger: The difference along
the whole range of m∗

N/mN is ≈0.6M⊙ for z = 0.8 while
for z = 0 it is ≈0.9M⊙. The influence of z on the maximum
masses is slightly more pronounced than that of the effective
masses: The difference in the maximum mass between z = 0
and z = 0.8 is ≈0.65M⊙ for m∗

N/mN = 0.8 and about 1M⊙ for
m∗

N/mN = 0.55. For comparison, we also plot the maximum

065802-5

(Weissenborn et al. 2012)



Why is understanding hypernuclear interactions interesting? 
• Hypernuclear interactions have interesting properties 

For example  
• Particle conversion process is sometimes long-range part of the interaction  
• experimental access to explicit chiral symmetry breaking

 3
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Testing hypernuclear interactions



Hypernuclei

• ΛN interactions are generally weaker than the NN  interaction 
• naively: core nucleus + hyperons 
• „separation energies“ are almost  

independent from NN(+3N) interaction  

• no Pauli blocking of Λ in nuclei  
• good to study nuclear structure 
• even light  hypernuclei exist in  

several spin states  

• non-trivial constraints 
on the YN interaction even  
from lightest ones  

• size of YNN interactions? 
need to include Λ-Σ conversion!
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(from Panda@FAIR web page)

Hyperons can bind to nuclei. The binding energies are known 
experimentally.



Jacobi-NCSM 
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(see Liebig, Meißner, AN (2016), 
        Le, Haidenbauer, Meißner, AN (2020) )

Solve the Schrödinger equation using HO states 

Two ingredients are necessary:  
• cfp — antisymmetrized states for nucleons  
• transition coefficients to separate off NN, YN, 3N and YNN   

=VYN VYN

H Ψ⟩ = E Ψ⟩
Schrödinger equation

e.g. for YN interaction

Application of to NN, YN, 3N and YNN interactions require the representation  
of particle transitions. 

For combinatorical factors see Le, Haidenbauer, Meißner, AN (2021).



First, generate antisymmetrized states for the A-1 nucleon system

Jacobi-NCSM — CFP

 6

antisymmetrized A-2 nucleons

spectator nucleon
CFP of A-2 system

total antisymmetrical A-1 system

(Liebig, Meißner, AN (2016))

diagonalization of the  
antisymmetrizer

The CFP coefficients ❬   ｜    ❭ are obtained by diagonalization of the antisymmetrizer. 

HO states guarantee: 
• complete separation of antisymmetrized and other states 
• independence of HO length/frequency

⟨ | ⟩ antisymmetrizer is equivalent to coordinate trafo 
expression in terms of Talmi-Moshinsky brackets

(Navrátil, Kamuntavičius, Barrett (2000))

These coefficients will be openly accessible as HDF5 data files  
            (download server is in preparation (please contact me when interested!))



Convergence for Jacobi-NCSM 
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Simple example:   with  4He SMS N2LO(550)
E

[M
eV

]

! [MeV] N

observed dependence on   and   ω N
5

Fig. 1 Upper panel: two-step extrapolation procedure for E(4He). !-space extrapolation (left). The solid lines are the 4He
binding energies computed for di↵erent Nmax from 10 to 28 with a step of 2. The dashed lines are obtained by using the ansatz
Eq. (1). Nmax-space extrapolation (right). The horizontal line with shaded area shows the extrapolated binding energy and
the estimated numerical uncertainty. The calculations are based on the SMS N2LO(550) NN potential. Lower panel: N -space
extrapolation for E(4⇤He) (left) and E(5⇤He) (right). The calculations are based on the SMS N4LO+(450) NN potential with
N2LO(450) 3N force, and the N2LO(550) YN potential.

scale, (LIR), and an ultraviolet (UV) cuto↵, ⇤UV , [42–
45]. Hence, by recasting the binding energies E(!,Nmax)
in terms of LIR and ⇤UV , E(LIR,⇤UV ), one can also
perform the infinite basis extrapolation with respect to
the LIR and ⇤UV cuto↵s [42–45]. In general, the IR
length scale (and ⇤UV ) depends on the system consid-
ered and on how the basis functions are truncated. In
the case of the NCSM with a total energy truncation
a precise value for LIR has been derived in [46]. Fur-
thermore, it has also been shown that, at a fixed ⇤UV ,
the IR correction to the binding energy follows an ex-
ponential dependence on LIR [42, 46, 47],

E⇤UV
(LIR) = E⇤UV ,1 + a⇤UV

e�2⇤UV ,1LIR . (3)

The UV correction is sensitive to the details of the em-
ployed interaction or, more precisely, on how the in-
teraction is regularized [45]. This correction is however
not yet well understood in contrast to the IR energy
correction. Hence, in practice one often performs the
IR extrapolation at a fixed UV cuto↵ which yields re-
liable IR extrapolations and for which the UV error is
approximately minimized (or suppressed) [22, 48]. As

an example, we show in Fig. 2 the IR extrapolated
binding energy of 4He, E⇤UV ,1(4He), as a function of
⇤UV . The red triangles and blue circles are the bind-
ing energies computed using the SMS N2LO(550) and
Idaho-N3LO(500) NN potentials, respectively. It clearly
sticks out that, with the Idaho-N3LO(500) interaction
(i.e. the one with a non-local regulator), the IR extrap-
olated results are practically stable for a su�ciently
large UV cuto↵ (⇤UV � 1300 MeV). Indeed, the over-
all variation of E⇤UV ,1(4He) for a range of UV cuto↵s
of 1300  ⇤UV  2100 MeV is about 1 keV only. In
contrast, for the N2LO(550) potential with a semi-local
regulator, we observed a variation of about 90 keV even
for very large ⇤UV but in a significantly smaller range,
namely 1800  ⇤UV  2100 MeV (see also the in-
sert plot in Fig. 2). Evidently, the UV correction for
the SMS interactions seems to be sizable and therefore
should be carefully studied when the IR extrapolation
is being used.

Finally, we have also adopted a Bayesian approach
for the IR extrapolation as recently employed by Gazda
et al. [22]. Here, we observed that the extrapolated re-

5

Fig. 1 Upper panel: two-step extrapolation procedure for E(4He). !-space extrapolation (left). The solid lines are the 4He
binding energies computed for di↵erent Nmax from 10 to 28 with a step of 2. The dashed lines are obtained by using the ansatz
Eq. (1). Nmax-space extrapolation (right). The horizontal line with shaded area shows the extrapolated binding energy and
the estimated numerical uncertainty. The calculations are based on the SMS N2LO(550) NN potential. Lower panel: N -space
extrapolation for E(4⇤He) (left) and E(5⇤He) (right). The calculations are based on the SMS N4LO+(450) NN potential with
N2LO(450) 3N force, and the N2LO(550) YN potential.

scale, (LIR), and an ultraviolet (UV) cuto↵, ⇤UV , [42–
45]. Hence, by recasting the binding energies E(!,Nmax)
in terms of LIR and ⇤UV , E(LIR,⇤UV ), one can also
perform the infinite basis extrapolation with respect to
the LIR and ⇤UV cuto↵s [42–45]. In general, the IR
length scale (and ⇤UV ) depends on the system consid-
ered and on how the basis functions are truncated. In
the case of the NCSM with a total energy truncation
a precise value for LIR has been derived in [46]. Fur-
thermore, it has also been shown that, at a fixed ⇤UV ,
the IR correction to the binding energy follows an ex-
ponential dependence on LIR [42, 46, 47],

E⇤UV
(LIR) = E⇤UV ,1 + a⇤UV

e�2⇤UV ,1LIR . (3)

The UV correction is sensitive to the details of the em-
ployed interaction or, more precisely, on how the in-
teraction is regularized [45]. This correction is however
not yet well understood in contrast to the IR energy
correction. Hence, in practice one often performs the
IR extrapolation at a fixed UV cuto↵ which yields re-
liable IR extrapolations and for which the UV error is
approximately minimized (or suppressed) [22, 48]. As

an example, we show in Fig. 2 the IR extrapolated
binding energy of 4He, E⇤UV ,1(4He), as a function of
⇤UV . The red triangles and blue circles are the bind-
ing energies computed using the SMS N2LO(550) and
Idaho-N3LO(500) NN potentials, respectively. It clearly
sticks out that, with the Idaho-N3LO(500) interaction
(i.e. the one with a non-local regulator), the IR extrap-
olated results are practically stable for a su�ciently
large UV cuto↵ (⇤UV � 1300 MeV). Indeed, the over-
all variation of E⇤UV ,1(4He) for a range of UV cuto↵s
of 1300  ⇤UV  2100 MeV is about 1 keV only. In
contrast, for the N2LO(550) potential with a semi-local
regulator, we observed a variation of about 90 keV even
for very large ⇤UV but in a significantly smaller range,
namely 1800  ⇤UV  2100 MeV (see also the in-
sert plot in Fig. 2). Evidently, the UV correction for
the SMS interactions seems to be sizable and therefore
should be carefully studied when the IR extrapolation
is being used.

Finally, we have also adopted a Bayesian approach
for the IR extrapolation as recently employed by Gazda
et al. [22]. Here, we observed that the extrapolated re-

Conservative uncertainty estimate: difference of  and   ENmax
E∞

4He

EN = E1 +A e�bNEb (!) = EN + 
�
log (!)� log

�
!opt

��2

E∞ (4He) = − 25.14 ± 0.06 MeV

Hypernuclei convergence is slower since separation energies are smaller 

Numerical uncertainties for light nuclei are small.  
For p-shell, numerical uncertainty is more sizable due to smaller  . Nmax



SRG interactions
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dHs

ds
=

⇥
[T , H(s) ]| {z }

⌘⌘(s)

, H(s)
⇤

H(s) = T + V (s)

Similarity renormalization group is by now a standard tool to obtain soft  
effective interactions for various many-body approaches (NCSM, coupled-cluster, MBPT, …) 

Idea: perform a unitary transformation of the NN (and YN interaction) using a cleverly  
         defined "generator"

this choice of generator drives V(s) into  
a diagonal form in momentum space

• V(s) will be phase equivalent to original interaction 

• short range V(s) will change towards softer interactions 

• Evolution can be restricted to 2-,3-, … body level (approximation)  

•                            is a measure of the width of the interaction in momentum space 

• dependence of results on   or   is a measure for missing termsλ s

(Bogner et al., 2007)

� =

✓
4µ2

BN

s

◆1/4



SRG interactions (YN)
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J-NCSM convergence

5

Extrapolation in  &  spacesω 𝒩

• Eb(ω, 𝒩) = E𝒩 + κ(log(ω) − log(ωopt))2 • E𝒩 = E∞ + Ae−b𝒩

E 𝒩

δE = E∞ − E𝒩max

E(4He, NCSM) = −25 . 14 ± 0 . 06

NN:  bare SMS N2LO(550)

λ = 1.88 fm−1

E(4
ΛHe) = −9 . 729 ± 0 . 002

4
ΛHe

4He

E(4He, FY) = −25 . 15 ± 0 . 02

Numerical uncertainties
• NCSM calculations for hypernuclei with bare SMS  

NN (3N) and YN interactions converge poorly

• NCSM uncertainties for SRG-evolved potentials:

‣ ~ several keV for   A ≤ 5
‣ ~ hundred(s) keV for   A = 7 (8)

 HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020) 

5
ΛHeλ = 1.88 fm−1

E(5
ΛHe) = −32 . 018 ± 0 . 001

5
ΛHe

SRG evolution improves convergence

E (5
ΛHe) = − 32.018 ± 0.001 MeV

• for light nuclei and hypernuclei, the numerical uncertainty is negligible. 
• for p-shell nuclei/hypernuclei, the uncertainty is visible 
• extrapolation of separation energy can reduce uncertainty of this quantity
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(a) (b)

Fig. 6 N -dependence of: a BΛ(
5
ΛHe), b BΛ(

7
ΛLi, 1

2
+

0). Same description as in Fig. 4. The Idaho-N3LO NN and NLO19(600) YN potentials are
SRG evolved to λNN = 1.6 fm−1 and λY N = 2.6 fm−1, respectively

convergence pattern as that of the binding energy E(4
ΛHe).

This tendency is also observed for all other investigated
hypernuclei. For completeness, the model-space extrap-
olations of BΛ(

5
ΛHe) and BΛ(

7
ΛLi, 1/2+) are shown in

Fig. 6.
It is stressed that there is no fundamental reason that the

separation energies monotonically converge with increasing
model space, but we observed this monotonic behavior in all
systems computed so far. This motivated the use of Eq. (23)
for the extrapolation of the separation energies. Note that the
resulting energies are consistent with results of FY calcula-
tions and/or with a fit of the N dependence to a constant. The
latter way of fitting is less preferable since it generally leads
to larger uncertainties.

Let us finally emphasize that, although the described pro-
cedure is computationally rather expensive, it allows for a
systematic and, most importantly, reliable extraction of the
final results of the NCSM calculations. Within the Jacobi-
basis formalism such a robust extrapolation is feasible and
yields plausible results for light p-shell hypernuclei as one
will see in the following sections.

5.2 Benchmark results for 4
ΛHe

As mentioned above, to validate the J-NCSM we benchmark
our converged results with the binding energies obtained
when solving the Faddeev-Yakubovsky equations [23]. More
details are given in Appendix B.

The binding energies for the ground state (0+) and first
excited state (1+) of 4

ΛHe are tabulated in Table 1. Clearly,
within the numerical accuracy of better than 20 keV, the two
approaches, J-NCSM and FY, agree very nicely.

Table 1 Ground- and excited-state energies (in MeV) of 4
ΛHe obtained

from the Faddeev-Yakubovsky (FY) and J-NCSM approaches. The cal-
culations are based on the Idaho-N3LO(500) NN interaction, SRG-
evolved to λNN = 1.6 fm−1, and the NLO19(600) YN potential,
evolved to three different SRG flow values, namely λY N = 1.6, 3.0
and 14.0 fm−1

λY N 0+ 1+

[fm−1] J-NCSM FY J-NCSM FY

1.6 −10.700(1) −10.70 −9.863(3) −9.86

3.0 −10.751(6) −10.77 −9.81(1) −9.82

14.0 −9.27(8) −9.31(3)

5.3 Effects of NN chiral interactions on BΛ

It is known that the nuclear binding energy E(3He) and con-
sequently E(4

ΛHe) are very sensitive to the employed NN
potentials when three-nucleon (3N) and higher-body forces
are not included. This is noticeable in the binding energies of
the 4

ΛHe(0+) state shown in Fig. 7, obtained for various NN
forces: the Idaho-N3LO(500), the improved chiral N2LO and
N4LO with a configuration-space regulator of R = 0.9 fm
[59,60] and the SMS N4LO+(450).

All NN forces are evolved to an SRG parameter of
λNN = 1.6 fm−1. For that value overall the binding ener-
gies of the A = 3–6 nuclei are reasonably well described.
Of course, this requirement can be fulfilled within a cer-
tain range of λNN values so that the actual choice is to
some extent arbitrary. The YN potential is evolved to a wide
range of flow parameters, 1.0 ≤ λY N ≤ 3.0 fm−1. One
clearly sees that the binding-energy variations due to dif-
ferent chiral NN forces can be as large as 270 keV. How-
ever, being evolved to the same λNN = 1.6 fm−1, these NN
potentials have a rather similar impact on the Λ removal
energy, in particular for low SRG-YN flow parameters

123

EΛ (7
ΛLi) = 10.6 ± 0.2 MeV

7
ΛLiλNN = 1.6 fm−1

λYN = 2.6 fm−1

Idaho  + N3LO(500) NLO19(600)

 + SMS N2LO(550) SMS NLO(550)



the extrapolation uncertainty estimates are a factor of 3–8 smaller
at α = 0.08 fm4 than at α = 0.04 fm4. This effect of improved
convergence becomes more pronounced as A increases, and is
consistent with what we saw for A = 6 in Table 2. Furthermore, at

α = 0.04 fm4, starting from A = 10, the Λ = 450 MeV interaction
converges noticeably better than the Λ = 500 MeV interaction; in
qualitative agreement with the picture for 4He (see Figure 2);
however, at α = 0.08 fm4 this difference has washed away, and

FIGURE 3
SRG depenence of the ground state energy of 4He, with the N4LO+ NN potentials plus the N2LO 3NFs and Λ = 450 MeV.

TABLE 2 SRG dependence for A = 6 ground state energies in MeV for SRG parameter α = 0.04 fm4 and α = 0.08 fm4, together with their difference. Quoted
uncertainties are the estimated NCSM extrapolation uncertainties only.

NLO N2LO N3LO N4LO N4LO+

6He Λ = 450 MeV

α = 0.04 fm4 −28.73(.16) −28.84(.17) −28.16(.16) −28.06(.16) −28.11(.16)

α = 0.08 fm4 −28.86(.14) −29.05(.06) −28.39(.07) −28.28(.07) −28.33(.07)

Δ 0.13 0.21 0.23 0.22 0.22

6He Λ = 500 MeV

α = 0.04 fm4 −27.27(.15) −29.08(.17) −28.35(.17) −28.19(.17) −28.23(.16)

α = 0.08 fm4 −27.39(.10) −29.21(.06) −28.54(.06) −28.37(.06) −28.41(.07)

Δ 0.12 0.13 0.23 0.22 0.22

6Li Λ = 450 MeV

α = 0.04 fm4 −31.79(.11) −31.85(.15) −31.18(.14) −31.07(.14) −31.10(.14)

α = 0.08 fm4 −31.93(.09) −32.04(.05) −31.41(.06) −31.28(.06) −31.32(.06)

Δ 0.14 0.19 0.23 0.21 0.22

6Li Λ = 500 MeV

α = 0.04 fm4 −30.33(.12) −32.17(.16) −31.42(.15) −31.24(.15) −31.26(.15)

α = 0.08 fm4 −30.45(.06) −32.29(.05) −31.60(.06) −31.41(.05) −31.43(.05)

Δ 0.12 0.12 0.18 0.17 0.17

Frontiers in Physics frontiersin.org08

Maris et al. 10.3389/fphy.2023.1098262
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SRG dependence of results

7

Effect of SRG-induced 4BFs in A=4,5
YN interaction.

  KeVΔBΛ(4
ΛHe) = 10 ± 25

  KeVΔBΛ(5
ΛHe) = 90 ± 30

∞

contributions of SRG-induced 4BFs to   are small BΛ(4
ΛHe, 5

ΛHe)

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga (arXiv:2308.01756)

6

Table II. ⇤ separation energies B⇤(
4
⇤He, 0+) and B⇤(

5
⇤He) computed at di↵erent SRG flow parameter. All calculations are

based on the SMS NN at N4LO
+
(450) and NNN at N2LO(450). Both SRG-induced NNN and YNN forces are also included.

B⇤(
4
⇤He, 0+) at � = 1 is obtained by solving the FY equation employing the bare NN, NNN and YN potentials. Note that

B⇤(
4
⇤He, 0+) at � = 4.0 (3.0) fm-1 have been computed for model spaces up to Nmax = 34 (28), respectively, whereas values at

lower � are computed for Nmax = 26.

� [fm-1] B⇤(
4
⇤He, 0+) B⇤(

5
⇤He)

1.88 1.992 ± 0.002 3.712 ±0.001

2.00 1.991 ± 0.005 3.705± 0.005

2.236 1.990 ± 0.007 3.708 ± 0.006

2.60 1.989 ± 0.014 3.744 ± 0.008

3.00 1.985 ± 0.024 3.806 ± 0.030

1 2.01 ± 0.02

gence pattern of the separation energies of the considered
hypernuclei with increasing order we adopt here the sim-
ple approach for an uncertainty estimate, proposed by
Epelbaum, Krebs, and Meißner [? ], called EKM in the
following. In particular, we follow closely Ref. [? ] where
this approach was applied to light nuclei. It should be
said that the EKM method does not directly allow for a
statistical interpretation of the estimated uncertainties.
However, as discussed in [? ], the procedure can be re-
interpreted, further developed and statistically validated
using the Bayesian approach [? ? ]

Before presenting our results we want to call attention
to the role of 3NFs for the uncertainty quantification em-
phasized in Ref. [? ]. Since the 3H binding energy is
commonly used to constrain the LECs of the 3NF, per
construction the binding energy is exactly reproduced at
N2LO, where the 3NF enters according to the Weinberg
counting [? ], and for higher orders too. As a conse-
quence, one can calculate the corresponding uncertainty
for higher orders, even without performing the pertinent
few-body calculation, because the outcome is known be-
forehand. In Ref. [? ], this is called “projected results”.

Clearly, for hypernuclei, we are in the same situation
since 3BFs start to contribute likewise from N2LO up-
wards. And since the ⇤NN 3BF has in total five un-
known LECs [? ], one can think about fixing them not
only from the hypertriton (where the experimental un-
certainty is anyway too large for a proper determination)
but also from the separation energies of A = 4, 5 hyper-
nuclei [? ] – of course, under the premise that four-body
forces are indeed very small. We note in passing that
this is anyway done in calculations based on pion-less
EFT [? ]. Indeed, other observables to constrain the
3BFs, like Nd scattering data in the three-nucleon case,
are not available for three- or more-body systems involv-
ing hyperons. Anyway, with regard to nuclei there is
“truly unambiguous evidence” for missing 3NFs, as em-
phasized in [? ], whereas one could argue that this is not

the case for systems with hyperons. However, consider-
ing the power counting, 3BFs have to contribute and the
only relevant question is whether their contribution is of
a magnitude as expected/predicted for a specific chiral
order. The aspect emphasized above has to be kept in
mind when we present the variations of the separation
energies for di↵erent NN and Y N potentials below, and
the actual values have to be seen in proper perspective.

A. Discussion of the variations

Let us first inspect the variation of the separation ener-
gies with the employed NN potentials. As already men-
tioned in the introduction, previous bound-state calcula-
tions by us suggested that the ⇤ separation energies of
light hypernuclei are not very sensitive to the employed
NN interaction [? ? ]. For example, the variation of the
separation energy for the semi-local momentum-space-
regularized (SMS) NN potential of Ref. [? ] at order
N4LO+ with cuto↵s ⇤N = 400 � 550 MeV were found
to be around 100 keV for 4

⇤
He/4

⇤
H [? ]. Those for the

hypertriton were in the order of only 10 keV. Variations
of similar magnitude have been observed in earlier calcu-
lations based on phenomenological interactions [? ].
Separation energies for A = 4, 5 ⇤ hypernuclei, ob-

tained within the NCSM approach and from solving FY
equations, are summarized in Table III. The calculations
are based on the NN and NNN potentials at N4LO+ and
N2LO, respectively, with four di↵erent cuto↵s. To de-
scribe the YN interaction the SMS YN NLO(550) poten-
tial has been employed. We consider also NN potentials
up to N2LO and N3LO with selected cuto↵s for illustra-
tion. A graphical representation of the results is provided
in Fig. 3. Here in addition results for the hypertriton are
shown. Furthermore, in the calculations the SMS YN
N2LO(550) potential has been considered and, for 3

⇤
H

and 4

⇤
He (0+), even the YN LO(600) (LO(700)) poten-

• Variation of  for   fm :BΛ 1.88 ≤ λ ≤ 3.0 −1

• induced forces beyond 3BF are not included; estimate size of omitted forces by varying  λ = (4μ2 /s)1/4

NN:  , 3N: N4LO+ N2LO(450); YN:  N2LO(550)

 FY calculation using bare NN, 3N & YN potentialsλ = ∞ :

4He

(Maris, Le, Nogga, Roth, Vary (2023)) (Le (2023))

• SRG-induced 3N and YNN interactions  

•   binding energies varies by   (relevant in the future?) 
• separation energies are even less dependent (YNNN forces small)

4He ≈ 100 − 200 keV

For hypernuclei, calculations based on SRG induced BB and 3B interactions  
are sufficiently accurate!  

Study uncertainty due to chiral expansion of NN and YN interactions



Order N2LO requires combination of chiral   interaction 

Need calculation of separation energies (use Faddeev, Yakubovsky eq. or J-NCSM)  
and use different orders for uncertainty estimate.  

Assuming a negligible numerical uncertainty and the following ansatz for the order by 
order convergence    

                           where        (    LO, exp., max, …)  

a Bayesian analysis of the uncertainty is possible  (see  Melendez et al. 2017,2019)  

Extracting   for   from calculations and assuming identical probability 
distributions for   for   the uncertainty is given by the distribution of  

                                              

NN, YN, 3N and YNN

XK = Xref

K

∑
k=0

ck Qk Q = Meff
π /Λb Xref

ck k ≤ K
ck k > K

δXK = Xref

∞

∑
k=K+1

ck Qk

 12

Uncertainty analysis  to   to  A = 3 5



How to obtain the distribution for   ? 

      EFT expectation:   are natural-sized, i.e. of order 1.  

                           defines prior distribution (usually normal distribution with width  )  

                             is distributed using an inverse-  distribution (parameters  ,  )  
      
For this choice, the posterior then follows the same distribution (conjugate prior)  
        with shifted parameters given the data:   

                                (  for   values extracted)     

               uncertainty follows so-called student   distribution (analytically known)  
               allows to extract degree of believe intervals (DoB) 

dependence on choice of prior will be less for large   ! 

ck

ck

c̄
c̄ χ2 ν0 τ0

ν = ν0 + nc ντ2 = ν0τ2
0 + ⃗c2

k ⃗c2
k = ∑ c2

k nc

t

nc
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Uncertainty analysis  to   to  A = 3 5



• expansion parameter   should be consistent with assumption  
of   independent distribution of    

• distribution of of prior should be consistent with observed pattern for    
• few orders used cannot entirely remove prior dependence 

        

       

     

Q
k ck

ck

Q = 0.4
τ2

0 = 2.25
ν0 = 1.5
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Uncertainty analysis  to   to  A = 3 5
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Fig. 4 (Left) Consistency plots for comparing actual changes in higher orders to the estimated DoB intervals for p[%]. (Right)
Values of the c coe�cients extracted using as a reference value the maximum of the energy at LO and the scale di↵erence to
NLO depending on the order k. Also shown are the average and standard variation order by order and in total.

consistency, we use both kind of information simulta-
neously. In this way, we finally obtained Q = 0.4. Note
that this value of Q is slightly larger than the one ob-
tained from regular nuclei [24]. This could probably be
related to the small number of data that are available
for determining the distributions. We test the validity of
our choices by generating consistency plots as proposed
in Ref. [59] that show the comparison between the ob-
tained rates of the overlap of higher-order calculations
with lower-order degree of believe (DoB) intervals and
the expected values, see Fig. 4. Clearly, our uncertainty
estimates are statistically consistent with the observed
changes due to higher orders contributions.

The obtained distribution of ck coe�cients is also in-
teresting. Their dependence on the order k of the expan-
sion is shown on the right hand side of Fig. 4 together
with the average values per order and the complete av-
erage with standard deviation. For their extraction, we
chose reference values close to the corresponding exper-
imental separation energies in order to be independent
of the LO result. The latter might be altered by choos-
ing a quite small singlet scattering length in order to
match the 3

⇤H separation energy [61]. In addition, be-
cause of this choice for Xref , we are able to use all coef-
ficients for determining the posteriors. The final results
are nevertheless independent of the reference value. In-
terestingly, the NLO coe�cients have a tendency to be
larger than all the other ones. We note that this ten-
dency is also observed for the expansion coe�cients ob-
tained for light nuclei [24]. Nevertheless, in general, all
expansion coe�cients are of natural size and, therefore,
the expansion scale Q seems to be consistently chosen.
For this extraction, it has been assumed that the di↵er-
ence of the higher order contributions are of the order
naively expected. We have also attempted to analyse
the results assuming that all higher order contributions
are of the order of the first missing contribution, i.e.

the YNN interaction at order k = 3. In this case, the
higher order NN expansion coe�cients become unnat-
urally small which supports our assumption that these
di↵erences are indeed of the expected order. Note that
this assumption is not true for the regulator depen-
dence which will ultimately be counterbalanced by a
YNN 3BF once it has been taken into account. The
cuto↵ dependence is therefore a Q3 e↵ect for all orders
higher than and including NLO.

The pattern of convergence of the separation ener-
gies with respect to chiral order is shown in Fig. 5. As
discussed above, the same expansion scale of Q = 0.4
is used for the convergence with respect to the NN and
YN interactions. Clearly, the variation due to the NN
interaction is much smaller than the one due to the YN
interaction. In order to compare theNN cuto↵ variation
with the relevant uncertainty estimate, we include re-
sults for di↵erent NN cuto↵s as green points. Although
these calculations were performed at order N4LO+, we
show them in the figure at NLO since the cuto↵ vari-
ation will be ultimately mostly observed by the only
N2LO contribution that we are not taking into account,
namely the leading YNN interaction. As can be seen,
the NN cuto↵ variation is consistent with the 68% DoB
interval, in most cases it is smaller than this uncertainty
estimate. This is consistent with our observation in the
previous section and with the general expectation that
the cuto↵ variation and the dependence on the chiral
order of the NN interaction is of less relevance when
predicting ⇤ separation energies.

The more relevant uncertainty is due to the trunca-
tion of the chiral expansion of the YN interaction. The
figure shows the expected error bands at di↵erent or-
ders. Clearly, the large expansion parameter leads only
to a slow decrease of this uncertainty in higher orders.
The grey bands indicate the uncertainty at NLO at-
tached to the result at order N2LO. This is the relevant
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consistency, we use both kind of information simulta-
neously. In this way, we finally obtained Q = 0.4. Note
that this value of Q is slightly larger than the one ob-
tained from regular nuclei [24]. This could probably be
related to the small number of data that are available
for determining the distributions. We test the validity of
our choices by generating consistency plots as proposed
in Ref. [59] that show the comparison between the ob-
tained rates of the overlap of higher-order calculations
with lower-order degree of believe (DoB) intervals and
the expected values, see Fig. 4. Clearly, our uncertainty
estimates are statistically consistent with the observed
changes due to higher orders contributions.

The obtained distribution of ck coe�cients is also in-
teresting. Their dependence on the order k of the expan-
sion is shown on the right hand side of Fig. 4 together
with the average values per order and the complete av-
erage with standard deviation. For their extraction, we
chose reference values close to the corresponding exper-
imental separation energies in order to be independent
of the LO result. The latter might be altered by choos-
ing a quite small singlet scattering length in order to
match the 3

⇤H separation energy [61]. In addition, be-
cause of this choice for Xref , we are able to use all coef-
ficients for determining the posteriors. The final results
are nevertheless independent of the reference value. In-
terestingly, the NLO coe�cients have a tendency to be
larger than all the other ones. We note that this ten-
dency is also observed for the expansion coe�cients ob-
tained for light nuclei [24]. Nevertheless, in general, all
expansion coe�cients are of natural size and, therefore,
the expansion scale Q seems to be consistently chosen.
For this extraction, it has been assumed that the di↵er-
ence of the higher order contributions are of the order
naively expected. We have also attempted to analyse
the results assuming that all higher order contributions
are of the order of the first missing contribution, i.e.

the YNN interaction at order k = 3. In this case, the
higher order NN expansion coe�cients become unnat-
urally small which supports our assumption that these
di↵erences are indeed of the expected order. Note that
this assumption is not true for the regulator depen-
dence which will ultimately be counterbalanced by a
YNN 3BF once it has been taken into account. The
cuto↵ dependence is therefore a Q3 e↵ect for all orders
higher than and including NLO.

The pattern of convergence of the separation ener-
gies with respect to chiral order is shown in Fig. 5. As
discussed above, the same expansion scale of Q = 0.4
is used for the convergence with respect to the NN and
YN interactions. Clearly, the variation due to the NN
interaction is much smaller than the one due to the YN
interaction. In order to compare theNN cuto↵ variation
with the relevant uncertainty estimate, we include re-
sults for di↵erent NN cuto↵s as green points. Although
these calculations were performed at order N4LO+, we
show them in the figure at NLO since the cuto↵ vari-
ation will be ultimately mostly observed by the only
N2LO contribution that we are not taking into account,
namely the leading YNN interaction. As can be seen,
the NN cuto↵ variation is consistent with the 68% DoB
interval, in most cases it is smaller than this uncertainty
estimate. This is consistent with our observation in the
previous section and with the general expectation that
the cuto↵ variation and the dependence on the chiral
order of the NN interaction is of less relevance when
predicting ⇤ separation energies.

The more relevant uncertainty is due to the trunca-
tion of the chiral expansion of the YN interaction. The
figure shows the expected error bands at di↵erent or-
ders. Clearly, the large expansion parameter leads only
to a slow decrease of this uncertainty in higher orders.
The grey bands indicate the uncertainty at NLO at-
tached to the result at order N2LO. This is the relevant

Hoai Le et al. arXiv:2308.01756. 

(see also Maris et al. 2022)  
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Application to  3ΛH

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

•  ,   and   are chosen using all available data (NN and YN convergence) 

• uncertainties are extracted using   for NN or YN convergence  

• use   of individual hypernuclei 

Q ν0 τ0

ck

ck

DoB 95%
DoB 68%
 ΛNN = 450 MeV
cutoff dependence of N4LO+

exp.

individual uncertainties for NN and YN convergence for each separation energy

consistent with experimental data 
cutoff dependence always at least NLO (YNN missing!)
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Application to  4ΛHe

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

DoB 95%
DoB 68%
 ΛNN = 450 MeV
cutoff dependence of N4LO+

exp.
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Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

0+

1+
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Application to   and summary5
ΛHe

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

• without YNN: sizable uncertainties at   and 5 
•   sufficiently accurate 
• NN/YN dependence small at least for  

A = 4
A = 3

A = 3 13

nucleus �68(NN) �68(YN)

3
⇤H 0.011 0.015

4
⇤He (0+) 0.157 0.239

4
⇤He (1+) 0.114 0.214

5
⇤He 0.529 0.881

Table 5 Half the size of the 68% DoB intervals for the ⇤ sep-
aration energy at NLO based on the convergence with respect
to the YN and NN interactions (in MeV).

quantity for the comparison to the data shown in red
since all calculations do not include the leading chiral
YNN interactions. Note that we include the experimen-
tal separation energies of 4⇤H and 4

⇤He in the figure since
the calculations have been performed with isospin con-
serving interactions that cannot properly predict the
charge symmetry breaking di↵erences of the separation
energies of these mirror hypernuclei. It can be seen that
all experimental energies are within the 68% DoB in-
tervals. The NLO uncertainties are substantial and sig-
nificantly larger than the experimental uncertainties for
A = 4 and 5. Only for 3

⇤H, the experimental and theo-
retical uncertainty are comparable, justifying our choice
to constrain the strength of the YN interaction in the
1S0 partial wave by the 3

⇤H separation energy [25,62].

In order to extract an estimate of the size of YNN in-
teractions from these results, we have summarized half
the size of the NLO 68% DoB interval in Table 5 for
both, the NN and the YN convergence. The depen-
dence on the NN interaction is generally a factor two
smaller than the one on the YN interaction. It is how-
ever larger than the one anticipated from older calcu-
lations comparing results for di↵erent phenomenolog-
ical NN interactions [11]. Incidentally, the values are
roughly in line with the “model uncertainties” from
Ref. [22], though one has to keep in mind that the latter
results are obtained in an entirely di↵erent way, see the
discussion in the preceding subsection.

The relevant quantity for assessing the size of YNN
interactions is the NLO 68% DoB for YN since this
quantity is larger. It is reassuring that the estimate for
the YNN force for 3

⇤H is around 15 keV and therefore
smaller than the experimental uncertainty. This esti-
mate is smaller than the result of a first explicit (though
incomplete) evaluation of 3BFs for 3

⇤H by Kamada et
al. [63], namely of the part due to 2⇡ exchange, that
suggests a contribution of around 50-100 keV. It re-
mains to be seen whether this 2⇡ contribution will be
partially canceled by short range interactions once the
LECs have been adjusted to other light nuclei.

For A = 4, the YNN contribution can be expected
to be of the order of 200 keV. Also this estimate is in
line with previous results. In Ref. [18], we observed that
the NLO13 and NLO19 YN potentials exhibit a regula-
tor dependence of up to 210 keV and variations of the
separation energies of up to 320 keV due to dispersive
e↵ects associated with the ⇤N -⌃N coupling which we
both can take as estimate for YNN contributions. The
estimate here, based on the convergence pattern of the
chiral expansion, is of similar size. For 5

⇤He, the compar-
ison of NLO19 and NLO13 can again provide hints to
the size of YNN interactions. We found in Ref. [37] that
the result for NLO13 and NLO19 di↵ers by 1.1 MeV
which gives a lower bound of possible YNN force con-
tributions. Therefore, also the estimate in Table 5 of
900 keV appears reasonable.

Additionally, we employed the approach proposed
by Epelbaum, Krebs and Meißner (EKM) [26] for es-
timating the uncertainty as outlined in the appendix.
This estimated error depends strongly on the expan-
sion parameter chosen. It turns out that for standard
values of Q = 0.31, the estimates are well in line with
the Bayesian results. For Q = 0.4, the EKM estimates
are somewhat larger but still of similar order as the
statistically motivated ones.

It is also interesting to look at the prospective N2LO
uncertainties once the leading YNN interactions are in-
cluded. In our analysis, we find 6, 100 and 350 keV for
the A=3, 4 and 5 hypernuclei, respectively. These esti-
mates are however strongly dependent on the expansion
parameter Q. For example, for Q = 0.3 as in [24], we
find N2LO uncertainties of 3, 50 and 200 keV.

5 Summary

In this work, we have investigated various aspects rele-
vant for the theoretical uncertainties of calculations of
separation energies of ⇤ hypernuclei with A  5. These
light hypernuclei have attracted some attention recently
because their properties are mostly determined by the
S-wave YN interactions which are reasonably well con-
strained by the available YN data and the hypertriton
separation energy. To a great extent the e↵ort for pro-
viding a quantitative assessment of the uncertainties of
our few-body calculations was motivated by the study
of Gazda et al. [22] which suggested that even the em-
ployed NN interaction might have an significant impact
on the uncertainty of the predicted hyperon separation
energies.

In the present work, we considered two possible sour-
ces for uncertainties. First, there is the numerical un-
certainty which, in our case, is caused by discretization
and/or truncation of the model space in the no-core
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)

2.2 CSB in Chiral EFT

As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,

⟨"0|δm|Λ⟩ = [m"0 − m"+ + mp − mn]/
√

3,

⟨π0|δM2|η⟩ = [M2
π0 − M2

π+ + M2
K+ − M2

K 0 ]/
√

3 (1)

and subsumed in terms of an effective ΛΛπ coupling constant

fΛΛπ =
[

−2
⟨"0|δm|Λ⟩
m"0 − mΛ

+ ⟨π0|δM2|η⟩
M2

η − M2
π0

]

fΛ"π . (2)

Based on the latest PDG mass values [29], one obtains

fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter ϵM2

π/Λ
2 ∼ 10−2, where

ϵ ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (ϵM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering  

(so far:  NLO13 and NLO19)
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• Adjust the two CSB contact interactions to  
one main scenario (CSB1) 
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Table 4 CSB contact terms for the 1S0 (s) and 3S1 (t) partial waves, cf. Eq. (4), fixed from the present experimental splittings
∆E(0+) = 233 keV and ∆E(1+) = −83 keV (CSB1)

Λ NLO13 NLO19

CCSB
s CCSB

t CCSB
s CCSB

t

500 4.691 × 10−3 −9.294 × 10−4 5.590 × 10−3 −9.505 × 10−4

550 6.724 × 10−3 −8.625 × 10−4 6.863 × 10−3 −1.260 × 10−3

600 9.960 × 10−3 −9.870 × 10−4 9.217 × 10−3 −1.305 × 10−3

650 1.500 × 10−2 −1.142 × 10−3 1.240 × 10−2 −1.395 × 10−3

The values of the LECs are in 104 GeV−2

that in Λp. Furthermore, there are noticeably smaller changes for the triplet Λn scattering length in those two
scenarios. In particular, for CSB1 the values for Λn and Λp are fairly close to that without CSB.

Table 2 also provides the results of the full (non-perturbative) calculation of the CSB splittings of the 0+
and 1+ states for A = 4 hypernuclei for all three CSB scenarios. In addition, the predictions for the original
Y N potentials, without any explicit CSB force, and for the case where only the one-boson-exchange CSB
contributions (CSB-OBE) (Λ − #0 mixing, η − π0 mixing, K±/K 0 exchange) are added. For CSB1 and
CSB3, the CSB of the separation energy agrees within experimental uncertainties with the values mentioned
above. For CSB2, there are some deviations to the pre-2014 situation. Given that this is an outdated scenario
anyway and that CSB2 required a complete refit of the Y N interaction, we refrained from further improving
the description of CSB. The obtained splittings without CSB contact terms confirm the conclusion from earlier
studies [7,34,35] that the standard mechanisms can only explain a very small fraction of the experimentally
found CSB in A = 4 hypernuclei. In particular, because of cancellations between the OBE contributions,
once η − π0 mixing is treated properly [4], the overall results do not really improve when including those.
In addition, the large variation between the NLO13 and NLO19 results is a clear signal for the missing CSB
contact terms.

Now we analyze in more detail the results for scenario CSB1, the one which is in line with the present
experimental situation. Corresponding results are summarized in Table 3. There is a clear and universal trend
for a sizable splitting between the Λp and Λn scattering length in the singlet state, once we impose the
reproduction of ∆E(0+) and ∆E(1+). The splitting in the triplet state is much smaller and actually goes into
the opposite direction. In particular, for reproducing the experimentally observed CSB splitting in the A = 4
hypernuclei, in the 1S0 state the Λn interaction is required to be more attractive than for Λp, whereas for 3S1
the Λn interaction is slightly less attractive than that for Λp.

With regard to the Λn scattering lengths the results for the singlet channel are quite robust. The predictions
are in the narrow range of −3.2 to −3.3 fm and practically independent of the cutoff and whether NLO13 or
NLO19 is used. There is more variation in case of the triplet state which, however, is simply a reflection of the
situation observed already in the calculation without CSB forces. One very interesting aspect is that, adding
the CSB interaction to our NLO potentials established in Refs. [20,21], improves also the overall description
of the Λp data as quantified by the χ2 value – without any refit, see Table 2. It is due to the noticeable reduction
of the strength of the Λp interaction in the singlet channel by the needed CSB force, cf. the pertinent scattering
lengths in the table. In fact, one could interpret this as sign for a consistency of the available Λp data with
the present values of the CSB level splittings in the A = 4 hypernuclei. In this context we want to mention
that a recent measurement of the Λp momentum correlation function in pp collisions at 13 TeV [47] likewise
indicates that a slightly less attractive Λp interaction is favored by the data.

Finally, note that ∆aCSB
1S0 ≡ aΛp − aΛn is ≈ 0.62± 0.08 fm for the 1S0 partial wave, which is comparable

to but noticeably smaller than the CSB effects in the pp and nn scattering lengths where it amounts to
∆aCSB = app − ann = 1.5 ± 0.5 fm [12]. On the other hand, in case of the triplet state, the prediction
is with ∆aCSB

3S1 ≈ −0.10 ± 0.02 fm significantly smaller and of opposite sign. Here, in the ΛN case, the
uncertainty is estimated solely from the differences between NLO13 and NLO19 and the cutoff variations. A
precise experimental determination of the CSB in A = 4 hypernuclei will allow one to obtain the scattering
length with the accuracy estimated here. As can be seen in Table 2, different scenarios for CSB lead to rather
different values of the scattering length. This is the main lesson from this work. Obviously, for reliable values
one needs a confirmation of the presently available experimental data, with best possible accuracy.

• Problem: large experimental uncertainty of experiment 
• here only fit to central values to test theoretical  

uncertainties 
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Table 6 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 0+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB V CSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 44 200 16 261 265(14)
NLO13(550) 46 191 20 257 261(14)
NLO13(600) 44 187 20 252 256(14)
NLO13(650) 38 189 18 245 249(14)
NLO19(500) 14 224 5 243 249(14)
NLO19(550) 14 226 7 247 252(14)
NLO19(600) 22 204 12 238 243(14)
NLO19(650) 26 207 12 245 250(14)

The SMS N4LO+ (450) NN interaction [40] was used in all cases .The contributions of the kinetic energy ⟨T ⟩CSB, the Y N
interaction ⟨VY N ⟩CSB and the contribution of the nuclear core V CSB

NN = ⟨VNN ⟩CSB −E(3He)+E(3H) are separated and combined
to the total CSB ∆E pert

Λ . The direct comparison of separation energies for full calculations of 4
ΛHe and 4

ΛH, ∆EΛ, is also given.
All energies are in keV

Table 7 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 1+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB VCSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 5 − 90 15 − 71 − 66(14)
NLO13(550) 5 − 86 18 − 63 − 56(14)
NLO13(600) 4 − 83 19 − 59 − 53(14)
NLO13(650) 3 − 80 17 − 59 − 55(14)
NLO19(500) 1 − 84 3 − 80 − 75(14)
NLO19(550) 2 − 81 2 − 77 − 72(14)
NLO19(600) 4 − 82 6 − 71 − 67(14)
NLO19(650) 4 − 79 9 − 66 − 69(14)
Same interactions and notations as in Table 6

Fig. 3 CSB of 4
ΛHe/4ΛH in the 0+ (top, red circles) and 1+ (bottom,blue circles) state compared to the currently best experimental

values (red and blue bands). The error bars reflect the numerical uncertainty

(see Haidenbauer, Meißner, AN (2021)) 
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Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

md − mu

mu + md ( Mπ

Λ )
2

CS,T ≈ 0.3 ⋅ 0.04 ⋅ 0.5 ⋅ 104 GeV ∝ 6 ⋅ 10−3 ⋅ 104 GeV

• Size of LECs as expected by power counting 
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Application to   and  A = 7 8

10
describe the 1^+ in 4HL and ground state in 5HL fairly well. For 7LiLambda, NLO19 prediction is comparable to B_L extracted from counter experiments, 

Results for  with NLO13 & NLO19BΛ(A ≤ 8)

•  are fairly well 

 described by NLO19;  
NLO13 underestimates these 

4
ΛH(1+), 5

ΛHe, 7
ΛLi, 8

ΛLi

BΛ

uncertainty

| χVYNN |  based on NLO13 & NLO19 results and  
cutoff dependence.

consistent with estimates based on  
chiral truncation

(J. Haidenbauer et al. EPJA(2019), HL et al. PRC(2023))

signal of missing YNN forces

NN(3N): SMS N4LO+(N2LO)
+ SRG-induced YNNYN: NLO13,19(CSB)

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023)

(see Nogga’s talk)

Title Suppressed Due to Excessive Length 7

Table 3 Probability of finding ⇤p and ⇤n pairs in the A=4-8 wavefunctions computed using
the YN NLO19(500) potential. The SRG-induced YNN interaction is also included in the
calculations for 4

⇤He/4⇤H. The A=7,8 wavefunctions were computed at the magic SRG-flow
parameter of �magic = 0.823 fm-1

1
S0

3
S1 hV Y N i

⇤p ⇤n ⇤p ⇤n
1
S0

3
S1

4
⇤He(0+) 13.92 27.60 44.54 0.42 -4.383 -3.916
4
⇤H(0+) 27.1 13.66 0.41 43.79 -4.091 -3.604

4
⇤He(1+) 14.48 13.44 42.47 27.07 -1.383 -5.743
4
⇤H(1+)

7
⇤Be 11.13 7.22 33.25 21.67 -3.728 -9.36
7
⇤Li

⇤ 9.17 9.17 27.44 27.44 -3.767 -9.319

8
⇤Be 9.49 12.23 28.68 19.34 -5.467 -9.848
8
⇤Li

E VY N SRG-VY NN |�VY NN |

⇤NN ⇤NN-⌃NN total

3
⇤H -2.31 -1.88 0.08 0.04 0.14 ⇠ 0.05

4
⇤He(1+) -9.50 -7.31 0.72 0.05 0.77 ⇠ 0.2 - 0.4

4
⇤He(0+) -10.57 -10.2 0.89 -0.02 0.90 ⇠ 0.2 - 0.3

5
⇤He(0+) -32.42 -13.61 2.40 0.15 2.57 ⇠ 0.7 - 1.0

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a
⇤p
s a

⇤n
s �as a

⇤p
t a

⇤n
t �at

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01

no CSB

CSB(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11

CSB(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11

CSB(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09

CSB(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09

• YN interaction adjusted to the hypertriton — YNN is small 
• based only on YN interactions: splitting for   is not well reproduced — YNN(?) 

• NLO19 gives better results for   and heavier hypernuclei  
— accidentally small YNN interaction?   

• uncertainties are numerical — no estimate of chiral uncertainties yet

4
ΛH

5
ΛHe

 NN SMS N4LO+(450) + 3N N2LO(450)

(see Le, Haidenbauer, Meißner, AN (2023)) 
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Application to   and  A = 7 8
• CSB of singlet and triplet states interferes differently 
• CSB still not fixed — experimental uncertainty is large 
• scenario studied here is only marginally consistent with CSB in  A = 8

11

CSB predictions for A=7-8 multiplets

3He
1/2+

• CSB predictions for A=7 are comparable to experiment.     

• yield somewhat larger CSB in A=8 doublet as compared to experiment 

‣ experimental CSB splitting for A=8 larger than  keV?40 ± 60
‣  A=4 CSB: too large? different spin-dependence?

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023) 

NN:SMS +(450)N4LO

+3N: (450)N2LO
+YN: NLO13,19(CSB)

+SRG-induced YNN

(Nogga’s talk)
(see Le, Haidenbauer, Meißner, AN (2023)) 
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New STAR data for   CSBA = 4
• fit to STAR data only 
• only slight adjustment required  
• improves description to p-shell CSB 
• higher experimental accuracy is desirable 
• good example of using hypernuclei to determine YN interactions

13

Fitting LECs to new Star measurement

3He
1/2+

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+) = 233 ± 92 keV ⇒ (CSB)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+) = −83 ± 94 keV ⇒ (CSB)
= −160 ± 140 ± 100 keV ⇒ (CSB*)

= 160 ± 140 ± 100 keV ⇒ (CSB*)

 (STAR collaboration PLB 834 (2022))

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54± 0.22 4.30± 0.47 5.44± 0.03 4.53± 0.34 5.16± 0.08
7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.49± 0.04 4.59± 0.34 5.26± 0.03 5.53± 0.13
7
⇤He 5.64± 0.27 4.39± 0.54 5.43± 0.06 4.45± 0.35 5.55± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54± 0.22 4.30± 0.47 5.16± 0.08

7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.26± 0.03 5.53 ± 0.13

7
⇤He 5.64± 0.27 4.39± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

Recent STAR measurement suggests different CSB in A=4:

 increases;  decreasesδa(1S0) δa(3S1)
Impact on CSB in A=7,8 multiplets

• correlation between CSB in A=4( ) and A=8, 0+

independent check for A=4 CSB using A= 7 & 8 results 

• CSB* fit yields reasonable CSB in both A=7 & 8 multiplets 

and between  and A=7A = 4(1+)
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Fitting LECs to new Star measurement
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ΛHe, 1+) − BΛ(4

ΛH, 1+) = −83 ± 94 keV ⇒ (CSB)
= −160 ± 140 ± 100 keV ⇒ (CSB*)
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8 Hoai Le et al.
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NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.
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compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
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emulsion counter
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Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
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are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

Recent STAR measurement suggests different CSB in A=4:

 increases;  decreasesδa(1S0) δa(3S1)
Impact on CSB in A=7,8 multiplets

• correlation between CSB in A=4( ) and A=8, 0+

independent check for A=4 CSB using A= 7 & 8 results 

• CSB* fit yields reasonable CSB in both A=7 & 8 multiplets 

and between  and A=7A = 4(1+)

(see Le, Haidenbauer, Meißner, AN (2023)) 



•   excess binding energy  

   

       

• NN, YN and YY interactions contribute 

• use NN and YN that describe nuclei  
            and single   hypernuclei 

• small   dependence (no induced YYN forces used!)  

• LO overbinds YY  

• NLO predicts binding fairly well  

Can an   bound state for   be expected?

ΛΛ

ΔBΛΛ = BΛΛ − 2BΛ

= 2E (A−1
ΛX) − E ( A

ΛΛX) − E (A−2X)

Λ

λYY

S = − 2 A = 4,5
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Fig. 2 BΛΛ(
6

ΛΛHe) (left) and ∆BΛΛ(
6

ΛΛHe) (right) as functions of the
flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Dash-dotted line with

grey band represents the experimental value and the uncertainty of the
Nagara event [11]. Same NN and YN interactions as in Fig. 1

Table 1 Probabilities (%) of finding a single and double Σ , and a Ξ hyperons in the ground-state wavefunction of 6
ΛΛHe. Note that PΣ (5

ΛHe) =
0.07%

λYY NLO(600) LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.13 0.11 0.02 0.17 0.04 0.5

2.0 0.13 0.11 0.07 0.17 0.05 0.84

3.0 0.12 0.13 0.12 0.18 0.08 1.08

BΛ(
4
ΛHe) = 1

4
BΛ(

4
ΛHe, 0+)+ 3

4
BΛ(

4
ΛHe, 1+), (26)

with BΛ(
4
ΛHe, 0+(1+)) = 1.708 (0.904) MeV for the

employed NN and YN potentials [28]. By doing so, the com-
puted quantity ∆BΛΛ(

5
ΛΛHe) will be less dependent on the

spin-dependence effect of the Λ-core interactions, and, there-
fore, can be used as a measure of the ΛΛ interaction strength,
provided that the nuclear contraction effects are small. The
results for BΛΛ(

5
ΛΛHe) and ∆BΛΛ(

5
ΛΛHe) calculated for

the two interactions and a wide range of flow parameter,
1.4 ≤ λYY ≤ 3.0 fm−1, are shown in Fig. 4. Overall,
we observe a very weak dependence of these two quanti-
ties on the SRG flow parameter, like for 6

ΛΛHe, reinforcing
the insignificance of SRG-induced YYN forces. Again, the
LO interaction predicts a much larger ΛΛ-separation energy
and a more significant ΛΛ interaction strength than the one
at NLO. In either case, the ΛΛ excess energy ∆BΛΛ com-
puted for 5

ΛΛHe, slightly exceeds the corresponding one for
6

ΛΛHe, by about 0.23 and 0.5 MeV for the LO and NLO
interactions, respectively. The main deviations should come
from the nuclear-core distortion and the suppression of the
ΛΛ − ΞN coupling in 6

ΛΛHe as discussed in [18,55,56].
However, it is necessary to carefully study the impact of the
employed interactions on the results before a final conclu-
sion can be drawn. We further note that Filikhin and Gal [16]

in their Faddeev cluster calculations, based on potentials
that simulate the low-energy s-wave scattering parameters
of some Nijmegen interaction models, obtained an oppo-
site relation, namely ∆BΛΛ(

5
ΛΛHe) < ∆BΛΛ(

6
ΛΛHe). As

a consequence, our results do also not fit into the correla-
tion of ∆BΛΛ(

5
ΛΛHe) and ∆BΛΛ(

6
ΛΛHe) shown in the same

work. We will need to study more interactions in the future to
understand whether such a correlation can also be established
using chiral interactions.

It is also very interesting to point out that the ΛΛ-
separation energies BΛΛ for both 5

ΛΛHe and 6
ΛΛHe pre-

dicted by the NLO potential are surprisingly close to the
results obtained by Nemura et al., BΛΛ(

5
ΛΛHe) = 3.66 MeV,

BΛΛ(
6

ΛΛHe) = 7.54 MeV, using the modified Nijmegen
YY potential (mNDs) [13]. Finally, we provide in Table 2
the probabilities of finding a Σ (PΛΣ ), double Σ (PΣΣ ),
or a Ξ (PΞ ) in the 5

ΛΛHe ground-state wave function,
computed with the two potentials and several SRG values,
λYY = 1.4, 2.0 and 3.0 fm−1. Apparently, all the proba-
bilities including also PΞ exhibit a rather weak sensitivity
to the flow parameter λYY . The two interactions seem to
have little impact on the Σ-probabilities (PΛΣ and PΣΣ )
but strongly influence PΞ . Like in the 6

ΛΛHe system, here,
the LO potential yields considerably larger Ξ -probabilities
as compared to the values predicted by the NLO interaction.
It also clearly sticks out from Tables 1 and 2 that the probabil-

123

  hypernuclei —  S = − 2 6
ΛΛHe

 23

NN SMS N4LO+(450)    

YN NLO19(650)   

λNN = 1.6 fm−1

λYN = 0.868 fm−1

YY LO(600) 
YY NLO(600) 

Nagara Event

(Le, Haidenbauer, Meißner, AN, 2021)
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(a) EN ( 5
ΛΛHe) as a function of ω. (b) E( 5

ΛΛHe) as a function of N .

(c) BΛΛ( 5
ΛΛHe) as a function of N . (d) ∆BΛΛ( 5

ΛΛ He) as a function of N .

Fig. 3 Binding energy E , ΛΛ-separation energy BΛΛ and ΛΛ-excess ∆BΛΛ for 5
ΛΛHe computed using the YY NLO(600) interaction that is

SRG evolved to a flow parameter of λYY = 1.8 fm−1. Same notation, NN and YN interactions as in Fig. 1

Fig. 4 BΛΛ(
5

ΛΛHe) (left) and ∆BΛΛ(
5

ΛΛHe) (right) as functions of the flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Same NN and YN interactions as in Fig. 1

ities of finding a Σ or Ξ hyperon in 5
ΛΛHe are visibly larger

than the corresponding ones in 6
ΛΛHe. This is indeed consis-

tent with the Σ-probabilities in the ground-state wave func-
tions of their parent hypernuclei (e.g., PΣ (4

ΛHe) = 0.43 %

and PΣ (5
ΛHe) = 0.07 %), and more importantly, is con-

sistent with the suppression of particle conversions such as
ΛΛ − ΞN in p-shell hypernuclei [55].

123

  hypernuclei  —   &  S = − 2 5
ΛΛHe 4

ΛΛH

 24

NN SMS N4LO+(450)    

YN NLO19(650)   

λNN = 1.6 fm−1

λYN = 0.868 fm−1

YY LO(600) 
YY NLO(600) 

•  :   excess binding energy  &    : binding energy  

•  : LO & NLO predicts bound state  

•  : NLO unbound, LO at threshold to binding (see also Contessi et al., 2019) 

• excess energy larger for   than for   (in contrast to Filikhin et al., 2002!) 

  bound state for   can be expected,  

                                    for    less likely but not ruled out!

A = 5 ΛΛ A = 4
A = 5
A = 4

A = 5 A = 6
S = − 2 A = 5

A = 4
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Table 2 Probabilities (in percentage) of finding a Σ (PΛΣ ), double Σ (PΣΣ )and a Ξ (PΞ ) hyperons in 5
ΛΛHe. PΣ (4

ΛHe) = 0.43 %

λYY YY-NLO(600) YY-LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.61 0.07 0.4 0.53 0.02 1.25

2.0 0.6 0.08 0.38 0.51 0.03 1.36

3.0 0.57 0.08 0.23 0.51 0.05 1.35

(a) EN ( 4
ΛΛH) as a function of ω. (b) E( 4

ΛΛH) as a function of N .

(c) E(3ΛH) as a function of N . (d) E( 4
ΛΛH) as a function of the SRG flow parameter λY Y .

Fig. 5 (a): Ground-state energies of 4
ΛΛHe as functions of ω for model

spaceN = 10−32. Calculations are performed with the YY NLO(600)
potential evolved to a flow parameter of λYY = 1.8 fm−1. (b): model
space extrapolation of E( 4

ΛΛH) with the same YY interaction as in

(a). (c): model space extrapolation of E(3
ΛH). (d): Converged E( 4

ΛΛH)
as functions of the flow parameter for the LO(600) (blue triangles) and
NLO(600) (red circles) potentials. The dashed line with grey band repre-
sents the computed E(3

ΛH) and the theoretical uncertainty, respectively.
Same NN and YN interactions as in Fig. 1

3.3 4
ΛΛH(1+, 0)

Our final exploratory s-shell hypernucleus is 4
ΛΛH. This sys-

tem has been the subject of many theoretical and experimen-
tal studies. It turned out that theoretical predictions of the sta-
bility of 4

ΛΛH against the 3
ΛH+Λ breakup are very sensitive to

the interpretations of double-strangeness hypernuclear data,
in particular, the 6

ΛΛHe hypernucleus [54]. Indeed, Nemura et
al. [13] observed a particle-stable but loosely bound state of

4
ΛΛH (just only about 2 keV below the 3

ΛH+Λ threshold for
the mNDs potential) using the fully coupled-channel stochas-

tic variational method in combination with effective YY
potentials that are fitted to reproduce the initially extracted
value of BΛΛ(

6
ΛΛHe) = 7.25±0.19 MeV [10]. The study by

Filikhin and Gal [17] indicated, however, that there is a siz-
able model dependence. The authors found no bound state
within an exact four-body (Faddeev-Yakubovsky) calcula-
tion for theΛΛpn system, but a particle-stable 4

ΛΛH hypernu-
cleus when solving the (three-body) Faddeev equation for the
ΛΛd cluster system. A more recent calculation by Contessi et
al. [25], based on the pionless EFT interaction at LO, showed
that the existence of a bound state in 4

ΛΛH is not compati-

123

 E (3
ΛH)

(Le, Haidenbauer, Meißner, AN, 2021)



  hypernucleiΞ

 25

• experimentally accessible:   capture process (experimental data for   and  ) 

•   conversion channel open: possibly short life times/difficult calculations 

• HAL QCD & chiral YY interactions indicate suppression   transition 

•   interaction relevant:   is often the second hyperon to appear in neutron matter 

Identify possibly interesting states:  

calculations based on chiral interactions neglecting   transitions  

                         (keeping  )               states are bound states  

finetuning of   interaction to correct for missing   channel   

neglect YN interaction to avoid transitions to   

perturbative width estimates indicate small widths  ✔ 

Here:  look at   (exp. expected),  ,   and    

           explore possible bound states and their widths 

Ξ− 15
Ξ C 12

Ξ Be

ΞN − ΛΛ
ΞN − ΛΛ

ΞN Ξ

ΞN − ΛΛ
ΞN − ΛΣ, ΣΣ

11S0 ΛΛ
ΛΛ

7
ΞH 5

ΞH 4
ΞH 4

Ξn
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Fig. 1 ΞN phase shifts predicted by the NLO(500) and HAL QCD
potentials (left panel) compared to those of the Nijmegen ESC08c model
(right panel). The NLO(500) results are shown by lines: 11S0 (dotted,
red), 31S0 (dash-dotted, black), 13S1 (dashed, blue) and 33S1 (dash-
double-dotted, green). The solid line indicates the 11S0 phase shift of the

re-adjusted NLO(500) potential, see text. The HAL QCD and ESC08c
results (values are taken from [18]) for 11S0, 31S0, 13S0 and 33S0 are
indicated by crosses, circles, squares, and triangles, respectively. Note
the different scales in the left and right panels

believe that this procedure allows us to capture the essential
features of the chiral ΞN interaction in the 11S0 channel reli-
ably, while guaranteeing at the same time the applicability of
the J-NCSM approach. Note that all other ΞN partial waves
are not affected by this modification anyway and ΛΣ and
ΣΣ components are included in the J-NCSM calculations.
We, however, neglect YN interactions that are expected to
give insignificant contributions but could potentially again
induce ΛΛ components to the many-body state. We post-
pone a more thorough investigation on this issue and of the
dependence of the Ξ binding energies on the chiral cutoff
ΛYY to a future study.

Finally, to speed up the convergence of the J-NCSM cal-
culations, the NN and YY interactions are evolved using
the similarity renormalization group (SRG) [43]. Thereby,
we use an SRG flow parameter of λNN = 1.6 fm-1 for
the NN interaction. This value has already been used in
Refs. [36,37] and is motivated by the observation that ordi-
nary nuclei are bound fairly realistically even if three-nucleon
forces are neglected for this λNN . The S = −2 potential
is SRG-evolved to a wide range of SRG flow parameter
(denoted generically by λYY ), namely 1.4 ≤ λYY ≤ 3.0 fm-1.
The variations of the binding energies with respect to λYY
allow one to quantify the possible contribution of the omit-
ted SRG-induced three- and more-body forces. Note that
such contributions are remarkably small for ΛΛ hypernuclei
[37]. We also explicitly take into account the electromag-
netic NN interaction [44] as well as the Coulomb point-like
interaction between Ξ− and proton. These interactions are

however not included in the SRG evolution but only added
afterwards.

It is worthwhile to compare the ΞN phase shifts of the
employed EFT interaction NLO(500) with those predicted
by the Nijmegen ESC08c [20] and the HAL QCD [22] poten-
tials. As mentioned in the introduction, the latter two interac-
tions have recently been considered in A = 3, 4 Ξ hypernu-
clear calculations by Hiyama et al. [18]. The phase shifts for
the four S-wave states, namely 11S0, 31S0, 13S1 and 33S1, are
displayed in Fig. 1. As expected, the original NLO(500) inter-
action (cf. the dotted line) and the re-adjusted potential differ
only slightly in the 11S0 phase shifts. Overall, the results by
the NLO(500) and HAL QCD interactions are qualitatively
similar to each other, but differ substantially from those of the
Nijmegen ESC08c potential. The ESC08c is strongly attrac-
tive in the 33S1 channel (leading to a deuteron-like ΞN bound
state), whereas the chiral NLO(500) (HAL QCD) interac-
tion is only moderately (weakly) attractive in this channel.
Moreover, while the 11S0 ΞN interaction is rather attractive
in the HAL QCD and NLO(500) potentials, it is actually
repulsive in the ESC08c model. Although the NLO(500)
and HAL QCD ΞN phase shifts exhibit an overall similar
trend, there are visible differences in all ΞN partial waves
except for 13S1 where there are no channel couplings. As we
will discuss later, such variations lead to qualitative differ-
ences in the predictions of the two interactions for light Ξ

systems.
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(a)EN (4ΞH(1+, 0)) as a function of ω. (b)E(4ΞH(1+, 0)) as a function of N .

(c)BΞ(4ΞH(1+, 0)) as a function of N . (d)BΞ(4ΞH(1+, 0)) as a function of λY Y .

Fig. 2 a–c Binding energy E and Ξ separation energy BΞ for
4
Ξ H(1+, 0) computed with the YY-ΞN interaction NLO(500), SRG-
evolved to a flow parameter of λYY = 3.0 fm-1. For the NN interaction
the SMS N4LO+(450) potential [27] with λNN = 1.6 fm-1 is employed.
BΞ is measured with respect to the triton binding energy (which is
E(3H) = −8.5 MeV for the used NN interaction). a Solid lines and

symbols (with different colors) represent numerical results for different
model spaces N = 14 − 30, from top to bottom. The dashed lines are
obtained by using the ansatz Eq. (22) in [36]. b, c Horizontal (red) lines
with shaded areas indicate the converged results and the corresponding
uncertainties. d Dependence of BΞ (4

Ξ H(1+, 0)) on the flow parameter
λYY

Table 1 Ξ separation energies BΞ and estimated decay widths Γ for
A = 4 − 7 Ξ hypernuclei. All calculations are based on the YY-ΞN
interaction NLO(500) and the NN interaction SMS N4LO+(450). Both
potentials are SRG-evolved to a flow parameter of λNN = λYY =
1.6 fm-1. The values of BΞ in NNNΞ , 5

Ξ H and 7
Ξ H are measured with

respect to the binding energies of the core nuclei 3H, 4He and 6He,
respectively

BΞ [MeV] Γ [MeV]

4
Ξ H(1+, 0) 0.48 ± 0.01 0.74
4
Ξ n(0+, 1) 0.71 ± 0.08 0.2
4
Ξ n(1+, 1) 0.64 ± 0.11 0.01
4
Ξ H(0+, 0) – –
5
Ξ H( 1

2
+
, 1

2 ) 2.16 ± 0.10 0.19
7
Ξ H( 1

2
+
, 3

2 ) 3.50 ± 0.39 0.2

to the strong ΞN interaction. The Ξ− p Coulomb inter-
action contributes roughly 200, 600, and 400 keV to the
binding energies of NNNΞ , 5

Ξ H and 7
Ξ H, respectively.

Table 1 provides also an estimate of the corresponding
decay width Γ . These widths have been evaluated pertur-
batively by adapting the procedure followed by Hiyama et
al. [18,25]. Hiyama et al. have used the imaginary part of
the G matrix. Here, we employ the ΞN T -matrix in the 11S0
state from the original potential that includes the ΞN-ΛΛ

coupling [21] instead. Schematically the width amounts to
Γ ≃ −2 Im ⟨ΨBΞ |TΞN−ΞN |ΨBΞ ⟩ and involves the perti-
nent hypernuclear wave function ΨBΞ and the (off-shell) ΞN
T -matrix at the sub-threshold energy corresponding to the
bound state. One can clearly see that the three states (1+, 0),
(0+, 1) and (1+, 1) in NNNΞ are only weakly bound, pos-
sessing quite similar BΞ ’s but substantially different decay
widths. Interestingly, our result for BΞ (NNNΞ(1+, 0)) is
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Table 2 Contributions of different partial waves to ⟨V S=−2⟩ (first five
columns), and the total binding energy (last column) for the A = 4 − 7
Ξ hypernuclei. The results are extracted at N = 28, ω = 10 MeV
for NNNΞ , at N = 14, ω = 16 MeV for 5

Ξ H and at N = 10,

ω = 16 MeV for 7
Ξ H. All energies are given in MeV. Same interac-

tions as in Table 1. Note that the calculated binding energy of 3He(3H)
is −7.79 (−8.50) MeV

V S=−2 E
11S0

31S0
13S1

33S1 Total

4
Ξ H(1+, 0) − 1.95 0.02 − 0.7 − 2.31 − 5.21 − 8.97
4
Ξ n(0+, 1) − 0.6 0.25 − 0.004 − 0.74 − 1.37 − 9.07
4
Ξ n(1+, 1) − 0.02 0.16 − 0.13 − 1.14 − 1.30 − 9.0
4
Ξ H(0+, 0) − 0.002 0.08 − 0.01 − 0.006 − 0.11 − 6.94
5
Ξ H(1/2+, 1/2) − 0.96 0.94 − 0.58 − 3.63 − 4.88 − 31.43
7
Ξ H(1/2+, 3/2) − 1.23 1.79 − 0.79 − 6.74 − 8.04 − 33.22

Table 3 Probabilities (in %) of finding a ΞN pair in different partial-
wave states in the wave functions of A = 4 − 7 Ξ hypernuclei. Same
interactions and model spaces as in Table 1. Note that for each system
all probabilities sum up to the probability of finding a Ξ hyperon in that
system

|ΞN ⟩
|11S0⟩ |31S0⟩ |13S1⟩ |33S1⟩ J ≥ 2

4
Ξ H(1+, 0) 12.88 0.18 25.91 35.72 24.80
4
Ξ n(0+, 1) 8.24 13.32 0.23 23.29 54.73
4
Ξ n(1+, 1) 0.14 9.22 9.83 33.08 47.56
4
Ξ H(0+, 0) 0.02 11.87 14.65 0.11 73.33
5
Ξ H(1/2+, 1/2) 4.82 12.18 14.37 35.53 32.59
7
Ξ H(1/2+, 3/2) 3.71 12.92 11.11 38.36 32.94

are fully taken into account, while the transition ΛΛ−ΞN is
omitted and its contribution is incorporated effectively by re-
adjusting the strength of theVΞN potential appropriately. The
latter approach facilitates a proper convergence of the energy
calculations to the lowest lying Ξ states. Furthermore, to
speed up the convergence, the ΞN potential is SRG-evolved
to a wide range of flow parameters. The effect of SRG evo-
lution on the Ξ separation energies is in general small, but,
it is slightly larger than that observed for ΛΛ hypernuclei.
We found three loosely bound states (1+, 0), (0+, 1) and
(1+, 1) for the NNNΞ system and more tightly bound 5

Ξ H,
7
Ξ H hypernuclei. These Ξ systems are bound predominantly
due to the attraction of the chiral ΞN potential in the 33S1
channel. On the other hand, the repulsive nature in 31S0 pre-
vents the binding of the NNNΞ(0+, 0) state. All the investi-
gated Ξ bound states are predicted to have very small decay
widths.

In view of these results, which are based on an interaction
that is fully consistent with presently available experimental
constraints, and well in line with current lattice QCD results
[22], it seems likely that light Ξ hypernuclei exist. Experi-
mental confirmation is certainly challenging. However, the-

oretical estimates for yields of A = 4 hypernuclei [54] as
well as actual measurements of 4

ΛH, 4
ΛHe by the STAR Col-

laboration [55] raise hopes that NNNΞ bound states can be
detected in heavy ion collisions in the not too far future.
Also a bound 7

Ξ H system could be produced and studied
in the 7Li(K−, K+) reaction [25], cf. the proposal P75 for
J-PARC [52]. Once these new experimental results are avail-
able, they will provide new insights into the properties of
S = −2 BB interactions. The current manuscript sets up a
framework that allows one to exploit these insights to con-
strain BB interactions in the future.
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Conclusions & Outlook

• Hypernuclei provide important constraints on YN and YY interactions 

•     scattering length &    

•     scattering length &    & predictions for A=4,5   

• Light  -hypernuclei exist and provide information on the  N interaction   

• CSB of   scattering &     

•  J-NCSM  
• reliable predictions are possible for ranges of interactions for   and   
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• next steps  
• estimates of chiral 3BFs are needed (implementing Petschauer et al., (2016)) 
• study CSB of p-shell hypernuclei 

• study dependence of   results on chiral orders and regulators.S = − 2


