

Notorious Neutrinos

Mu-Chun Chen

University of California at Irvine

Bethe Colloquium, Universität Bonn, May 5, 2022

Bethe Forum Modular Flavor Symmetries

May 2-6, 2022, Bonn Germany

Donuts = TORI

Artist rendition by Shreya Shukla

Equivalent TORI related by Modular Symmetries

Artist rendition by Shreya Shukla

Number Theory

Conference Board of the Mathematical Sciences

Regional Conference Series in Mathematics

ber 102

Modular forms appear in many ways in number theory. They play a central role in the theory of quadratic forms; in particular, they are generating functions for the number of representations of integers by positive definite quadratic forms (for example, see [**Gro**]). They are also key players in the recent spectacular proof of Fermat's Last Theorem (see for example, [**Bos**, **CSS**]). Modular forms are presently at the center of an immense amount of research activity.

The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and *q*-series

Ken Ono

String Theory

STRING THEORY and M-THEORY

MODERN INTRODUCTION

Katrin Becker, Melanie Becker, and John H. Schwarz

Condensed Matter Physics

Nuclear Physics B Volume 474, Issue 3, 2 September 1996, Pages 543-574

Modular invariance, self-duality and the phase transition between quantum Hall plateaus

Eduardo Fradkin^a, Steven Kivelson^b

Neutrino Physics

arXiv.org > hep-ph > arXiv:1706.08749

High Energy Physics – Phenomenology

[Submitted on 27 Jun 2017 (v1), last revised 29 Sep 2017 (this version, v2)]

Are neutrino masses modular forms?

Ferruccio Feruglio

Neutrino: Solution to the "Energy Crisis" !

7

Standard Model of Particle Physics

- ▶ 3 generations of quarks and leptons
- LH & RH partners for all particles except for

neutrinos

elect

We ł

which

)

Helicity of Neutrinos*

M. GOLDHABER, L. GRODZINS, AND A. W. SUNYAR Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

only LH neutrinos have been observed

the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${}^{1}0-$, we find that the neutrino is "left-handed," i.e., $\sigma_{\nu} \cdot \hat{p}_{\nu} = -1$ (negative helicity).

Fermion Mass Generation

- Higgs Mechanism
- Yukawa Interactions
- In Standard Model:
 no RH neutrinos
 - LH neutrinos cannot interact with Higgs BEC
 - Neutrinos stay massless

Y: Yukawa coupling constant

Mysteries of Masses in SM

Mysteries of Masses in SM

Mysteries of Masses in SM

lasses and Mixing in SM Mysteries of Masses and Flavor Mixing in SM Mysteries of Masses and Mixing in

• Charged current weak interaction mediated by W[±] gauge boson:

Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
 - mass eigenstates = weak eigenstates
- Accidental symmetries in SM
 - lepton flavor numbers: L_e , L_{μ} , L_{τ}
 - no processes cross family lines in lepton sector
- As a result
 - no neutrino oscillation
 - lepton flavor violation decays forbidden

Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
 - mass eigenstates = weak eigenstates
- Accidental symmetries in SM
 - lepton flavor numbers: L_e , L_{μ} , L_{τ}
 - no processes cross family lines in lepton sector
- As a result
 - no neutrino oscillation
 - lepton flavor violation decays forbidden

Active experimental program searching for these rare processes, MEG, Mu2E, ...

Neutrino: a particle w/ 4 Nobel Prizes under Belt

1988 – Lederman, Schwartz, Steinberger, detection of muon neutrino in **1962**

1995 – Reines (UCI): detection of electron antineutrino in **1958**

2002 – Davis and Koshiba: solar and supernova neutrino detections, **1968**, **1987**

2015 – Kajita and McDonald: detection of neutrino oscillations, **1998**, **2002**

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Super-Kamiokande Collaboration

Photo: K. MacFarlane. Queen's University /SNOLAB

Arthur B. McDonald

Sudbury Neutrino Observatory Collaboration

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be a mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: V_e , V_{μ} , V_{τ}

- mass eigenstates: V1, V2, V3
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

Maki, Nakagawa, Sakata, 1962; Pontecorvo, 1967

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

Neutrino Oscillation: Macroscopic Quantum Mechanics

- production: neutrinos of a definite flavor produced by weak interaction
- propagation: neutrinos evolve according to their masses
- detection: neutrinos of a different flavor composition detected

Where Do We Stand?

Normal Ordering

Inverted Ordering

Where Do We Stand?

Normal Ordering

Inverted Ordering

Open Questions – Neutrino Properties

- Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- So Mass ordering: sign of (Δm_{13}^2) ?
- Sterile neutrino(s)?
- Solution: $θ_{23} > π/4$, $θ_{23} < π/4$, $θ_{23} = π/4$?

Open Questions – Neutrino Properties

- 🖙 Majorana vs Dirac?
- CP violation in lepton sector?
- Absolute mass scale of neutrinos?
- rightarrow Mass ordering: sign of (Δm_{13}^2)?
- Sterile neutrino(s)?
- Solution: $θ_{23} > π/4$, $θ_{23} < π/4$, $θ_{23} = π/4$?

a suite of current/upcoming experiments to address these puzzles

Experimental Precision

Figure Credit: Song, Li, Argüelles, Bustamante, Vincent (2020)

Experimental Precision

Are theoretical precision compatible with experimental precision?

Figure Credit: Song, Li, Argüelles, Bustamante, Vincent (2020)

Open Questions – Theoretical 🐗

Smallness of neutrino mass:

 $m_V \ll m_{e, u, d}$

Open Questions – Theoretical

Se Flavor structure: • d • S ď s' ກ ⊶⇒ b' Na quark mixing etica

weak interaction eigenstates

• b

νμ

 ν_{τ}

mass eigenstates

leptonic mixing re:

Fermion mass and hierarchy problem → Dominant fraction (22 out of 28) of free parameters in SM

Is there a simpler organization principle?

Is there a simpler organization principle?

Where do neutrinos get their masses from?

Is there a simpler organization principle?

Where do neutrinos get their masses from?

Is it the Higgs or something else that gives neutrino masses?

Why are neutrinos light? Seesaw Mechanism

• Adding the right-handed neutrinos:

$$\begin{pmatrix} \mathbf{v}_L & \mathbf{v}_R \end{pmatrix} \begin{pmatrix} 0 & \mathbf{m}_D \\ \mathbf{m}_D & \mathbf{M}_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R \end{pmatrix}$$

$$egin{aligned} m_{v} &\sim m_{light} \sim rac{m_{D}^{2}}{M_{R}} << m_{D} \ m_{heavy} &\sim M_{R} \end{aligned}$$

For
$$m_{v_3} \sim \sqrt{\Delta m_{atm}^2}$$

f
$$m_D \sim m_t \sim 180 \ GeV$$

$$\implies$$
 M_R ~ 10¹⁵ GeV (GUT !!)

Ultimate Goal of Grand Unification

- Maxwell: electric and magnetic forces are different aspects of electromagnetism
- Einstein: early attempt to unify electric force and gravity

We are getting there.....

Symmetry Relations

masses.png 1,025×768 pixels

10/30/13 4:17 PM

Grand Unified Theories: GUT symmetry

e-family + muon-family + tau-family

Symmetry Relations

Symmetry \Rightarrow relations among parameters \Rightarrow reduction in number of fundamental parameters

Symmetry Relations

Symmetry \Rightarrow relations among parameters \Rightarrow reduction in number of fundamental parameters

> Symmetry \Rightarrow experimentally testable correlations among physical observables

Origin of Flavor Mixing and Mass

- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S4 (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - \$\$27
 - Q6
 - T₁₃

By Eligio Lisi

Origin of Flavor Mixing and Mass

- Recently, models based on discrete family symmetry groups have been constructed
 - A₄ (tetrahedron)
 - T´ (double tetrahedron)
 - S₃ (equilateral triangle)
 - S4 (octahedron, cube)
 - A₅ (icosahedron, dodecahedron)
 - \$27
 - Q6
 - T₁₃

By Eligio Lisi

Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

 $\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626)$

 $\sin^2 \theta_{12} = 0.308 \ (0.259 - 0.359)$

 $\sin^2 \theta_{13} = 0.0234 \ (0.0176 - 0.0295)$

 $[\Theta^{\text{lep}_{23}} \sim 49.2^{\circ}]$

• Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3$ $\sin \theta_{13, \text{TBM}} = 0.$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

TBM and Coupled Pendulums

TBM and Coupled Pendulums

Tri-bimaximal Neutrino Mixing

• Latest Global Fit (3σ)

 $\sin^2 \theta_{23} = 0.437 \ (0.374 - 0.626)$

 $\sin^2 \theta_{12} = 0.308 \ (0.259 - 0.359)$

 $\sin^2 \theta_{13} = 0.0234 \ (0.0176 - 0.0295)$

 $[\Theta^{\text{lep}_{23}} \sim 49.2^{\circ}]$

• Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$U_{TBM} = \begin{pmatrix} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{pmatrix}$$

 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \qquad \sin^2 \theta_{\odot, \text{TBM}} = 1/3$ $\sin \theta_{13, \text{TBM}} = 0.$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

TBM from A4 Group

T: (1234) \rightarrow (2314) S: (1234) \rightarrow (4321)

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^3 = 1$

Neutrino Mass Matrix from A4

- Imposing A4 flavor symmetry on the Lagrangian
- A4 spontaneously broken by flavon fields

$$M_{\nu} = \frac{\lambda v^2}{M_x} \begin{pmatrix} 2\xi_0 + u & -\xi_0 & -\xi_0 \\ -\xi_0 & 2\xi_0 & u - \xi_0 \\ -\xi_0 & u - \xi_0 & 2\xi_0 \end{pmatrix}$$

Ma, Rajasekaran (2001); Babu, Ma, Valle (2003);

 always diagonalized by TBM matrix, independent of the two free parameters

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Neutrino Mixing Angles from Group Theory

Group Theoretical Origin of CP Violation

M-CC, Mahanthappa (2009); M.-C.C, M. Fallbacher, K.T. Mahanthappa, M. Ratz, A. Trautner, NPB (2014)

complex CGs ➪ G and physical CP transformations do not always commute

Class-inverting outer automorphism

Group Theoretical Origin of CP Violation

Modular Flavor Symmetries

Donuts = TORI

two cycles

edges \Rightarrow lattice basis vectors

points in plane identified if differ by a lattice translation

Equivalent TORI related by Modular Symmetries

• TORI: fundamental domain not unique

• Two basic transformations:

• In complex coordinates: modulus $\tau = e_2/e_1$

• S and T generate $SL(2, \mathbb{Z})$ and satisfy

$$S^2 = (ST)^3 = 1$$

• Finite Modular Group (quotient group): $\Gamma_N := \Gamma/\Gamma(N)$ where principal congruence group $\Gamma(N)$ is

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z})/\mathbb{Z}_2 ; \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}$$

• Generators of the quotient group Γ_N satisfy

$$S^2 = 1$$
, $(ST)^3 = 1$, $T^N = 1$

• Some examples

$$\Gamma_2 \simeq S_3$$
, $\Gamma_3 \simeq A_4$, $\Gamma_4 \simeq S_4$, $\Gamma_5 \simeq A_5$

 $f_i(\gamma \tau) = (C\tau + d)^{-k} \left[\rho_N(\gamma) \right]_{ij} f_j(\tau)$

Feruglio (2017)

• Imposing modular symmetry Γ on the Lagrangian:

$$\begin{split} \mathscr{L} \supset \sum Y_{i_1, i_2, \dots, i_n} \Phi_{i_1} \Phi_{i_2} \cdots \Phi_{i_n} \\ \tau & \stackrel{\gamma}{\longmapsto} \gamma \tau := \frac{a \tau + b}{c \tau + d} , \\ \Phi_j & \stackrel{\gamma}{\longmapsto} (c \tau + d)^{k_j} \rho_{r_j}(\gamma) \Phi_j , \quad \text{where } \gamma := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \hline \mathbf{k}_i : \text{ integers} & \text{representation matrix of } \Gamma_N \end{split}$$

• Yukawa Couplings = Modular Forms at level "N" w/ weight "k"

$$k = k_{i_1} + k_{i_2} + ... + k_{i_n}$$

58

A Toy Modular A₄ Model

Feruglio (2017)

- Weinberg Operator $\mathscr{W}_{v} = \frac{1}{\Lambda} [(H_{u} \cdot L) Y (H_{u} \cdot L)]_{1}$
- Traditional A4 Flavor Symmetry
 - Yukawa Coupling Y \rightarrow Flavon VEVs (A₄ triplet, 6 real parameters)

$$Y \to \langle \phi \rangle = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \implies m_v = \frac{v_u^2}{\Lambda} \begin{pmatrix} 2a & -c & -b \\ -c & 2b & -a \\ -b & -a & 2c \end{pmatrix}$$

- Modular A4 Flavor Symmetry
 - Yukawa Coupling Y \rightarrow Modular Forms (A4 triplet, 2 real parameters)

$$Y \to \begin{pmatrix} Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau) \end{pmatrix} \implies m_{\nu} = \frac{V_{u}^{2}}{\Lambda} \begin{pmatrix} 2Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\ -Y_{3}(\tau) & 2Y_{2}(\tau) & -Y_{1}(\tau) \\ -Y_{2}(\tau) & -Y_{1}(\tau) & 2Y_{3}(\tau) \end{pmatrix}$$

Modular Forms

Feruglio (2017)

• Level (N) = 3, Weight (k) = 2, in terms of Dedekind eta-function

$$Y_{1}(\tau) = \frac{i}{2\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right]$$

$$Y_{2}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right]$$

$$Y_{3}(\tau) = \frac{-i}{\pi} \left[\frac{\eta'\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)} + \omega \frac{\eta'\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)} + \omega^{2} \frac{\eta'\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)} \right] .$$

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}$$

A Toy Modular A₄ Model

Feruglio (2017)

• Input Parameters:

$$\tau = 0.0111 + 0.9946i$$

 v_u^2/Λ

• Predictions:

$$\begin{split} \frac{\Delta m_{sol}^2}{|\Delta m_{atm}^2|} &= 0.0292 \\ \sin^2\theta_{12} &= 0.295 \qquad \sin^2\theta_{13} = 0.0447 \qquad \sin^2\theta_{23} = 0.651 \\ \frac{\delta_{CP}}{\pi} &= 1.55 \qquad \qquad \frac{\alpha_{21}}{\pi} = 0.22 \qquad \qquad \frac{\alpha_{31}}{\pi} = 1.80 \quad . \end{split}$$

 $m_1 = 4.998 \times 10^{-2} \ eV$ $m_2 = 5.071 \times 10^{-2} \ eV$ $m_3 = 7.338 \times 10^{-4} \ eV$

Modular Symmetries: Bottom-Up Meet Top-Down

• Bottom-Up:

- reducing the number of parameters: in extreme case, entire neutrino mass matrix controlled by τ Feruglio (2017)
 - many interesting models based on modular flavor symmetries [Talks by Ferruccio Feruglio, Steve King, Serguey Petcov, João Penedo, Arsenii Titov, Gui-Jun Ding]
 - traditional NA flavor symmetries: corrections to kinetic terms -> sizable for NA discrete symmetries for leptons

Leurer, Nir, Seiberg ('93); Dudas, Pokorski, Savoy ('95); M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012)

 (Quasi-eclectic) setup with modular symmetries: corrections to kinetic terms can be under control —> reduction of theory uncertainty

Modular Symmetries: Bottom-Up Meet Top-Down

- Top-Down:
 - Modular flavor symmetries from strings
 - Calabi-Yau [Talk by Hajime Otsuka]
 - Modular Symmetries from magnetized tori

e.g. Almumin, MCC, Knapp-Pérez, Ramos-Sánchez, Ratz, Shukla (2021)

- Eclectic Flavor Symmetries e.g. Baur, Nilles, Trautner, Vaudrevange (2019)
 - Ingredients for reducing theoretical [Talks by Saúl Ramos-Sanchez, uncertainty [Talks by Saúl Ramos-Sanchez]
- CP and other outer automorphisms in modular symmetries e.g. Baur, Nilles, Trautner, Vaudrevange (2019)

[Talk by Andreas Trautner]

Acknowledgements

Yahya Almumin (UCI Grad)

Víctor Knapp-Pérez (Former UNAM UG; UCI Grad)

Adreja Mondol (UCI Grad)

Shreya Shukla (UCI Grad)

Maximilian

Fallbacher

(former

TUM

Grad)

Andreas Trautner (MPI Heidelberg PD; former TUM Grad/ BCTP PD)

Murong Cheng (UIUC Grad; former UCI UG)

Tommy Wen Chin (San Jose State U UG; Penn State Grad Fall'22)

Chinmayi Subramanya (IISER, Mohali, India UG)

K.T. S Mahanthappa (CU Boulder)

Saúl Ramos-Sánchez (UNAM, Mexico)

Michael Ratz (UCI)

Outlook

- Fundamental origin of fermion mass & mixing patterns still unknown
 - It took decades to understand the gauge sector of SM
- Uniqueness of Neutrino masses offers exciting opportunities to explore BSM Physics
 - Many NP frameworks; addressing other puzzles
 - Early Universe (leptogenesis, non-thermal relic neutrinos)
- New Tools/insights: examples of pheno relevance of formal theories
 - Non-Abelian Discrete Flavor Symmetries
 - Deep connection between outer automorphisms and CP
 - Modular Flavor Symmetries
 - Enhanced predictivity of flavor models (enhanced theory precision)
 - Possible connection to string theories -> promising venue toward realistic theories
- TD-BU: Having diverse perspectives drives intellectual excellence