NoTORIous Neutrinos

Mu-Chun Chen

University of California at Irvine

Bethe Colloquium, Universität Bonn, May 5, 2022

Bethe Forum

Modular Flavor Symmetries

Donuts = TORI

Equivalent TORI related by Modular Symmetries

String Theory

Modular Symmetries

Number Theory

Conference Board of the Mathematical Sciences
CBMS
Regional Conference Series in Mathematics
Modular forms appear in many ways in number theory. They play a central role in the theory of quadratic forms; in particular, they are generating functions for the number of representations of integers by positive definite quadratic forms (for example, see [Gro]). They are also key players in the recent spectacular proof of Fermat's Last Theorem (see for example, [Bos, CSS]). Modular forms are presently at the center of an immense amount of research activity.

The Web of Modularity: Arithmetic of the
Coefficients of Modular Forms and q-series

Condensed Matter Physics

Nuclear Physics B Volume 474, Issue 3, 2 September 1996, Pages 543-574

Modular invariance, self-duality and the phase transition between quantum Hall plateaus

Neutrino Physics

arXiv.org > hep-ph > arXiv:1706.08749

High Energy Physics - Phenomenology
[Submitted on 27 Jun 2017 (v1), last revised 29 Sep 2017 (this version, v2)]
Are neutrino masses modular forms?

Neutrino: Solution to the "Energy Crisis" !

Dec. 1930: invented by Pauli to explain missing energy spectrum in beta decay
$(N, Z) \rightarrow(N-1, Z+1)+e^{-}+\bar{\nu}$

Three Neutrino "Flavors"

Standard Model of Particle Physics

- 3 generations of quarks and leptons
- LH \& RH partners for all particles except for neutrinos

Fermion Mass Generation

- Higgs Mechanism
- Yukawa Interactions
- In Standard Model:
no RH neutrinos
- LH neutrinos cannot interact with Higgs BEC
- Neutrinos stay massless

Y: Yukawa coupling constant

Standard Model predicts massless neutrinos

Mysteries of Masses in SM

Mysteries of Masses in SM

The Higgs mechanism
generates fermion masses,
but does not explain the
observed mass spectrum.

In Standard Model: masses given by undetermined Yukawa coupling constants		\bullet	\bullet	\bullet	

Mysteries of Masses in SM

```
The Higgs mechanism generates fermion masses, but does not explain the observed mass spectrum.
```


In Standard Model: masses given by
 undetermined Yukawa coupling constants

```
SM predicts massless Neutrinos
```


Mysteries of Masses and Flavor Mixing in SM

- Charged current weak interaction mediated by $\mathrm{W} \pm$ gauge boson:

Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
- mass eigenstates $=$ weak eigenstates
- Accidental symmetries in SM
- lepton flavor numbers: L_{e}, L_{μ}, L_{τ}
- no processes cross family lines in lepton sector
- As a result
- no neutrino oscillation
- lepton flavor violation decays forbidden

Mysteries of Masses and Flavor Mixing in SM

- Neutrino Masses are degenerate (all zero)
- mass eigenstates $=$ weak eigenstates
- Accidental symmetries in SM
- lepton flavor numbers: L_{e}, L_{μ}, L_{τ}
- no processes cross family lines in lepton sector
- As a result
- no neutrino oscillation
- lepton flavor violation decays forbidden

Active experimental program searching for these rare processes, MEG, Mu2E, ...

Neutrino: a particle w/ 4 Nobel Prizes under Belt

1988 - Lederman, Schwartz, Steinberger, detection of muon neutrino in 1962

1995 - Reines (UCI): detection of electron antineutrino in 1958

2002 - Davis and Koshiba: solar and supernova neutrino detections, 1968, 1987

2015 - Kajita and McDonald: detection of neutrino oscillations, 1998, 2002

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita
Takaaki Kajita
Super-Kamiokande Collaboration

Photo: K. MacFarlane. Queen's University /SNOLAB

Neutrino Oscillations \checkmark
 Neutrinos have Mass

Arthur B. McDonald
Sudbury Neutrino Observatory Collaboration
The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"

What if Neutrinos Have Mass?

- Similar to the quark sector, there can be a mismatch between mass eigenstates and weak eigenstates
- weak interactions eigenstates: $V_{e}, V_{\mu} V_{\tau}$

- mass eigenstates: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$
- Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

Maki, Nakagawa, Sakata, I962 ; Pontecorvo, I967

$$
\left(\begin{array}{l}
v_{e} \\
v_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

Neutrino Oscillation: Macroscopic Quantum Mechanics

- production: neutrinos of a definite flavor produced by weak interaction
- propagation: neutrinos evolve according to their masses
- detection: neutrinos of a different flavor composition detected

Where Do We Stand?

Normal Ordering

Inverted Ordering

Where Do We Stand?

Normal Ordering

Inverted Ordering

Where Do We Stand?

Normal Ordering $\quad \sin ^{2} \theta_{23} \sim \frac{1}{2}, \sin ^{2} \theta_{12} \sim \frac{1}{3}, \sin \theta_{13} \sim \frac{1}{6}$

Open Questions - Neutrino Properties

ARE NEUTRINOS THEIR OWN? ANTIPARTICLES!

WHAT ARE THE MASSES OF THE THREE KNOWN NEUTRINO TYPES?

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
Sterile neutrino(s)?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?

Open Questions - Neutrino Properties

 ARE NEUTRINOS
THEIR OWNN?
ANTIPARTICLES?

WHAT ARE THE MASSES OF THE THREE KNOWN NEUTRINO TYPES?

DOES THE HIGGS GIVE MASS?
TO NEUTRINOS?

Majorana vs Dirac?
CP violation in lepton sector?
Absolute mass scale of neutrinos?
Mass ordering: sign of $\left(\Delta \mathrm{m}_{13}{ }^{2}\right)$?
Sterile neutrino(s)?
Precision: $\theta_{23}>\pi / 4, \theta_{23}<\pi / 4, \theta_{23}=\pi / 4$?
a suite of current/upcoming experiments to address these
puzzles

Experimental Precision

Figure Credit: Song, Li, Argüelles, Bustamante, Vincent (2020)

Experimental Precision

Are theoretical precision compatible with experimental precision?

Open Questions - Theoretical $v_{0}^{v_{i}}$

Smallness of neutrino mass: $\quad m_{V} \ll m_{e, u, d}$

Open Questions - Theoretical

Flavor structure:
weak interaction eigenstates

leptonic mixing

leptonic mixing

Fermion mass and hierarchy problem m Dominant fraction (22 out of 28)

of free parameters in SM

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?

Is there a simpler organization principle?

Where do fermion mass hierarchy, flavor mixing, and CP violation come from?
Is there a simpler organization principle?
Where do neutrinos get their masses
from?

Where do fermion mass hierarchy,
flavor mixing, and CP violation come from?

Is there a simpler organization principle?
Where do neutrinos get their masses from?

Is it the Higgs or something else that gives neutrino masses?

Why are neutrinos light? Seesaw Mechanism

- Adding the right-handed neutrinos:

$$
\begin{gathered}
\left(\begin{array}{ll}
v_{L} & v_{R}
\end{array}\right)\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right)\binom{v_{L}}{v_{R}} \\
m_{v} \sim m_{\text {light }} \sim \frac{m_{D}^{2}}{M_{R}} \ll m_{D} \\
m_{\text {heavy }} \sim M_{R}
\end{gathered}
$$

For

$$
m_{v_{3}} \sim \sqrt{\Delta m_{a t m}^{2}}
$$

If $m_{D} \sim m_{t} \sim 180 \mathrm{GeV}$

$\mathrm{M}_{\mathrm{R}} \sim 10^{15} \mathrm{GeV}$ (GUT !!)

Minkowski, I977; Yanagida, I979; Gell-Mann,

Ultimate Goal of Grand Unification

- Maxwell: electric and magnetic forces are different aspects of electromagnetism
- Einstein: early attempt to unify electric force and gravity

We are getting there.....

Grand Unification

Symmetry Relations

Grand Unified Theories: GUT symmetry

Quarks - Leptons

Family Symmetry:

[Figure Credit: King, Luhn, arXiv:1301.1340]

$$
\text { e-family } \Leftrightarrow \text { muon-family } \Leftrightarrow \text { tau-family }
$$

Symmetry Relations

Symmetry \Rightarrow relations among parameters
\Rightarrow reduction in number of fundamental parameters

Symmetry Relations

Symmetry \Rightarrow relations among parameters
\Rightarrow reduction in number of fundamental parameters

Symmetry \Rightarrow experimentally testable
correlations among physical observables

Origin of Flavor Mixing and Mass

- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T' (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A5 (icosahedron, dodecahedron)
- Δ_{27}
- Q_{6}
- T_{13}

By Eligio Lisi

Origin of Flavor Mixing and Mass

- Recently, models based on discrete family symmetry groups have been constructed
- A_{4} (tetrahedron)
- T' (double tetrahedron)
- S_{3} (equilateral triangle)
- S_{4} (octahedron, cube)
- A_{5} (icosahedron, dodecahedron)
- Δ_{27}
- Q_{6}
- T_{13}
GROUP
THEORY
A Physicisis Surcey

By Eligio Lisi

[^0]
Tri-bimaximal Neutrino Mixing

- Latest Global Fit (3б)

$$
\begin{gathered}
\sin ^{2} \theta_{23}=0.437(0.374-0.626) \\
\sin ^{2} \theta_{12}=0.308(0.259-0.359) \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295)
\end{gathered}
$$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

$$
\begin{aligned}
& {\left[\theta^{\mathrm{lep}} 23 \sim 49.2^{\circ}\right]} \\
& {\left[\theta^{\mathrm{lep}}{ }_{12} \sim 33.4^{\circ}\right]} \\
& {\left[\theta^{\mathrm{lep}}{ }_{13} \sim 8.57^{\circ}\right]}
\end{aligned}
$$

- Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{aligned}
& \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \\
& \sin \theta_{13, \mathrm{TBM}}=0 .
\end{aligned}
$$

TBM and Coupled Pendulums

TBM and Coupled Pendulums

$$
(1,0,-1)
$$

$$
(1,1,1)
$$

Tri-bimaximal Neutrino Mixing

- Latest Global Fit (3б)

$$
\begin{gathered}
\sin ^{2} \theta_{23}=0.437(0.374-0.626) \\
\sin ^{2} \theta_{12}=0.308(0.259-0.359) \\
\sin ^{2} \theta_{13}=0.0234(0.0176-0.0295)
\end{gathered}
$$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

$$
\begin{aligned}
& {\left[\theta^{\mathrm{lep}} 23 \sim 49.2^{\circ}\right]} \\
& {\left[\theta^{\mathrm{lep}}{ }_{12} \sim 33.4^{\circ}\right]} \\
& {\left[\theta^{\mathrm{lep}}{ }_{13} \sim 8.57^{\circ}\right]}
\end{aligned}
$$

- Tri-bimaximal Mixing Pattern

Harrison, Perkins, Scott (1999)

$$
U_{T B M}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right) \quad \begin{aligned}
& \sin ^{2} \theta_{\mathrm{atm}, \mathrm{TBM}}=1 / 2 \\
& \sin \theta_{13, \mathrm{TBM}}=0 .
\end{aligned}
$$

TBM from A4 Group

$$
\mathrm{T}:(1234) \rightarrow(2314) \quad \mathrm{S}:(1234) \rightarrow(4321)
$$

$$
S^{2}=1, \quad(S T)^{3}=1, \quad T^{3}=1
$$

Neutrino Mass Matrix from A4

- Imposing A4 flavor symmetry on the Lagrangian

Ma, Rajasekaran (200I); Babu, Ma, Valle (2003); Altarelli, Feruglio (2005)

- A4 spontaneously broken by flavon fields

2 free parameters

$$
M_{\nu}=\frac{\lambda v^{2}}{M_{x}}\left(\begin{array}{ccc}
2 \xi_{0}+u & -\xi_{0} & -\xi_{0} \\
-\xi_{0} & 2 \xi_{0} & u-\xi_{0} \\
-\xi_{0} & u-\xi_{0} & 2 \xi_{0}
\end{array}\right)
$$

relative strengths
 \Rightarrow CG's

- always diagonalized by TBM matrix, independent of the two free parameters

$$
U_{\mathrm{TBM}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-\sqrt{1 / 6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

Neutrino Mixing
Angles from
Group Theory

Group Theoretical Origin of CP Violation

complex CGs \Rightarrow G and physical CP transformations do not always commute

Class-inverting outer automorphism

Physical CP

Group Theoretical Origin of CP Violation

Modular Flavor Symmetries

Donuts = TORI

two cycles

Modular Symmetries

edges \Rightarrow lattice basis vectors
points in plane identified if differ by a lattice translation

Equivalent TORI related by Modular Symmetries

Modular Symmetries

- TORI: fundamental domain not unique
- Basis Vectors are related: $\binom{e_{2}}{e_{1}} \stackrel{\gamma}{\mapsto}\binom{e_{2}^{\prime}}{e_{1}^{\prime}}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{e_{2}}{e_{1}}=: \gamma\binom{e_{2}}{e_{1}}$

$$
a, b, c, d \in \mathbb{Z}
$$

- Volume of fundamental domain the same $\Rightarrow \operatorname{det} \gamma=1$

Modular Symmetries

- Two basic transformations:

$$
\begin{array}{ll}
T: e_{2} \mapsto e_{2}^{\prime}=e_{2}+e_{1} & \curvearrowright \gamma=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=: T \\
S: e_{1} \mapsto e_{1}^{\prime}=e_{2} \text { and } \quad e_{2} \mapsto e_{2}^{\prime}=-e_{1} & \sim \gamma=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=: S
\end{array}
$$

- In complex coordinates: modulus $\tau=\mathbf{e}_{2} / \mathbf{e}_{1}$

$$
\tau \stackrel{S}{\longmapsto} \frac{-1}{\tau} \quad \text { and } \quad \tau \stackrel{\tau}{\longmapsto} \tau+1
$$

- S and T generate $\operatorname{SL}(2, \mathbb{Z})$ and satisfy

$$
S^{2}=(S T)^{3}=\mathbb{1}
$$

Modular Symmetries

- Finite Modular Group (quotient group): $\Gamma_{N}:=\Gamma / \Gamma(N)$ where principal congruence group $\Pi(\mathrm{N})$ is

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z}) / \mathbb{Z}_{2} \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right\}
$$

- Generators of the quotient group Γ_{N} satisfy

$$
S^{2}=1, \quad(S T)^{3}=1, \quad T^{N}=1
$$

- Some examples

$$
\Gamma_{2} \simeq \mathrm{~S}_{3}, \quad \Gamma_{3} \simeq \mathrm{~A}_{4}, \quad \Gamma_{4} \simeq \mathrm{~S}_{4}, \quad \Gamma_{5} \simeq \mathrm{~A}_{5}
$$

Modular Symmetries

- Imposing modular symmetry Γ on the Lagrangian:

$$
\begin{aligned}
& \mathscr{L} \supset \sum Y_{i_{1}, i_{2}}, \ldots \ldots i_{n} \Phi_{i_{1}} \Phi_{i_{2}} \cdots \Phi_{i_{n}} \\
& \tau \stackrel{\gamma}{\longmapsto} \gamma \tau:=\frac{a \tau+b}{c \tau+d}, \\
& \Phi_{j} \stackrel{\gamma}{\longmapsto}(c \tau+d)^{k_{j}} \rho_{r_{j}}(\gamma) \Phi_{j}, \text { where } \gamma:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \mathrm{k}_{\mathrm{i}}: \text { integers } \quad \text { representation matrix of } I_{\mathrm{N}}
\end{aligned}
$$

- Yukawa Couplings = Modular Forms at level " N " w/ weight " k "

$$
f_{i}(\gamma \tau)=(c \tau+d)^{-k}\left[\rho_{N}(\gamma)\right]_{i j} f_{j}(\tau)
$$

$$
k=k_{i_{1}}+k_{i_{2}}+\ldots+k_{i_{n}}
$$

A Toy Modular A_{4} Model

- Weinberg Operator

$$
\mathscr{W}_{v}=\frac{1}{\Lambda}\left[\left(H_{u} \cdot L\right) Y\left(H_{u} \cdot L\right)\right]_{1}
$$

- Traditional A4 Flavor Symmetry
- Yukawa Coupling $Y \rightarrow$ Flavon VEVs (A A_{4} triplet, 6 real parameters)

$$
Y \rightarrow\langle\phi\rangle=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right) \Rightarrow m_{v}=\frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{ccc}
2 a & -c & -b \\
-c & 2 b & -a \\
-b & -a & 2 c
\end{array}\right)
$$

- Modular A4 Flavor Symmetry
- Yukawa Coupling $Y \rightarrow$ Modular Forms (A4 triplet, 2 real parameters)

$$
Y \rightarrow\left(\begin{array}{c}
Y_{1}(\tau) \\
Y_{2}(\tau) \\
Y_{3}(\tau)
\end{array}\right) \quad \Rightarrow \quad m_{v}=\frac{v_{u}^{2}}{\Lambda}\left(\begin{array}{lll}
2 Y_{1}(\tau) & -Y_{3}(\tau) & -Y_{2}(\tau) \\
-Y_{3}(\tau) & 2 Y_{2}(\tau) & -Y_{1}(\tau) \\
-Y_{2}(\tau) & -Y_{1}(\tau) & 2 Y_{3}(\tau)
\end{array}\right)
$$

Modular Forms

- Level $(N)=3$, Weight $(k)=2$, in terms of Dedekind eta-function

$$
\begin{aligned}
& Y_{1}(\tau)=\frac{i}{2 \pi}\left[\frac{\eta^{\prime}\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)}+\frac{\eta^{\prime}\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)}+\frac{\eta^{\prime}\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)}-\frac{27 \eta^{\prime}(3 \tau)}{\eta(3 \tau)}\right] \\
& Y_{2}(\tau)=\frac{-i}{\pi}\left[\frac{\eta^{\prime}\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)}+\omega^{2} \frac{\eta^{\prime}\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)}+\omega \frac{\eta^{\prime}\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)}\right] \\
& Y_{3}(\tau)=\frac{-i}{\pi}\left[\frac{\eta^{\prime}\left(\frac{\tau}{3}\right)}{\eta\left(\frac{\tau}{3}\right)}+\omega \frac{\eta^{\prime}\left(\frac{\tau+1}{3}\right)}{\eta\left(\frac{\tau+1}{3}\right)}+\omega^{2} \frac{\eta^{\prime}\left(\frac{\tau+2}{3}\right)}{\eta\left(\frac{\tau+2}{3}\right)}\right] \\
& \eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
\end{aligned}
$$

A Toy Modular A_{4} Model

- Input Parameters:

$$
\begin{array}{c|c}
\tau=0.0111+0.9946 i & v_{u}^{2} / \Lambda
\end{array}
$$

- Predictions:

$$
\begin{array}{lll}
\frac{\Delta m_{\text {sol }}^{2}}{\left|\Delta m_{\text {atm }}\right|}=0.0292 & & \\
\sin ^{2} \theta_{12}=0.295 & \sin ^{2} \theta_{13}=0.0447 & \sin ^{2} \theta_{23}=0.651 \\
\frac{\delta_{C P}}{\pi}=1.55 & \frac{\alpha_{21}}{\pi}=0.22 & \frac{\alpha_{31}}{\pi}=1.80 .
\end{array}
$$

$$
m_{1}=4.998 \times 10^{-2} \mathrm{eV} \quad m_{2}=5.071 \times 10^{-2} \mathrm{eV} \quad m_{3}=7.338 \times 10^{-4} \mathrm{eV}
$$

Modular Symmetries: Bottom-Up Meet Top-Down

- Bottom-Up:
- reducing the number of parameters: in extreme case, entire neutrino mass matrix controlled by $\tau \quad$ Ferugio (2017)
- many interesting models based on modular flavor symmetries
[Talks by Ferruccio Feruglio, Steve King, Serguey Petcov, João Penedo, Arsenii Titov, Gui-Jun Ding]
- traditional NA flavor symmetries:
corrections to kinetic terms -> sizable for NA discrete symmetries for leptons

Leurer, Nir, Seiberg ('93); Dudas, Pokorski, Savoy ('95); M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (20I2)

- (Quasi-eclectic) setup with modular symmetries: corrections to kinetic terms can be under control \longrightarrow
 reduction of theory uncertainty

Modular Symmetries: Bottom-Up Meet Top-Down

- Top-Down:
- Modular flavor symmetries from strings
- Calabi-Yau
[Talk by Hajime Otsuka]
- Modular Symmetries from magnetized tori
- Eclectic Flavor Symmetries e.g. Baur, Nilles, Trautner, Vaudreanage (2019)
- Ingredients for reducing theoretical [Talks by Saúl Ramos-Sanchez, Alexander Baur]
- CP and other outer automorphisms in modular
symmetries e.g. Buar, Niles, Trautner:Vaudrevange (2019)
[Talk by Andreas Trautner]

Acknowledgements

Outlook

- Fundamental origin of fermion mass \& mixing patterns still unknown
- It took decades to understand the gauge sector of SM
- Uniqueness of Neutrino masses offers exciting opportunities to explore BSM Physics
- Many NP frameworks; addressing other puzzles
- Early Universe (leptogenesis, non-thermal relic neutrinos)
- New Tools/insights: examples of pheno relevance of formal theories
- Non-Abelian Discrete Flavor Symmetries
- Deep connection between outer automorphisms and CP
- Modular Flavor Symmetries
- Enhanced predictivity of flavor models (enhanced theory precision)
- Possible connection to string theories -> promising venue toward realistic theories
- TD-BU: Having diverse perspectives drives intellectual excellence

[^0]: PIERRE RAMOND

