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INFRARED  FACTORISATION



A

Singularities arise only when propagators go on shell

❖  Emission is not suppressed at long distances        

❖  Isolated charged particles are not true                  
     asymptotic states of unbroken gauge theories

❖  A serious problem: the S matrix does not exist in the usual Fock space

❖  Possible solutions:  construct finite transition probabilities (KLN theorem)
                             construct better asymptotic states (coherent states)

❖  Long-distance singularities obey a pattern of exponentiation

Textbook Infrared

Emission of a soft or collinear massless gauge boson
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Soft-collinear factorisation



Soft-collinear factorisation

A gauge theory Feynman diagram with 
soft and collinear enhancements 



Soft-collinear factorisation

A gauge theory Feynman diagram with 
soft and collinear enhancements 

  Divergences arise in scattering amplitudes
     from leading regions in loop momentum space.

  Potential singularities can be located using Landau 
  equations.

  Actual singularities can be identified using power-
  counting techniques in the relevant regions.

  For renormalised massless theories only soft
     and collinear regions give divergences.

  Soft and collinear emissions have universal 
     features, common to all hard processes.

  Ward identities can be used to prove decoupling 
     of soft and collinear factors to all orders.

  A soft-collinear factorisation theorem for 
    multi-particle matrix elements follows.

  Similar factorisation theorems hold for inclusive  
     (soft and collinear safe) cross sections. 
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The factorised amplitude
Infrared divergences in fixed-angle multi-particle scattering amplitudes factorise

The infrared factor is a colour operator determined by a finite anomalous dimension matrix

All infrared poles arise from the scale integration, through the d-dimensional running coupling

For massless theories, the all-order structure of the anomalous dimension in known, up to
corrections due to higher-order Casimir operators of the gauge algebra

A. Sen,  A.H. Mueller, J. Collins, G. Sterman, J. Botts, LM, S. Catani, L. Dixon,  
E. Gardi, M. Neubert,  T. Becher, I. Feige, M. Schwartz, O. Erdogan, Y. Ma, …



Color basis notation

Tree-level diagrams and leading color flows for quark-antiquark scattering

The amplitude can be expressed in a process-dependent orthonormal basis of colour tensors

A simple example is quark-antiquark scattering, where colour space is two-dimensional

The amplitude is a vector in colour space, to all perturbative orders

The exchange of a virtual gluon will shuffle the colour components, even if the gluon is soft

Aabcd = A1 c
(1)
abcd +A2 c

(2)
abcd , c(1)abcd = �ac�bd , c(2)abcd = �ab�cd .
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N. Kidonakis, G. Oderda, G. Sterman; M. Sjödahl; Y. Dokshitzer, G. Marchesini.



Color operator notation
A powerful basis-independent notation uses colour operators `inserting’ soft gluons

A

Soft gluon operators are generators of the algebra in the representation of the emitter

At leading power in k :

For different emitters :

Colour operators obey identities inherited by the algebra and dictated by gauge invariance

A. Bassetto, M. Ciafaloni, G. Marchesini; S. Catani, M. Seymour.



Color operator notation
A powerful basis-independent notation uses colour operators `inserting’ soft gluons

A

Soft gluon operators are generators of the algebra in the representation of the emitter

At leading power in k :

For different emitters :

Colour operators obey identities inherited by the algebra and dictated by gauge invariance

when acting on
the amplitude

A. Bassetto, M. Ciafaloni, G. Marchesini; S. Catani, M. Seymour.



The dipole formula

  The colour dipole is the natural structure arising at one loop from gluon exchange.

  The fact that it survives at two loops is a non-trivial consequence of symmetries.

  Field anomalous dimensions in color-uncorrelated terms govern collinear singularities.

  Unitarity phases contain crucial analytic information. For final-state pairs:  λij = 1 .

  The cusp anomalous dimension plays a very special role: a universal infrared coupling. 
  The structure emerges from the constraints of scale invariance in the soft limit.

Let’s take a closer look at the structure of the infrared anomalous dimension matrix.

The cusp anomalous dimension in the `Casimir scaling’ limit:

Corrections start at three loops, with quadrupoles:

The dipole term :

E. Gardi, LM;  T. Becher, M. Neubert.

Ø.  Almelid, C. Duhr, E. Gardi;  J. Henn, B. Mistlberger.



Infrared factorisation: pictorial

A pictorial representation of soft-collinear factorisation for fixed-angle scattering amplitudes

A



Here we introduced dimensionless four-velocities βi  = pi/Q, and factorisation vectors  niμ ,  ni2 ≠ 0  
to define the jets in a gauge-invariant way.   For outgoing quarks

Operator Definitions
The precise functional form of this graphical factorisation is 

where  Φn  is the Wilson line operator along the direction n.   For outgoing gluons

T. Becher, G. Bell.



Wilson line correlators

The eikonal jet function  JE  contains soft-collinear poles: it is defined by replacing the field in 
the ordinary jet  J  with a Wilson line in the appropriate color representation.

The soft function  S  is a color operator, mixing the available 
color tensors.  It is defined by a correlator of  Wilson lines.

Wilson-line matrix elements exponentiate non-trivially and have tightly constrained functional 
dependence on their arguments.  They are known to three loops.



On functional dependences

  Singular terms in  ΓS  must be diagonal.  
  Finite diagonal terms in  ΓS   must form ρij’s.
  Off-diagonal terms in  ΓS  must be finite, 

     and must depend only on cross-ratios ρijkl .

Straight semi-infinite Wilson lines are scale-invariant

Correlators involving light-like Wilson lines break scale invariance due to collinear poles:
a quantum `anomaly’ proportional to the cusp anomalous dimension.

The anomaly must cancel in combination that
are free from collinear poles

The reduced function depends only on scale-invariant combinations

At the level of anomalous dimensions the cancellation is particularly striking

An exact equation for the soft anomalous dimension



THE SUBTRACTION PROBLEM



Pictorial infrared

A diagram contributing a double-virtual NNLO correction to t-tbar-jet production
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Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production
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The subtraction problem

  Infrared divergences (soft and collinear) cancel between 
     configurations with different numbers of particles

  Collider observables are algorithmically complex and 
     need elaborate phase-space constraints.

  Divergences must be canceled analytically before 
     performing numerical integrations.

  Existing subtraction algorithms beyond NLO are 
     computationally very intensive.

  LHC is now a precision machine: we are interested in 
     subtraction for complicated process at very high orders.

  The factorisation of virtual corrections contains all-order 
     information, not fully exploited.

  The structure of virtual singularities can be used as an
     organising principle for subtraction.



NLO Subtraction

The computation of a generic IRC-safe observable at NLO requires the combination

The necessary numerical integrations require finite ingredients in d=4.  Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finite.

Search for the simplest fully local integrand  Kn+1 with the correct singular limits.



The computation of a generic IRC-safe observable at NLO requires the combination

The necessary numerical integrations require finite ingredients in d=4.  Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finite.

Search for the simplest fully local integrand  Kn+1  with the correct singular limits.

NLO Subtraction



 Sector functions must form a partition of unity.

 In order not to appear in analytic integrations, sector functions must obey sum rules.
    Denoting with Si the soft limit for parton i and Cij the collinear limit for the ij pair,

 Sector functions are defined in terms of Lorentz invariants before choosing an explicit  
 parametrisation of phase space.  A possible choice is 

 With the help of sector functions, one can now define a candidate counterterm 

Minimize complexity:  split phase space in sectors with sector functions in order to have at most 
one soft (i) and one collinear (ij) singularity in each sector.

Combinatorial complexityLM, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P.  Torrielli, S. Uccirati 

S. Frixione, Z. Kunszt,  A. Signer



Kinematic complexity
In order to factorise a Born matrix element Bn with n on-shell particles conserving momentum, we 
need a mapping from the (n+1)-particle to the Born phase spaces.  We use 

We can now redefine soft and collinear limits to include the re-parametrisation. Explicitly 

Note that we have assigned parametrisation triplets differently in different terms. Then

LM, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P.  Torrielli, S. Uccirati 

S. Catani, M. Seymour



NNLO Subtraction
The pattern of cancellations is more intricate at higher orders

More counterterm functions need to be defined

A finite expression for the observable in d=4 must combine several ingredients

~



A hard problem



A hard problem

  Complete generality across all IR-safe observables with any number of particles. 
  Exact locality of the IR and collinear counterterms.
  Exact independence on external slicing parameters. 
  Complete analytical results for all integrated counterterms. 
  Overall computational efficiency, including interfacing with MC codes.

A wishlist for an optimal subtraction algorithm at NkLO
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For the simplest processes and observables prediction are available at N3LO.



A hard problem

  Complete generality across all IR-safe observables with any number of particles. 
  Exact locality of the IR and collinear counterterms.
  Exact independence on external slicing parameters. 
  Complete analytical results for all integrated counterterms. 
  Overall computational efficiency, including interfacing with MC codes.

A wishlist for an optimal subtraction algorithm at NkLO

Several algorithms exist to perform IR subtraction at NNLO for a range of key processes. 
For the simplest processes and observables prediction are available at N3LO.

However



A hard problem

  Complete generality across all IR-safe observables with any number of particles. 
  Exact locality of the IR and collinear counterterms.
  Exact independence on external slicing parameters. 
  Complete analytical results for all integrated counterterms. 
  Overall computational efficiency, including interfacing with MC codes.

A wishlist for an optimal subtraction algorithm at NkLO

Several algorithms exist to perform IR subtraction at NNLO for a range of key processes. 
For the simplest processes and observables prediction are available at N3LO.

However
M. Czakon et al.



A hard problem

  Complete generality across all IR-safe observables with any number of particles. 
  Exact locality of the IR and collinear counterterms.
  Exact independence on external slicing parameters. 
  Complete analytical results for all integrated counterterms. 
  Overall computational efficiency, including interfacing with MC codes.

A wishlist for an optimal subtraction algorithm at NkLO

Several algorithms exist to perform IR subtraction at NNLO for a range of key processes. 
For the simplest processes and observables prediction are available at N3LO.

However

An extreme degree of optimisation will be necessary, and possibly completely new tools.

M. Czakon et al.



THE CELESTIAL SPHERE



The Strominger Triangle

  A new viewpoint on infrared/long-distance phenomena in quantum field theory.  
  A lesson from gravity: do not trivialise the behaviour and symmetries `at infinity’.
  Does this idea lead to new calculational techniques for non-abelian theories?



Many directions

Soft, next-to soft,
next-to-next-to soft

Celestial amplitudes

Full conformal symmetry 
on the celestial sphere

Asymptotically flat spacetimes
and holography

Black hole soft hair and
the information paradox

Electromagnetic, colour and 
gravitational memory effects



Many directions

Soft, next-to soft,
next-to-next-to soft

Celestial amplitudes

Full conformal symmetry 
on the celestial sphere

Asymptotically flat spacetimes
and holography

Black hole soft hair and
the information paradox

Electromagnetic, colour and 
gravitational memory effects

See also: H.A. González, F. Rojas, 2104.12979



On dipole correlations 

Let us begin by disentangling collinear poles (which are colour-singlets) from soft poles 
(which are colour-correlated).  We replace the running scale λ with the fixed scale μ in the 
logarithmic term, and perform the colour sum using colour conservation.

At one loop, integrating the colour-correlated term yields single soft poles, while the singlet term 
yields single collinear and double soft-collinear poles

At h loops, multiple poles (up to order h+1) are generated by the β function. For conformal 
gauge theories the logarithm of the infrared factor has only single and double poles.



Celestial dipoles
Crucially, we now parametrise the light-cone momenta in celestial coordinates

where the energy ωi and the sphere coordinates zi have simple transformation properties under 
the Lorentz group acting as SL(2, C):

Mandelstam invariants are distances on the sphere

which unpacks the logarithms

Energies give new singlet terms

which take the form



The colour-correlated term, responsible for all soft poles, is remarkably simple

Scale and coupling dependence are completely factored from colour and kinematics, and equal 
for all dipoles.  The scale integral can this be performed in full generality, yielding

The scale factor K is well-known in QCD from form-factor calculations, and gives the 
perturbative Regge trajectory in the high-energy limit of four-point amplitudes. It is

Celestial dipoles

The function K can be computed order by order in terms of the cusp and the β function 

β → 0

J. Collins, D. Soper; G. Korchemsky, I.A. Korchemskaya; 
V. Del Duca, C. Duhr, E. Gardi, LM, C. White; 
G. Falcioni, L. Vernazza, …



A celestial conformal theory
It is natural to mimic the bosonic string, considering free bosons spanning the gauge algebra.

The free bosons could be organised in a matrix field :
gauge generators at different points must then be taken to commute

The well-known results for free bosons in d=2 can be directly transcribed.

The equations of motions are: implying that the derivatives of 
the fields are (anti)holomorphic

A normal-ordered product can be defined, obeying the classical equation of motion

There is a traceless conserved energy-momentum tensor, and a conserved Noether current



Matrix vertex operators
Guided by the QED example, we can tentatively define a matrix-valued vertex operator 

In colour space, this is a matrix in the representation of  Tz , defined on the boundary sphere 
and acting on the bulk colour degrees of freedom.  But is it a conformal primary field?

Note analogies with other constructions.
Vertex operator construction of Kac-Moody algebras: 
Reggeon fields for high-energy scattering:

For conventional vertex operators
(as for example for bosonic strings)

The same calculation yields

T1 +T2 = 0by colour conservation

Crucially,  this is a positive real number and not a matrix.  For consistency,  two-point functions
must evaluate to a power of the distance given by the conformal weight Δ = h + h.  Indeed -

(Caron-Huot 2013)

Colour-kinematic dual of the 
string vertex operator

A. Nande, M. Pate,  A. Strominger; N. Kalyanapuram (QED).  LM.



A conformal correlator
Our construction from the beginning targeted the n-point correlator

The calculation is a textbook exercise: it can be done with oscillators, after expanding the
free fields in modes on the sphere, or computing the path integral (Polchinski).  The result is

reproducing the structure of the gauge theory infrared operator.  Note that

  The correlator has support only on colour conserving configurations 
  The field normalisation κ maps to the integral K, carrying scale and regulator dependence.
  In a path integral evaluation on a curved surface (say, a finite sphere with radius R) the 

     correlator acquires a scale-dependent `Weyl’ factor,  which in this setting maps to an   
     (undetermined) colour-singlet collinear contribution.



MANY  QUESTIONS



  The choice of the gauge coupling.
     Our construction lends support to the idea the the cusp anomalous dimension should be 
     taken as the definition of the strong coupling in the infrared.
     How far can one take this definition?

  Scale and regulator dependence.
     It is remarkable, and necessary, that infrared singularities be hidden in the matching condition 
     between the gauge theory and the conformal theory.
     How can one make this correspondence more precise?

  Beyond the free theory.
     The celestial conformal theory certainly has corrections involving structure constants (as 
     confirmed by the structure of Δ).  The deformed theory is still scale invariant.
     What drives the deformation?

  Constraints from vast field theory data.
     Soft and collinear factorisation kernels are known to three loops, and in the massive case
     to two loops. In most cases their remarkable simplicity is only partly explained.
     How can we harness these data to constrain the celestial theory?

                                         The exploration has just begun  

Many Questions

S. Catani, B. Webber, G. Marchesini; A. Grozin et al.;  
A. Banfi et al.; O. Erdogan, G.Sterman; 
S. Catani, D. DeFlorian, M. Grazzini.



OUTLOOK



  The infrared structure of gauge theory scattering amplitudes is theoretically interesting
     and phenomenologically relevant.

  Factorisation of physics at different length scales is the key to progress: it leads to
     universality, evolution equations, and predictive exponentiation.

  The problem of subtraction of IR-singular configurations beyond NLO is intricate both
     theoretically and computationally. 

  Infrared factorisation provides general tools to understand subtraction to all orders in
     perturbation theory.  Much technical work however remains to be done.

  A new theoretical viewpoint on infrared dynamics emerges from asymptotic symmetries
     of the S-matrix and expresses infrared properties of d=4 amplitudes in terms of a d=2 
     conformal field theory,  to all orders.  Powerful new calculation tools may be at hand.

Outlook
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