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Textbook Infrared

Singularities arise only when propagators go on shell

(p—l—k)2 N T d— 2Epwk(1 —cosé’pk) —al)
—> wi = 0-(soft); cosdpi=—tcolliEag|

< Emission is not suppressed at long distances

% Isolated charged particles are not true

Emission of a soft or collinear massless gauge boson asymptotic states of unbroken gauge theories

% A serious problem:the S matrix does not exist in the usual Fock space

¢ Possible solutions: construct finite transition probabilities (KLN theorem)
construct better asymptotic states (coherent states)

% Long-distance singularities obey a pattern of exponentiation
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Soft-collinear factorisation
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A gauge theory Feynman diagram with
soft and collinear enhancements
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A gauge theory Feynman diagram with
soft and collinear enhancements

Soft-collinear factorisation

& Divergences arise in scattering amplitudes
from leading regions in loop momentum space.

& Potential singularities can be located using Landau
equations.

& Actual singularities can be identified using power-
counting techniques In the relevant regions.

& For renormalised massless theories only soft
and collinear regions give divergences.

& Soft and collinear emissions have universal
features, common to all hard processes.

$ \Ward identities can be used to prove decoupling
of soft and collinear factors to all orders.

& A soft-collinear factorisation theorem for
multi-particle matrix elements follows.

& Similar factorisation theorems hold for inclusive
(soft and collinear safe) cross sections.



The factorised amplitude
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Infrared divergences In fixed-angle multi-particle scattering amplitudes factorise

A, (E,as(m,e) - n(%,asm )fn (; as(;ﬁ),e),

For massless theories, the all-order structure of the anomalous dimension in known, up to
corrections due to higher-order Casimir operators of the gauge algebra
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The amplitude can be expressed in a process-dependent orthonormal basis of colour tensors

Tree-level diagrams and leading color flows for quark-antiquark scattering

The amplitude Is a vector In colour space, to all perturbative orders

-Aabcd 0% Al Cé%)cd gl A2 C<(12b)cd 9 Cg))cd o 5acébd ) CELQ())Cd o 501,1)5cd -

The exchange of a virtual gluon will shuffle the colour components, even if the gluon is soft

QED : Adiv e ZABorn; QCD : [Adiv] {Jibnn [Z] il [ABorn]K .
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A powerful basis-independent notation uses colour operators "inserting’ soft gluons

Z+ C 1 ci...di...c * QY
ﬁ l% (T )CidiAsll...sf” n({pj}a k) S\ (k),

At leading power in k :

For different emitters :

[T?,TS] —if T, T-Ti= TT6w = P, YT, =0,
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A powerful basis-independent notation uses colour operators "inserting’ soft gluons

€ — 1 + C 1 C ; C * (X
91Ty (p1) v B (19) L A gresdien ({1, 1) 52 (h),

At leading power in k :

For different emitters :

Colour operators obey identities inherited by the algebra and dictated by gauge invariance

when acting on

LT =T, T T =TT oy = O |
the amplitude
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| et’s take a closer look at the structure of the infrared anomalous dimension matrix.

The dipole term :

Sij eiﬂ')\z‘j n )
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The cusp anomalous dimension in the “Casimir scaling’ limit:

- - b d
Corrections start at three loops, with quadrupoles: Fijri({p}) favefoq® T{T;TETY,
@. Almelid, C. Duhr, E. Gardi; J. Henn, B. Mistlberger.

& The colour dipole is the natural structure arising at one loop from gluon exchange.

& The fact that it survives at two loops is a non-trivial consequence of symmetries.

& Field anomalous dimensions in color-uncorrelated terms govern collinear singularities.
& Unitarity phases contain crucial analytic information. For final-state pairs: Aj = 1.

& The cusp anomalous dimension plays a very special role: a universal infrared coupling.

& The structure emerges from the constraints of scale invariance in the soft limit.



Infrared factorisation: pictorial

A pictorial representation of soft-collinear factorisation for fixed-angle scattering amplitudes



Operator Definitions

The precise functional form of this graphical factorisation is

Ji ((pz' ° ni)z/(nzzﬁtQ)) -

pi-pj (pi- i)’
on (B Bi) Hn( 2 )

i=1 | jEz((ﬁznz>2/nz2) i

Here we introduced dimensionless four-velocities Bi = pi/Q, and factorisation vectors ni#, ni2 #0
to define the jets In a gauge-invariant way. For outgoing quarks

w.0) 7 ( L) = .517 [50)2,(0,0] 10, [:9

where @, is the Wilson line operator along the direction n. For outgoing gluons

= (K, \| T[cpn(oo,c)) iD” &, (z, oo)] 0) .

x=0

T. Becher, G. Bell.



Wilson line correlators

The soft function S Is a color operator; mixing the available
color tensors. It is defined by a correlator of Wilson lines.

The eikonal jet function Je contains soft-collinear poles: it is defined by replacing the field in
the ordinary jet | with a Wilson line in the appropriate color representation.

Jx ((571) ) = (0| T|[®s(00,0) D, (0,00)] |0) .

n2

Wilson-line matrix elements exponentiate non-trivially and have tightly constrained functional
dependence on their arguments. They are known to three loops.



On functional dependences

Straight semi-infinite Wilson lines are scale-invariant ®s(00,0) = Pexp !ig/ d/\B-A(/\ﬁ)] :
0

Correlators involving light-like Wilson lines break scale invariance due to collinear poles:
a quantum “anomaly’ proportional to the cusp anomalous dimension.

Sri (Bi - Bj, as(p?),€)
n Bim;g 2 )
[T Tea (Lol au(u?). o)

The anomaly must cancel in combination that
are free from collinear poles

Spi (pij, as(p?), €)

(B - ;) n? n3

The reduced function depends only on scale-invariant combinations pij =

(Bi-mi)? (Bj - ny)°

€ Singular terms in s must be diagonal.
€ Finite diagonal terms in s must form pi's.

& Off-diagonal terms in I's must be finite,
and must depend only on cross-ratios pijkl .

An exact equation for the soft anomalous dimension
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Pictorial infrared
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A diagram contributing a double-virtual NNLO correction to t-tbar-jet production



Pictorial infrared
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A diagram contributing a double-virtual NNLO correction to t-tbar-jet production



Pictorial infrared

8 \U
00000000

A

00000000
\J

A diagram contributing a real-virtual NNLO correction to t-tbar-jet production



Pictorial infrared
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A diagram contributing a real-virtual NNLO correction to t-tbar-jet production



Pictorial infrared
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A diagram contributing a real-virtual NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production



Pictorial infrared
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A diagram contributing a double-real NNLO correction to t-tbar-jet production



ATLAS ...
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The subtraction problem

& Infrared divergences (soft and collinear) cancel between
configurations with different numbers of particles

& Collider observables are algorithmically complex and
need elaborate phase-space constraints.

& Divergences must be canceled analytically before
performing numerical integrations.

& Existing subtraction algorithms beyond NLO are

computationally very intensive.

& LHC is now a precision machine: we are interested in
subtraction for complicated process at very high orders.

& The factorisation of virtual corrections contains all-order

information, not fully explorted.

& The structure of virtual singularities can be used as an
organising principle for subtraction.



NLO Subtraction

The computation of a generic IRC-safe observable at NLO requires the combination

doxvo

The necessary numerical integrations require finite ingredients in d=4. Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finrte.

do 1
S f dc]:)n(vn + 17§1)) %) £ / A, | (RnH Spst(X) — KD, MX)) |

Search for the simplest fully local integrand Kn+| with the correct singular limits.



NLO Subtraction

The computation of a generic IRC-safe observable at NLO requires the combination

doxvo

The necessary numerical integrations require finite ingredients in d=4. Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finrte.

do 1
S f dc]:)n(vn + 17§1)) %) £ / A, | (RnH Spst(X) — KD, MX)) |

Search for the simplest fully local integrand Kn+1 with the correct singular limits.
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Minimize complexity: split phase space in sectors with sector functions in order to have at most
one soft (1) and one collinear (i) singularity in each sector.  S.Frixione, Z. Kunszt, A. Signer

# Sector functions must form a partition of unity.

¢ In order not to appear In analytic integrations, sector functions must obey sum rules.
Denoting with §; the soft limit for parton 1 and Cjj the collinear limit for the i pair;

¢ Sector functions are defined in terms of Lorentz invariants before choosing an explicit
parametrisation of phase space. A possible choice Is
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In order to factorise a Born matrix element B, with n on-shell particles conserving momentum, we
need a mapping from the (n+|)-particle to the Born phase spaces. We use

EP) = ki it #£abe,

S. Catani, M. Seymour

]—el()abc) — kg + kp — Sab ke | kgabc) _ Sabe ke |

Sac + She Sac + Sbe

SR(ED = M 3 o o B (1))
CuR(M) = 2 [PyB((R7) + @t B ((17) ],

w0
OI

R ({k}) 2N Cy, 8f,q —30 ({g}cz:jr)) ,
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NNLO Subtraction

The pattern of cancellations is more intricate at higher orders

dX d—4

dO'NNLO — lim {/d(i)n VVn 6n(X) + /d(I)n+1 RVn-{—l 6n+1(X)

+ / d®pni2 RRp42 0ny2(X )} ;

More counterterm functions need to be defined

K, = LORR,», K2, =L®RR,,, K1 =LOL®RR,,,, K =LYRV,,,.

n

o = / dori? kY, 1Y = / ey e / o2 K2, [RV) / a1 KBV

A finite expression for the observable in d=4 must combine several ingredients

dowwo  _ 2 1 [®RV)] 5
o - /défsn [vvn +I® 41 ] 5,(X)
+ /dq)n—i—l (RVn—H + In(,i)l 6n—|—1(X) o (Ké—lzl—{y) 3 11“541—21)) dn(X):l

/ dPpi2| RRpy2 0nya(X) — K7£_1|-_)2 On+1(X) — (Kéﬂ = ngrzz)

) 6n()]




A hard problem



A hard problem

A wishlist for an optimal subtraction algorithm at NkLO

& Complete generality across all IR-safe observables with any number of particles.
& Exact locality of the IR and collinear counterterms.

& FExact independence on external slicing parameters.

& Complete analytical results for all integrated counterterms.

& Overall computational efficiency, including interfacing with MC codes.
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For the simplest processes and observables prediction are available at N3LO.
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A wishlist for an optimal subtraction algorithm at NkLO

& Complete generality across all IR-safe observables with any number of particles.
& Exact locality of the IR and collinear counterterms.

& Exact independence on external slicing parameters.

& Complete analytical results for all integrated counterterms.

& Overall computational efficiency, including interfacing with MC codes.

Several algorithms exist to perform IR subtraction at NNLO for a range of key processes.
For the simplest processes and observables prediction are available at N3LO.

However
M. Czakon et al.
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An extreme degree of optimisation will be necessary, and possibly completely new tools.
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The Strominger Triangle

MEMORY
EFFECT

IDENTITY

SOFT ASYMPTOTIC

THEOREM SYMMETRY

& A new viewpoint on infrared/long-distance phenomena in quantum field theory.
& A lesson from gravity: do not trivialise the behaviour and symmetries “at infinity’.
& Does this idea lead to new calculational techniques for non-abelian theories?



Many directions

Electromagnetic, colour and
gravitational memory effects

Asymptotically flat spacetimes
and holography

Full conformal symmetry

on the celestial sphere

OBSERVER —

Black hole soft hair and
the information paradox

AAST LIGHT CON:

Soft, next-to soft,
next-to-next-to soft

Celestial amplitudes
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See also: H.A. Gonzalez, F. Rojas, 2104.12979




On dipole correlations

Let us begin by disentangling collinear poles (which are colour-singlets) from soft poles
(which are colour-correlated). We replace the running scale A with the fixed scale y in the
logarithmic term, and perform the colour sum using colour conservation.

ipole 1 1 - - —Sij +1
[ dipol (ig,ag()\ E)) 5 K (as()\,e))z Z ln( 8;2 177) T; - T;
i=1 j=i+1
1 12\ —
_ Z% as(A€)) — Z’\/K(as()\ 6)) In ()\2) ZC'Z-(Q)

i=1 1=1

At one loop, integrating the colour-correlated term yields single soft poles, while the singlet term
yields single collinear and double soft-collinear poles

A2\ w
kg (’\16) = g (,Lt) (F) ) ~/O

At h loops, multiple poles (up to order h+1) are generated by the [3 function. For conformal
gauge theories the logarithm of the infrared factor has only single and double poles.




Celestial dipoles

Crucially, we now parametrise the light-cone momenta in celestial coordinates

where the energy w; and the sphere coordinates z have simple transformation properties under
the Lorentz group acting as SL(2, C):

az + b
W' = |cz + d|*w, =BT :
cz+d

which unpacks the logarithms

Pgipole (ﬂ,as(/\,t?)) = fsorr. (zijaas(k,e)) + fsingl.(%

)\2 ) aS(A? 6)) )

Energies give new singlet terms

which take the form




Celestial dipoles

The colour-correlated term, responsible for all soft poles, is remarkably simple

Scale and coupling dependence are completely factored from colour and kinematics, and equal
for all dipoles. The scale integral can this be performed in full generality, yielding

The scale factor K is well-known in QCD from form-factor calculations, and gives the
perturbative Regge trajectory in the high-energy Iimit of four-point amplritudes. It is

J. Collins, D. Soper; G. Korchemsky, |.A. Korchemskaya;
V. Del Duca, C. Duhr, E. Gardi, LM, C.White;
G. Falcioni, L.Vernazza, ...

~(1) 2 £ ~(2) ()
Qs Ve g Y. . boY
K(os,€) = ——=— —
(25:¢) T 4de +(/ ) (86 * ‘3262)

B A
192¢3

12e 48c2

) +0(at),




A celestial conformal theory

[t Is natural to mimic the bosonic string, considering free bosons spanning the gauge algebra.

1

() = — / 0220,0% (2, ) Oxda(z, 7)

2

The free bosons could be organised in a matrix field :

gauge generators at different points must then be taken to commute

The well-known results for free bosons in d=2 can be directly transcribed.

The equations of motions are: implying that the derivatives of

the fields are (anti)holomorphic

82 85 ¢a(z’ 2) — 07

A normal-ordered product can be defined, obeying the classical equation of motion

7(2,2) (w0, T): = ¢ (2, 2) ¢ (w,10) + 5 0 log |z — wl?

There is a traceless conserved energy-momentum tensor; and a conserved Noether current

ja('z) — 2¢a(zv 2) ;




A.Nande, M. Pate, A. Strominger; N. Kalyanapuram (QED). LM. M atrix ve rtex O P e rato rS

Guided by the QED example, we can tentatively define a matrix-valued vertex operator

Colour-kinematic dual of the
string vertex operator

In colour space, this Is a matrix in the representation of T, defined on the boundary sphere
and acting on the bulk colour degrees of freedom. But is it a conformal primary field?

For conventional vertex operators
(as for example for bosonic strings)

The same calculation yields

Crucially, this is a positive real number and not a matrix. For consistency, two-point functions
must evaluate to a power of the distance given by the conformal weight A = h + h. Indeed

(V(21,21)V (22, 22)) ~ |212]722, by colour conservation T +T, =0

Note analogies with other constructions. U(z) = 252 gis000

Vertex operator construction of Kac-Moody algebras:

Reggeon fields for high-energy scattering:  —

(Caron-Huot 2013)




A conformal correlator

Our construction from the beginning targeted the n-point correlator

The calculation is a textbook exercise: it can be done with oscillators, after expanding the
free fields in modes on the sphere, or computing the path integral (Polchinski). The result is

reproducing the structure of the gauge theory infrared operator. Note that/'

& The correlator has support only on colour conserving configurations
& The field normalisation K maps to the integral K, carrying scale and regulator dependence.

& In a path integral evaluation on a curved surface (say, a finite sphere with radius R) the
correlator acquires a scale-dependent "Weyl' factor;, which in this setting maps to an
(undetermined) colour-singlet collinear contribution.

Wn({zi}a'%) — CXP [_% ;C”L(Q)g(zwzb)] )
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Many Questions

The choice of the gauge coupling.
Our construction lends support to the idea the the cusp anomalous dimension should be

taken as the definition of the strong coupling in the infrared. S. Catani, B.Webber, G. Marchesini; A. Grozin et al
. e A. Banfi et al.; O. Erdogan, G.Sterman;
How far can one take this definrtion? S\ Catani, D DeRl Bl BAIIEC T

Scale and regulator dependence.

It Is remarkable, and necessary, that infrared singularities be hidden in the matching condition
between the gauge theory and the conformal theory.
How can one make this correspondence more precise!

Beyond the free theory.

The celestial conformal theory certainly has corrections involving structure constants (as
confirmed by the structure of A). The deformed theory is still scale invariant.
What drives the deformation!?

Constraints from vast field theory data.

Soft and collinear factorisation kernels are known to three loops, and in the massive case
to two loops. In most cases their remarkable simplicity i1s only partly explained.

How can we harness these data to constrain the celestial theory!?

The exploration has just begun



OUTLOOK




Outlook

& The infrared structure of gauge theory scattering amplitudes is theoretically interesting
and phenomenologically relevant.

*€c

Factorisation of physics at different length scales is the key to progress: it leads to
universality, evolution equations, and predictive exponentiation.

& The problem of subtraction of IR-singular configurations beyond NLO is intricate both
theoretically and computationally.

“€c

Infrared factorisation provides general tools to understand subtraction to all orders in
perturbation theory. Much technical work however remains to be done.

& A new theoretical viewpoint on infrared dynamics emerges from asymptotic symmetries
of the S-matrix and expresses infrared properties of d=4 amplitudes in terms of a d=2
conformal field theory, to all orders. Powerful new calculation tools may be at hand.
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