

Fermion mass **hierarchies** from residual modular symmetries and modulus **stabilisation**

in collaboration with S.T. Petcov, P.P. Novichkov JHEP 04 (2021) 206 [2102.07488] JHEP 03 (2022) 149 [2201.02020]

João Penedo (CFTP, Lisbon)

Bethe Forum workshop on "Modular Flavor Symmetries", Bonn

4 May 2022

Modular symmetry cheat sheet (1/3)

$$\begin{split} & \overbrace{\Gamma} \stackrel{\bullet}{P} \equiv SL(2,\mathbb{Z}) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{Z}, \det \gamma = 1 \right\} \\ & \tau \to \frac{a\tau + b}{c\tau + d} \\ & S^2 = R, \quad (ST)^3 = R^2 = \mathbb{1}, \quad RT = TR \\ & S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \\ & \tau \to -1/\tau \\ & \text{inverSion} \\ & T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \\ & \tau \to \tau + 1 \\ & \text{Translation} \\ & R = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}; \\ & \tau \to \tau \\ & \text{Redundant} \\ & \end{split}$$

but can affect fields...

Modular symmetry cheat sheet (2/3)

automorphy factor

$$\psi \rightarrow \left[(c\tau + d)^{-k} \right] \rho(\gamma) \psi$$

Weight $k \in \mathbb{Z}$

"Almost trivial" representation of the modular group

$$\Gamma(N) \subset \mathbf{G} \Gamma \mathbf{b}$$

Principal congruence subgroup of level N

$$\Gamma(N) \equiv \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}$$

$$\rho(\Gamma(N)) = \mathbb{1}$$
$$\rho(T\Gamma(N)) = \rho(T)$$
$$\rho(S\Gamma(N)) = \rho(S)$$

. . .

 $\rho(\gamma)$ is effectively a representation of $\ \Gamma'_N\equiv\Gamma/\Gamma(N)$

Modular symmetry cheat sheet (3/3)

Invariance of the superpotential

Lowest-weight modular forms

Pieces of a puzzle (a personal view)

- explanation of mass hierarchies?
- clear explanation of mixing?
- use TD to fix Kahler and irreps?
- phenomenology beyond masses and mixing?
- modular symmetry breaking as the only source of CPV?
- do away with SUSY?

I. Fermion mass hierarchies from residual modular symmetries

Mass hierarchies from modular symmetry?

Much adoe about Mixing.

As it hath been sundrie times publikely acted by the right honourable, the Lord Chamberlaine his feruants.

Written by William Shakespeare.

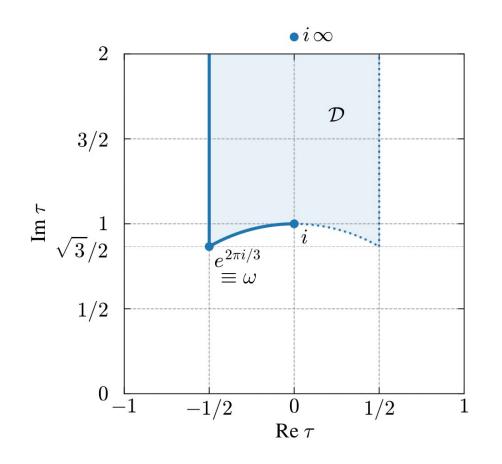
Mass hierarchies from modular symmetry?

• Usually fermion mass hierarchies are put in **by hand**: hierarchies (or cancellations) between superpotential parameters

e.g. $\gamma \ll \alpha \ll \beta$ [see talks by Serguey, Arsenii]

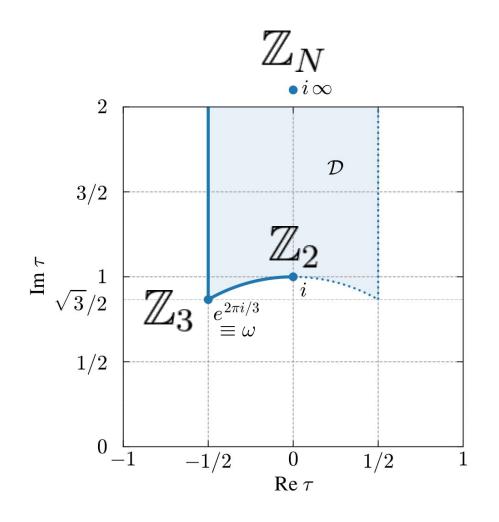
- Other approaches new (weighted) scalars which enter the mass matrices a la Froggatt-Nielsen. Weights are analogous to FN charges
 [Steve King's talk]
 Criado, Feruglio, King, 1908.11867
 King, King, 2002.00969
- Our approach No new scalars, mechanism uses only *t*, common weights across generations (unlike FN charges)

Residual modular symmetries



- The **fundamental domain** is enough
- Any *t* breaks the modular symmetry

Residual modular symmetries



- The **fundamental domain** is enough
- Any *t* breaks the modular symmetry
- At special values of *t*, some residual symmetry remains

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\rm sym} \\ M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \psi^c M \psi$$

Key idea:

some couplings vanish as we approach a symmetric point

Corrections to vanishing couplings

$$\tau = \tau_{\text{sym}} \qquad \epsilon \sim |\tau - \tau_{\text{sym}}| > 0$$

$$M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \rightarrow \qquad M \sim \begin{pmatrix} 1 & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \end{pmatrix}$$

$$\psi^{c} M \psi$$

In the vicinity of the sym. point, the couplings are

 $\mathcal{O}(\epsilon^l)$

Key idea:

some couplings vanish as we approach a symmetric point

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l
i	\mathbb{Z}_2	l = 0, 1
ω	\mathbb{Z}_3	l=0,1,2
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$

Decompositions under residual groups (determine $\mathcal{O}(\epsilon^l)$)

$ au_{ m sym}$	Residual sym.	Possible powers ϵ^l	
i	\mathbb{Z}_2	l = 0, 1	Feruglio, Gherardi,
ω	\mathbb{Z}_3	l=0,1,2	Romanino, Titov, 2101.08718
$i\infty$	\mathbb{Z}_N	$l=0,1,\ldots,N$	(for A4, me=0)

 $\psi^{c} M \psi$

$$\begin{split} \psi &\xrightarrow{\gamma} (c\tau + d)^{-k} \rho(\gamma) \psi \\ \psi^c &\xrightarrow{\gamma} (c\tau + d)^{-k^c} \rho^c(\gamma) \psi^c \\ M(\tau) &\xrightarrow{\gamma} M(\gamma\tau) = (c\tau + d)^K \rho^c(\gamma)^* M(\tau) \rho(\gamma)^\dagger \end{split}$$

 $\psi \rightsquigarrow \mathbf{1}_{...} \oplus \mathbf{1}_{...} \oplus \mathbf{1}_{...}$ $\psi^c \rightsquigarrow \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots} \oplus \mathbf{1}_{\dots}$

In general, depend on weights **Determined for all** $N \leq 5$

Example: hierarchical mass matrix (A5)

$$\begin{array}{l} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

 $\tau_{\text{sym}} = i\infty$ $\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$ $\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$

Example: hierarchical mass matrix (A5)

$$\begin{array}{l} \psi \sim (\mathbf{3}, k) \\ \psi^c \sim (\mathbf{3}', k^c) \end{array} \Rightarrow$$

Under the residual group of

$$\tau_{\text{sym}} = i\infty$$

$$\psi \rightsquigarrow 1_0 \oplus \mathbf{1}_1 \oplus \mathbf{1}_4$$

$$\psi^c \rightsquigarrow 1_0 \oplus \mathbf{1}_2 \oplus \mathbf{1}_3$$

For $\psi^c \, M \, \psi$, we expect:

$$M \sim \begin{pmatrix} 1 & \epsilon^4 & \epsilon \\ \epsilon^3 & \epsilon^2 & \epsilon^4 \\ \epsilon^2 & \epsilon & \epsilon^3 \end{pmatrix}$$

with $\epsilon = e^{-2\pi \operatorname{Im} \tau/5}$

fermion spectrum

 $\sim (1, \epsilon, \epsilon^4)$

Indeed the case, provided enough modular forms contribute to *M* (otherwise, me = 0)

Example: hierarchical mass matrix (A5)

Scan of possible mass patterns

Performed for 3 generations, for all $N \leq 5$

e.g. fermion spe	ctra for multiple	ts of modular A5
------------------	-------------------	------------------

-	\mathbf{r}^{c}	$ au\simeq\omega$			= er iec
r	Г	$k+k^c\equiv 0$	$k+k^c\equiv 1$	$k+k^c\equiv 2$	$ au \simeq i\infty$
3	3	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	3 '	(1,1,1)	(1,1,1)	(1,1,1)	$(1,\epsilon,\epsilon^4)$
3 '	3 '	(1,1,1)	(1,1,1)	(1,1,1)	(1,1,1)
3	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^4)$
3 '	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon^2,\epsilon^3)$
$1\oplus1\oplus1$	$1\oplus1\oplus1$	(1,1,1)	$(\epsilon^2,\epsilon^2,\epsilon^2)$	$(\epsilon,\epsilon,\epsilon)$	(1, 1, 1)

Scan of possible mass patterns

Performed for 3 generations, for all $N \leq 5$

e.g. fermion spectra for multiplets of modular A5

-	\mathbf{r}^{c}	$ au\simeq\omega$			- enies
r	r-	$k+k^c\equiv 0$	$k + k^c \equiv 1$ $k + k$	$k+k^c\equiv 2$	$ au \simeq i\infty$
3	3	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	3 '	(1,1,1)	(1,1,1)	(1,1,1)	$(1,\epsilon,\epsilon^4)$
3 '	3 '	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)	(1, 1, 1)
3	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^4)$
3 '	$1\oplus1\oplus1$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon,\epsilon^2)$	$(1,\epsilon^2,\epsilon^3)$
$1 \oplus 1 \oplus 1$	$1\oplus1\oplus1$	(1, 1, 1)	$(\epsilon^2,\epsilon^2,\epsilon^2)$	$(\epsilon,\epsilon,\epsilon)$	(1, 1, 1)

Promising hierarchical patterns

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	
4	S'_4	$egin{aligned} (1,\epsilon,\epsilon^2) \ (1,\epsilon,\epsilon^3) \end{aligned}$	$ au \simeq \omega$ $ au \simeq i\infty$	
5		$(1,\epsilon,\epsilon^4)$		

Promising hierarchical patterns

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$\left(1,\epsilon,\epsilon^2\right)$	$\tau\simeq\omega$	$[2\oplus1^{(\prime)}]\otimes [1\oplus1^{(\prime)}\oplus1^{\prime}]$
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} & [1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] \ & [1_a \oplus 1_a \oplus 1_a'] \otimes [1_b \oplus 1_b \oplus 1_b''] ext{ with } 1_a eq (1_b)^* \end{aligned}$
4	S'_4	$egin{aligned} (1,\epsilon,\epsilon^2) \ (1,\epsilon,\epsilon^3) \end{aligned}$	$ au \simeq \omega$ $ au \simeq i\infty$	$egin{aligned} &[3_a, \mathrm{or} \; 2 \oplus 1^{(\prime)}, \mathrm{or} \; \mathbf{\hat{2}} \oplus \mathbf{\hat{1}}^{(\prime)}] \otimes [1_b \oplus 1_b \oplus 1_b'] \ &3 \otimes [2 \oplus 1, \mathrm{or} \; 1 \oplus 1 \oplus 1'], 3' \otimes [2 \oplus 1', \mathrm{or} \; 1 \oplus 1' \oplus 1'], \ &\mathbf{\hat{3}}' \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}, \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}'], \mathbf{\hat{3}} \otimes [\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}', \mathrm{or} \; \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}' \oplus \mathbf{\hat{1}}'] \end{aligned}$
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes3'$

Promising hierarchical patterns (try leptons)

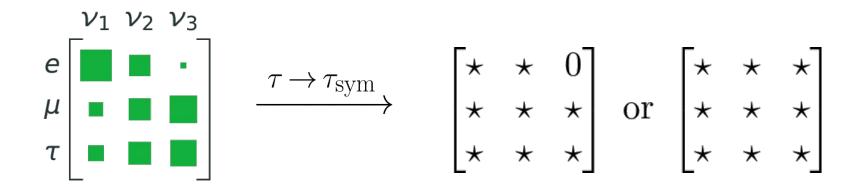
N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$	
2	S_3	$\left(1,\epsilon,\epsilon^2\right)$	$\tau\simeq\omega$		
3	A_4'	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$		
4	S'_4	$(1,\epsilon,\epsilon^2)$ $(1,\epsilon,\epsilon^3)$	$ au\simeq\omega$	$L \sim (\mathbf{\hat{2}} \oplus \mathbf{\hat{1}}, 2), E^c \sim (\mathbf{\hat{3}}', 2), N^c \sim (3, 1)$	
	ч <i>0</i> 4	T	$(1,\epsilon,\epsilon^3)$	$\tau\simeq i\infty$	$\mathbf{\hat{3}}' \otimes (\mathbf{\hat{2}} \oplus \mathbf{\hat{1}})$ 8 parameters
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes3'$	
Mas	ses ar	e OK :)		$L \sim ({f 3},3), \ E^c \sim ({f 3}',1), \ N^c \sim ({f \hat 2},2)$ 8 parameters	

Promising hierarchical patterns (try leptons)

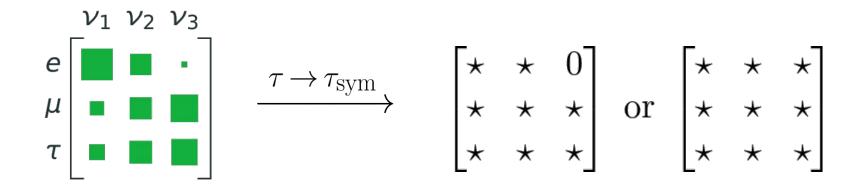
N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$					
2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$						
3	A'_4	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$ $ au \simeq i\infty$						
4	S'_4	$(1,\epsilon,\epsilon^2)$ $(1,\epsilon,\epsilon^3)$	$ au \simeq \omega$ $ au \simeq i\infty$	$\begin{array}{c} L\sim(\mathbf{\hat{2}\oplus\hat{1}},2),\ E^c\sim(\mathbf{\hat{3}}',2),\ N^c\sim(3,1)\\ \mathbf{\hat{3}}'\otimes(\mathbf{\hat{2}\oplus\hat{1}}) \end{array} \end{array} \\ \textbf{8 parameters} \end{array}$					
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau\simeq i\infty$	$3\otimes3'$					
	Masses are OK, but mixing is tuned :(Wrong PMNS in the symmetric limit: $L \sim (3,3), E^c \sim (3',1), N^c \sim (\hat{2},2)$ 8 parameters								

parameters are driven into cancellations

How to avoid fine-tuning (in the lepton sector)



How to avoid fine-tuning (in the lepton sector)



Reyimuaji, Romanino, 1801.10530

1.
$$\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$$
2.
$$\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$$
3.
$$m_e = m_\mu = m_\tau = 0$$
4.
$$m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$$

for mixing near symmetric points, see also Okada, Tanimoto, 2009.14242

Promising hierarchical patterns (leptons)

$\begin{array}{cccc} 2 & S_3 & (1,\epsilon,\epsilon^2) & \tau \simeq \omega & [2 \oplus 1^{(\prime)}] \otimes [1 \oplus 1^{(\prime)} \oplus 1^{\prime}] \\ \\ 3 & A_4' & (1,\epsilon,\epsilon^2) & \\ \tau \simeq i\infty & \begin{bmatrix} 1_a \oplus 1_a \oplus 1_a^{\prime} \end{bmatrix} \otimes [1_b \oplus 1_b \oplus 1_b^{\prime\prime}] \\ & \begin{bmatrix} 1 \oplus 1 \oplus 1^{\prime} \end{bmatrix} \otimes [1^{\prime\prime} \oplus 1^{\prime\prime} \oplus 1^{\prime\prime}], \\ & \begin{bmatrix} 1 \oplus 1 \oplus 1^{\prime\prime} \end{bmatrix} \otimes [1^{\prime\prime} \oplus 1^{\prime\prime} \oplus 1^{\prime\prime}], \end{array}$	1 or 4
$egin{array}{ccc} 3 & A_4' & (1,\epsilon,\epsilon^2) & [{f 1}\oplus{f 1}\oplus{f 1}']\otimes [{f 1}''\oplus{f 1}''\oplus{f 1}'], \ & au\sim i\infty & \end{array}$	2
	2
4 S'_4 $(1,\epsilon,\epsilon^2)$ $\tau \simeq \omega$ $[3_a, \text{ or } 2 \oplus 1^{(\prime)}, \text{ or } \mathbf{\hat{2}} \oplus \mathbf{\hat{1}}^{(\prime)}] \otimes [1_b \oplus 1_b]$	$\oplus 1_b'] = 1 \text{ or } 4$
5 A'_5	

1. $\begin{cases} L \sim 1 \oplus 1 \oplus 1 \\ E^c \sim 1 \oplus \mathbf{r} \not\supseteq 1 \end{cases}$ 2. $\begin{cases} L \sim \mathbf{1} \oplus \mathbf{1} \oplus \overline{\mathbf{1}} \\ E^c \sim \overline{\mathbf{1}} \oplus \mathbf{r} \not\supseteq \mathbf{1}, \overline{\mathbf{1}} \end{cases}$ 3. $m_e = m_\mu = m_\tau = 0$ 4. $m_{\nu_1} = m_{\nu_2} = m_{\nu_3} = 0$

Promising hierarchical patterns (leptons)

	N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r}_{E^c}\otimes\mathbf{r}_L$		Case
	2	S_3	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$			1 or 4
				$\tau\simeq\omega$			2
	3	A'_4	$(1,\epsilon,\epsilon^2)$	$\tau\simeq i\infty$			2
	4	S_4'	$(1,\epsilon,\epsilon^2)$	$\tau\simeq\omega$	$[3_{a}%] = (3_{a})^{T} 1_{a}^{T} 1_{a}^{T}$	$]\otimes [1_b\oplus1_b\oplus1_b']$	1 or 4
	5	A_5'	—				
1.	$\begin{cases} L\\ E^c \end{cases}$	$\sim 1 \in $ $\sim 1 \in $	$\oplus 1 \oplus 1$ $\oplus \mathbf{r} \not\supset 1$	2. $\begin{cases} L \\ E^c \end{cases}$	$egin{array}{ll} \sim 1 \oplus 1 \oplus \mathbf{ar{1}} \ \sim \mathbf{ar{1}} \oplus \mathbf{r} eq 1, \mathbf{ar{1}} \end{array}$	3. $m_e = m_\mu = m_\mu$ 4. $m_{\nu_1} = m_{\nu_2} = m_{\nu_1}$	

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

Superpotential:

$$\begin{split} W &= \left[\alpha_1 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_1 \right)_{\mathbf{1}} + \alpha_3 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_4 \left(Y_{\mathbf{3}',2}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_5 \left(Y_{\mathbf{3}}^{(4,6)} E^c L_3 \right)_{\mathbf{1}} \right] H_d \\ &+ \left[g_1 \left(Y_{\mathbf{\hat{3}}}^{(4,3)} N^c L_1 \right)_{\mathbf{1}} + g_2 \left(Y_{\mathbf{\hat{3}}}^{(4,3)} N^c L_2 \right)_{\mathbf{1}} + g_3 \left(Y_{\mathbf{\hat{3}}'}^{(4,3)} N^c L_3 \right)_{\mathbf{1}} \right] H_u \\ &+ \Lambda \left(Y_{\mathbf{2}}^{(4,2)} (N^c)^2 \right)_{\mathbf{1}} . \end{split}$$

[gCP imposed, see talk by Arsenii next]

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} \qquad |\epsilon| \simeq 2.8 \left|\frac{\tau - \omega}{\tau - \omega^2}\right|$$

$$M_{\nu} \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}}b \end{pmatrix}$$

Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$\begin{split} M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} & |\epsilon| \simeq 2.8 \left| \frac{\tau - \omega}{\tau - \omega^2} \right| \\ \sim \left| \tau - e^{2\pi i/3} \right| \\ M_\nu \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}b} \end{pmatrix} & u \equiv \frac{\tau - \omega}{\tau - \omega^2} & \text{ind} \\ u \mid \text{ quantifies the deviation of } \tau \\ \text{from the left cusp (the original ϵ)} \end{split}$$

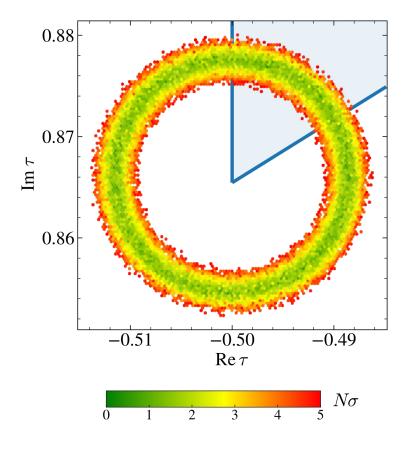
Only S₄' model from a scan requiring minimal # params., $m_e > 0$, and Dirac phase within 2σ range (otherwise unconstrained):

$$L \sim (\mathbf{\hat{1}} \oplus \mathbf{\hat{1}} \oplus \mathbf{\hat{1}}', 2), E^c \sim (\mathbf{\hat{3}}, 4), N^c \sim (\mathbf{3}', 1)$$

$$M_e \propto \begin{pmatrix} 1 & \alpha - 2\beta & 2\sqrt{3}i\gamma \\ \sqrt{3}\epsilon & \sqrt{3}(\alpha + 2\beta)\epsilon & 2i\gamma\epsilon \\ \frac{5}{2}\epsilon^2 & \left(\frac{5}{2}\alpha - \beta\right)\epsilon^2 & -\frac{5}{\sqrt{3}}i\gamma\epsilon^2 \end{pmatrix} \quad |\epsilon| \simeq 2.8 \left| \frac{\tau - \omega}{\tau - \omega^2} \right|$$
$$M_\nu \propto \epsilon \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & a \\ 1 & a & 2i\sqrt{\frac{2}{3}b} \end{pmatrix} \quad \begin{bmatrix} |\epsilon| \simeq 0.02 & \alpha = 2.45 \pm 0.44 \\ a = 1.5 \pm 0.15 & \beta = 2.14 \pm 0.32 \\ b = 2.22 \pm 0.17 & \gamma = 0.91 \pm 0.05 \end{pmatrix}$$

Example: lepton model close to ω

 $|\epsilon| \simeq 0.02 \Leftrightarrow |u| \simeq 0.007$



$$m_e = \mathcal{O}(\epsilon^2)$$
$$m_\mu = \mathcal{O}(\epsilon) \qquad \checkmark$$
$$m_\tau = \mathcal{O}(1)$$

NO,
$$m_{\nu_1} = 0$$
 $\delta \simeq \pi$
 $m_{\beta\beta} = (1.44 \pm 0.33) \text{ meV}$

Naturally allows for **hierarchies**, **large mixing**, and some **predictivity**

Summary I

Summary I

• Fermion **mass hierarchies** can naturally arise if *t* is in the vicinity of a point of residual symmetry,

$$\tau_{\rm sym} = \omega, i\infty, (i)$$

• This mechanism works without flavons.

- Natural lepton mixing can also arise in such models. Requiring no fine-tuning in the whole lepton sector is remarkably restrictive.
- As seen in the model and anticipated from the hierarchical patterns, $|u| \simeq 0.007$ is required. Ad hoc?

II. Modulus stabilisation

Simplest modular-invariant potentials?

- Studied by Cvetič, Font, Ibáñez, Lüst and Quevedo (1991) $\mathcal{N}=1\,\text{SUGRA}$

$$K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau)$$

$$G(\tau, \overline{\tau}) = \kappa^2 K(\tau, \overline{\tau}) + \log \left| \kappa^3 W(\tau) \right|^2 \qquad \kappa^2 = \frac{8\pi}{M_P^2}$$

• Superpotential has modular weight $-n = -1, -2, -3, \dots$

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad \qquad \mathfrak{n} = \kappa^2 \Lambda_K^2$$

• Simplified model, independent of the level *N*

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\bar{j}} D_i W D_{\bar{j}} W^* - 3\kappa^2 |W|^2 \right)$$

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\bar{j}} D_i W D_{\bar{j}} W^* - 3\kappa^2 |W|^2 \right)$$
$$V(\tau, \bar{\tau}) = \frac{\Lambda_V^4}{(2\operatorname{Im} \tau)^{\mathfrak{n}} |\eta(\tau)|^{4\mathfrak{n}}} \left[\left| iH'(\tau) + \frac{\mathfrak{n}}{2\pi} H(\tau) \hat{G}_2(\tau, \bar{\tau}) \right|^2 \frac{(2\operatorname{Im} \tau)^2}{\mathfrak{n}} - 3|H(\tau)|^2 \right]$$

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^{2\mathfrak{n}}} \qquad V = e^{\kappa^2 K} \left(K^{i\,\overline{j}} D_i W D_{\overline{j}} W^* - 3\kappa^2 |W|^2 \right)$$

$$\Lambda_V = \left(\kappa^2 \Lambda_W^6\right)^{1/4}$$

$$V(\tau,\overline{\tau}) = \frac{\Lambda_V^4}{(2\,\mathrm{Im}\,\tau)^{\mathfrak{n}} |\eta(\tau)|^{4\mathfrak{n}}} \left[\left| iH'(\tau) + \frac{\mathfrak{n}}{2\pi} H(\tau) \hat{G}_2(\tau,\overline{\tau}) \right|^2 \frac{(2\,\mathrm{Im}\,\tau)^2}{\mathfrak{n}} - 3|H(\tau)|^2 \right]$$

$$\hat{G}_2(\tau,\overline{\tau}) = G_2(\tau) - \frac{\pi}{\mathrm{Im}\,\tau}$$

$$\frac{\eta'(\tau)}{\eta(\tau)} = \frac{i}{4\pi} G_2(\tau)$$

The superpotential

$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^6} \qquad V(\tau, \overline{\tau}) = \frac{\Lambda_V^4}{8(\operatorname{Im} \tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\operatorname{Im} \tau)^2 - 3|H|^2 \right]$$

• Most general holomorphic $H(\tau)$ (except at $i\infty$) Cvetič et al (1991)

$$H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \mathcal{P}(j(\tau))$$

$$m, n = 0, 1, 2, \dots$$

$$j = \left(\frac{72}{\pi^2} \frac{\eta \eta'' - 3\eta'^2}{\eta^{10}}\right)^3 = \left[\frac{72}{\pi^2 \eta^6} \left(\frac{\eta'}{\eta^3}\right)'\right]^3$$

The superpotential

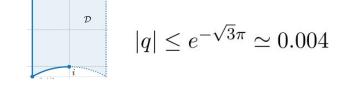
$$W(\tau) = \Lambda_W^3 \frac{H(\tau)}{\eta(\tau)^6} \qquad V(\tau, \overline{\tau}) = \frac{\Lambda_V^4}{8(\operatorname{Im} \tau)^3 |\eta|^{12}} \left[\frac{4}{3} \left| iH' + \frac{3}{2\pi} H \hat{G}_2 \right|^2 (\operatorname{Im} \tau)^2 - 3|H|^2 \right]$$

• Most general holomorphic $H(\tau)$ (except at $i\infty$) Cvetič et al (1991)

$$\begin{array}{rcl} H(\tau) \ = \ (j(\tau) - 1728)^{m/2} \ j(\tau)^{n/3} \ \mathcal{P}\left(j(\tau)\right) \\ & & \\ \hline m, n = 0, 1, 2, \dots \\ & & \\ f = \left(\frac{72}{\pi^2} \frac{\eta \eta'' - 3\eta'^2}{\eta^{10}}\right)^3 = \left[\frac{72}{\pi^2 \eta^6} \left(\frac{\eta'}{\eta^3}\right)'\right]^3 \\ & \\ \mathcal{P}(j) \ = \ 1 \qquad \text{simplest choice} \end{array}$$

- This potential is modular- and CP-invariant (also for some other P(j)'s)
- Everything can be expressed in terms of η and its derivatives...

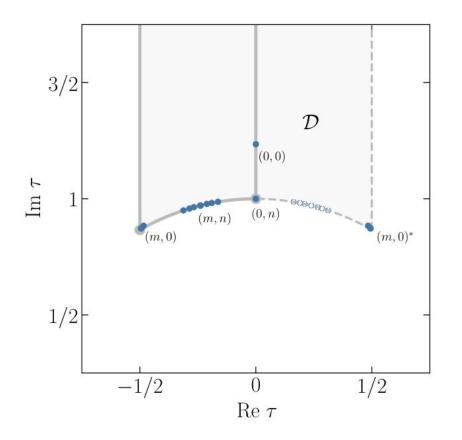
q- and u-expansions of η



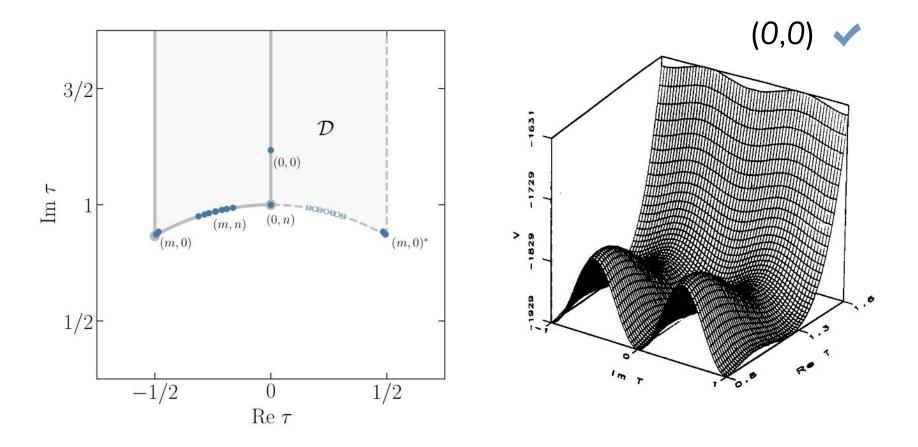
$$\eta = q^{1/24} \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{3n^2 - n}{2}} = q^{1/24} \left(1 - q - q^2 + q^5 + q^7 - q^{12} - q^{15} + \mathcal{O}(q^{22}) \right)$$

$$\begin{split} u &\equiv \frac{\tau - \omega}{\tau - \omega^2} & \tilde{\eta}(u) \equiv \frac{\eta(u)}{\sqrt{1 - u}} \\ u &\xrightarrow{ST} \omega^2 u & \tilde{\eta}(u) \xrightarrow{ST} \tilde{\eta}(u) \end{split}$$

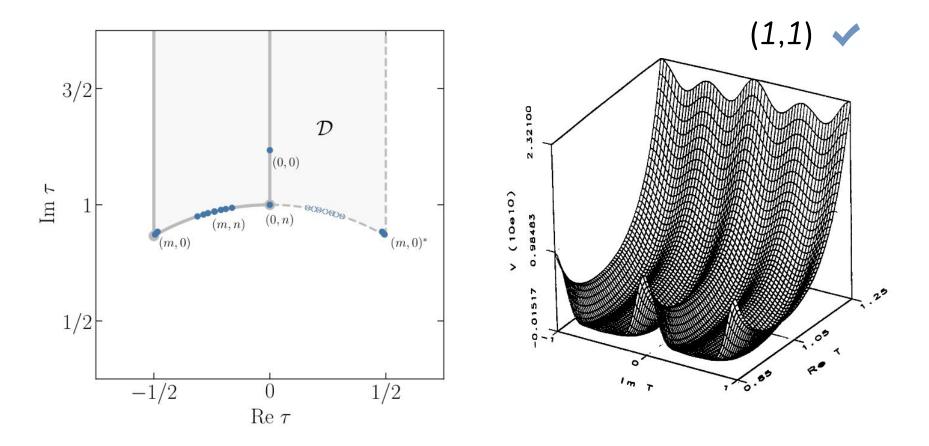
$$\begin{split} \tilde{\eta}(u) &\simeq e^{-i\pi/24} \left(0.800579 - 0.573569 u^3 - 0.780766 u^6 - 0.150007 u^9 \right) + \mathcal{O}(u^{12}) \\ &\equiv e^{-i\pi/24} \left(\tilde{\eta}_0 + \tilde{\eta}_3 u^3 + \tilde{\eta}_6 u^6 + \tilde{\eta}_9 u^9 \right) + \mathcal{O}(u^{12}) \,, \end{split}$$



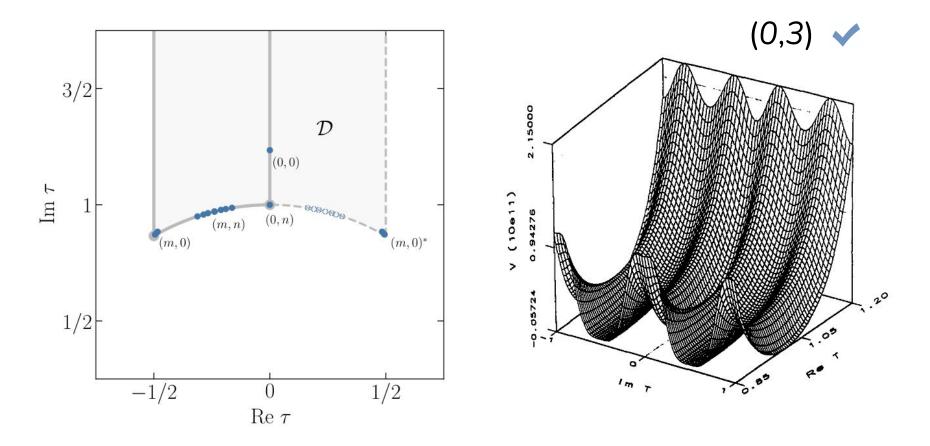
"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



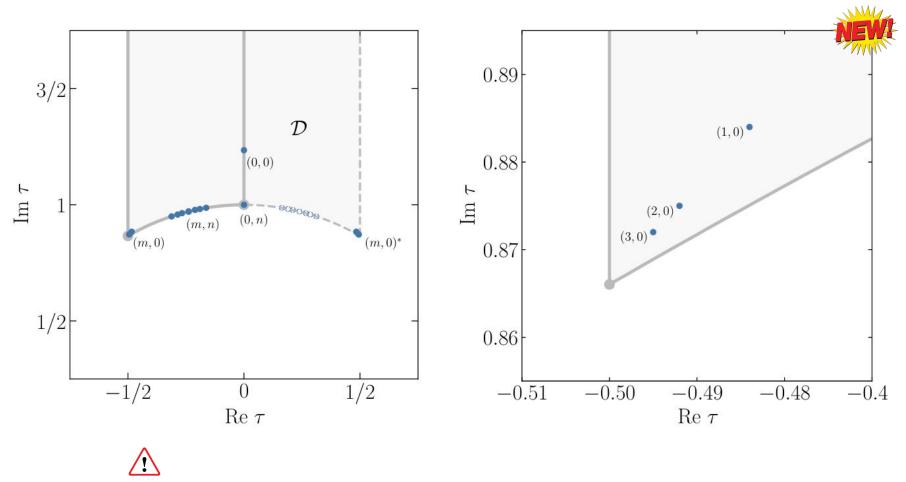
"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



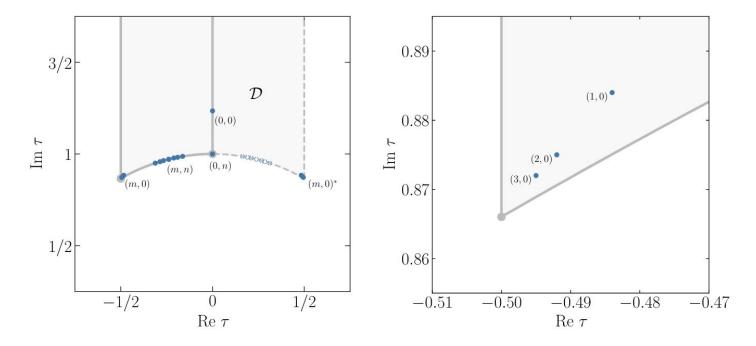
"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



"(...) we conjecture that all extrema of V entirely lie on [the boundary]." — Cvetič et al.



(0,0) is a single minimum at $\tau \simeq 1.2i$ on the imaginary axis, corresponding to the case m = n = 0;

(0, n) is a single minimum at the symmetric point $\tau = i$ attained when $m = 0, n \neq 0$;

- (m, 0) and $(m, 0)^*$ are a pair of degenerate minima for each $m \neq 0$ and n = 0: (m, 0) is located in the vicinity of the left cusp $\tau = \omega$, approaching this symmetric point as m increases, while $(m, 0)^*$ is its CP-conjugate;
- (m, n) is a series of minima on the unit arc, corresponding to $m \neq 0$, $n \neq 0$; these minima shift towards $\tau = \omega$ ($\tau = i$) along the arc as m (n) grows.

The (m,0) family of potentials

• *u*-expand (*m*,0) potentials to analyse them near the left cusp

$$V_{m,0} = \Lambda_V^4 \frac{1728^m}{\sqrt{3}\,\tilde{\eta}_0^{12}} \left\{ -1 - 2\,|u|^2 + \left(A_m^2 - 3\right)\,|u|^4 \right\} + \mathcal{O}(|u|^6)$$
$$A_m \equiv \frac{864\,|\tilde{\eta}_3|^3}{\pi^6\,\tilde{\eta}_0^{27}}\,m + \frac{6\,|\tilde{\eta}_3|}{\tilde{\eta}_0}$$
$$\simeq 68.78\,m + 4.30$$

The (m,0) family of potentials

• *u*-expand (*m*,0) potentials to analyse them near the left cusp

$$V_{m,0} = \Lambda_V^4 \frac{1728^m}{\sqrt{3} \tilde{\eta}_0^{12}} \left\{ -1 - 2 |u|^2 + (A_m^2 - 3) |u|^4 \right\} + \mathcal{O}(|u|^6)$$

Mexican hat potential
(cusp is a maximum!)
$$A_m \equiv \frac{864 |\tilde{\eta}_3|^3}{\pi^6 \tilde{\eta}_0^{27}} m + \frac{6 |\tilde{\eta}_3|}{\tilde{\eta}_0}$$
$$\simeq 68.78 m + 4.30$$
$$|u|_{\min} \simeq (A_m^2 - 3)^{-1/2}$$
$$\simeq A_m^{-1} = \frac{0.0145}{m + 0.0625}$$

The (m,0) family of potentials $u=|u|e^{i\phi}$ (phase dependence)

• *u*-expanding to higher order shows dependence on $\phi \in [-\pi/3, 0]$

$$V_{m,0} \propto -1 - 2 |u|^{2} + (A_{m}^{2} - 3) |u|^{4} + (-4 + 2A_{m}^{2} + B_{m}^{2} \cos 6\phi) |u|^{6} + 2A_{m}B_{m}^{2} \cos 3\phi |u|^{7} + (-5 + 3A_{m}^{2} + 2B_{m}^{2} \cos 6\phi) |u|^{8} + \mathcal{O}(|u|^{9})$$

$$B_{m}^{2} \equiv \frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} m \left[\frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} (m - 2) + \frac{3 (31 \tilde{\eta}_{3}^{2} - 10 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0} |\tilde{\eta}_{3}|}\right] + \frac{6 (7 \tilde{\eta}_{3}^{2} - 2 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0}^{2}} \simeq 4730.60 m^{2} - 2069.73 m + 33.26.$$

The (m,0) family of potentials $u=|u|e^{i\phi}$ (phase dependence)

• *u*-expanding to higher order shows dependence on $\phi \in [-\pi/3, 0]$

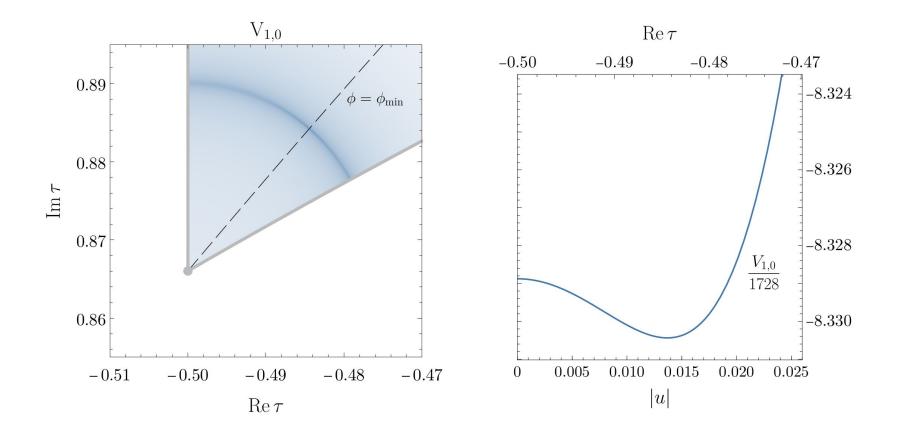
$$V_{m,0} \propto -1 - 2 |u|^{2} + (A_{m}^{2} - 3) |u|^{4} + (-4 + 2A_{m}^{2} + B_{m}^{2} \cos 6\phi) |u|^{6} + 2A_{m}B_{m}^{2} \cos 3\phi |u|^{7} + (-5 + 3A_{m}^{2} + 2B_{m}^{2} \cos 6\phi) |u|^{8} + \mathcal{O}(|u|^{9})$$

$$B_{m}^{2} \equiv \frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} m \left[\frac{864 |\tilde{\eta}_{3}|^{3}}{\pi^{6} \tilde{\eta}_{0}^{27}} (m - 2) + \frac{3 (31 \tilde{\eta}_{3}^{2} - 10 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0} |\tilde{\eta}_{3}|}\right] + \frac{6 (7 \tilde{\eta}_{3}^{2} - 2 \tilde{\eta}_{0} \tilde{\eta}_{6})}{\tilde{\eta}_{0}^{2}} \simeq 4730.60 m^{2} - 2069.73 m + 33.26.$$

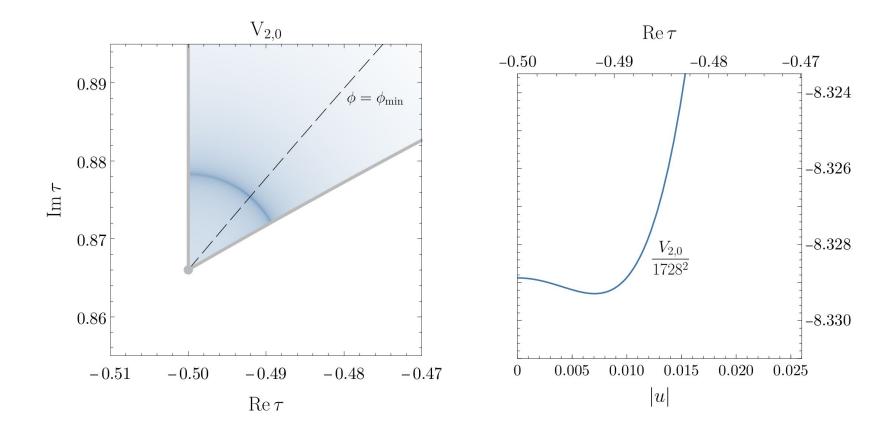
• Phase of u mostly determined by $|u|^6$ and $|u|^7$ terms

$$\phi_{\min} \simeq -\frac{2\pi}{9} = -40^{\circ}$$

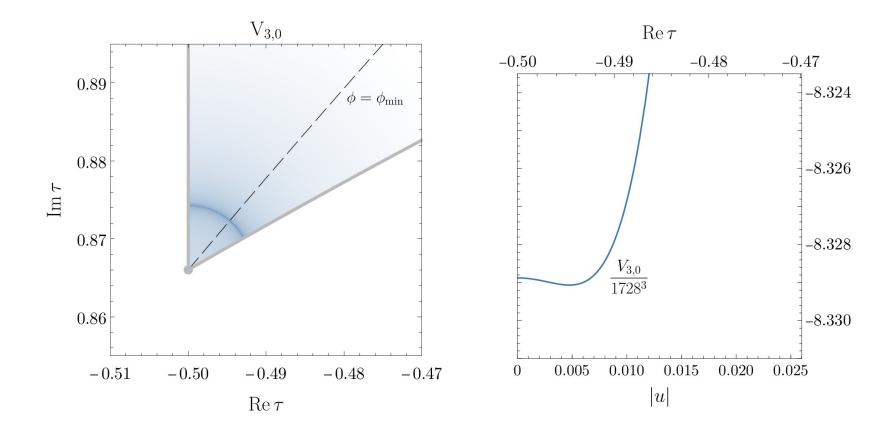
The (m,0) family of potentials (m = 1)



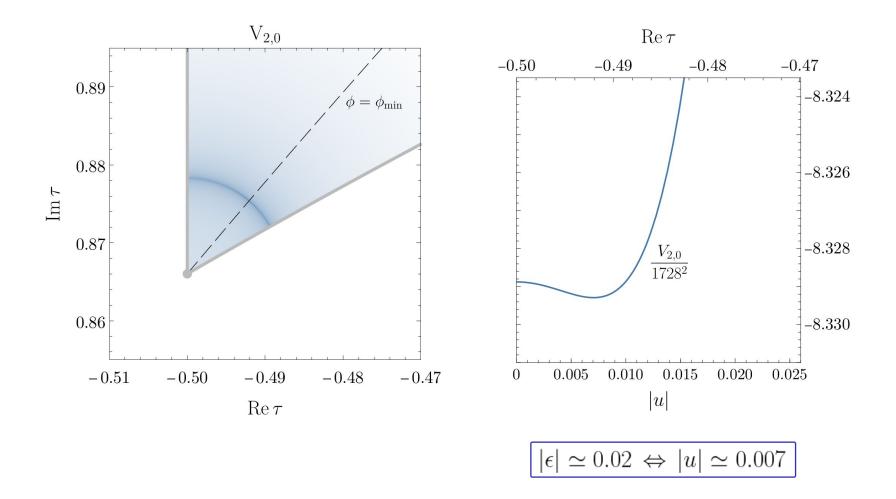
The (m,0) family of potentials (m = 2)



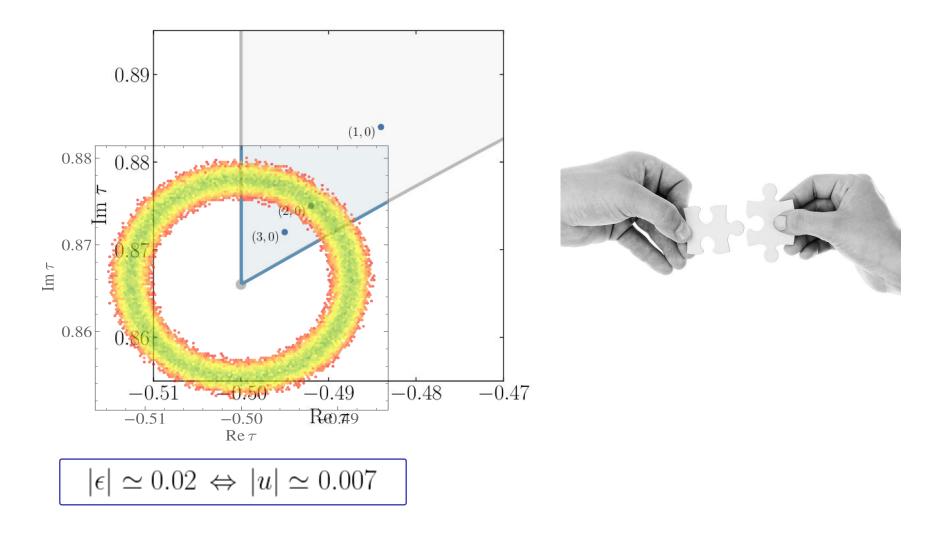
The (m,0) family of potentials (m = 3)



The (m,0) family of potentials (m = 2)



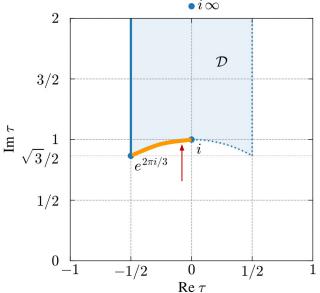
Matching puzzle pieces?



The global SUSY limit (a comment)

$$\mathbf{n} = \kappa^2 \Lambda_K^2 \to \mathbf{0} \qquad \begin{array}{c} K(\tau, \overline{\tau}) = -\Lambda_K^2 \log(2 \operatorname{Im} \tau) \\ \kappa^2 = 8\pi/M_P^2 \\ W(\tau) = \Lambda_W^3 H(\tau) \qquad H(\tau) = (j(\tau) - 1728)^{m/2} j(\tau)^{n/3} \mathcal{P}(j(\tau)) \\ V(\tau, \overline{\tau}) = \frac{4\Lambda_K^6}{\Lambda_K^2} (\operatorname{Im} \tau)^2 \left| H'(\tau) \right|^2 \qquad 2 \end{array}$$

- Global minima are zeros of H'
- non-trivial $\mathcal{P}(j)$ can be engineered to produce minima at arbitrary points in the fundamental domain



Summary II

Summary II

- There are simple potentials for modulus stabilisation, which are independent of the level *N*
- Novel CP-breaking minima are found, located in the vicinity of (but not directly on) the cusps
- The found deviation |u| matches the BU requirement "My favourite because it requires no tuning at all"

Food for thought

Natural normalisation of modular forms?

• Often, several modular multiplets provide **independent contributions** to the mass matrices

$$\begin{split} W &= \left[\alpha_1 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_1 \right)_{\mathbf{1}} + \alpha_3 \left(Y_{\mathbf{3}',1}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_4 \left(Y_{\mathbf{3}',2}^{(4,6)} E^c L_2 \right)_{\mathbf{1}} + \alpha_5 \left(Y_{\mathbf{3}}^{(4,6)} E^c L_3 \right)_{\mathbf{1}} \right] H_d \\ &+ \left[g_1 \left(Y_{\mathbf{3}}^{(4,3)} N^c L_1 \right)_{\mathbf{1}} + g_2 \left(Y_{\mathbf{3}}^{(4,3)} N^c L_2 \right)_{\mathbf{1}} + g_3 \left(Y_{\mathbf{3}'}^{(4,3)} N^c L_3 \right)_{\mathbf{1}} \right] H_u \\ &+ \Lambda \left(Y_{\mathbf{2}}^{(4,2)} (N^c)^2 \right)_{\mathbf{1}} \,. \end{split}$$

• Modular forms are **arbitrarily normalised**

$$(Y_1, Y_2, Y_3, Y_4, Y_5) \simeq \mathcal{N}\left(-1/\sqrt{6}, q, 3q^2, 4q^3, 7q^4\right)$$

• Is there a canonical way to fix the magnitude of these normalisations? Example: build all multiplets from lowest weight one(s) via tensor products, using some "canonically normalized" CGCs (a la Quantum Mechanics)

Larger fundamental domains?

- Despite working with representations of the quotients, our theories are **fully modular invariant**
- To have canonical kinetic terms,

$$\tau \to \frac{a\tau + b}{c\tau + d} \quad \Rightarrow \quad g_i \to (c\tau + d)^{-k_{Y_i}} g_i$$

• e.g. in a particular model,

$$\left(\frac{a\tau+b}{c\tau+d}, (c\tau+d)^{-2} \beta/\alpha, (c\tau+d)^{-2} \gamma/\alpha, g'/g, \dots, \Lambda'/\Lambda, \dots\right) \rightarrow$$

these different parameter sets lead to the same observables

see section 4 of Novichkov, JP, Petcov, Titov, 1811.04933

Universality of simple potential?

Kahler effects on hierarchies?

Backup slides

Decompositions under residual groups: A5'

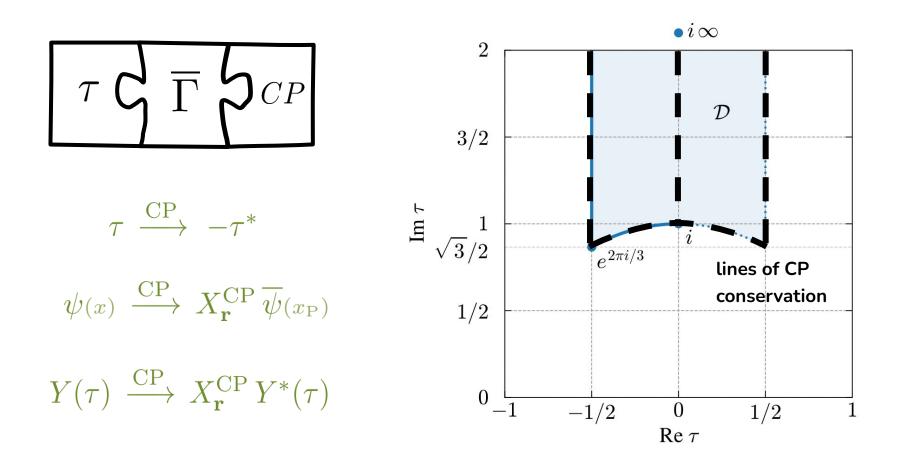
r	$\mathbb{Z}_4^S \left(au = i ight)$	$\mathbb{Z}_3^{ST}\times\mathbb{Z}_2^R(\tau=\omega)$	$\mathbb{Z}_5^T\times\mathbb{Z}_2^R(\tau=i\infty)$
1	1_k	1_k^\pm	1_0^{\pm}
${f \hat{2}}$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_2^{\mp} \oplus 1_3^{\mp}$
$\hat{2}'$	$1_{k+1} \oplus 1_{k+3}$	$1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_4^{\mp}$
3	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm$	$1_0^\pm\oplus 1_1^\pm\oplus 1_4^\pm$
3 '	$1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm$	$1_0^\pm\oplus 1_2^\pm\oplus 1_3^\pm$
4	$1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm$	$1_1^\pm\oplus1_2^\pm\oplus1_3^\pm\oplus1_4^\pm$
Â	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_1^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp} \oplus 1_4^{\mp}$
5	$1_k \oplus 1_k \oplus 1_k \oplus 1_{k+2} \oplus 1_{k+2}$	$1_k^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+1}^\pm \oplus 1_{k+2}^\pm \oplus 1_{k+2}^\pm$	$1_0^\pm \oplus 1_1^\pm \oplus 1_2^\pm \oplus 1_3^\pm \oplus 1_4^\pm$
Ĝ	$1_{k+1} \oplus 1_{k+1} \oplus 1_{k+1} \oplus 1_{k+3} \oplus 1_{k+3} \oplus 1_{k+3}$	$1_{k}^{\mp} \oplus 1_{k}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+1}^{\mp} \oplus 1_{k+2}^{\mp} \oplus 1_{k+2}^{\mp} \oplus 1_{k+2}^{\mp}$	$1_0^{\mp} \oplus 1_0^{\mp} \oplus 1_1^{\mp} \oplus 1_2^{\mp} \oplus 1_3^{\mp} \oplus 1_4^{\mp}$

Details of the model fit

Model	Section 4.2 (S'_4)
Re $ au$ $-0.496^{+0.009}_{-0.010}$ Im $ au$ $0.877^{+0.0023}_{-0.024}$	
α_3/α_1	$2.45\substack{+0.44\\-0.42}$
α_4/α_1	$-2.37\substack{+0.36\\-0.3}$
α_5/α_1	$1.01\substack{+0.06 \\ -0.06}$
g_2/g_1	$1.5\substack{+0.15 \\ -0.14}$
g_3/g_1	$2.22\substack{+0.17 \\ -0.15}$
$v_d \alpha_1, \mathrm{GeV}$	$4.61^{+1.32}_{-1.33}$
$v_u^2 g_1 / \Lambda, \mathrm{eV}$	$0.268\substack{+0.057\\-0.063}$
$\epsilon(au)$	$0.0186\substack{+0.0028\\-0.0023}$
CL mass pattern	$(1,\epsilon,\epsilon^2)$
$\max(\mathrm{BG})$	0.848

m_e/m_μ	$0.00475^{+0.00061}_{-0.00052}$	
$m_\mu/m_ au$	$0.0556\substack{+0.0136\\-0.0116}$	
r 0.0298 ^{+0.00} _{-0.00}		
$\delta m^2, 10^{-5} \mathrm{eV}^2$	$7.38\substack{+0.35 \\ -0.44}$	
$ \Delta m^2 , 10^{-3} \text{ eV}^2$	$2.48\substack{+0.05 \\ -0.04}$	
$\sin^2\theta_{12}$	$0.304\substack{+0.039\\-0.036}$	
$\sin^2 \theta_{13}$	$0.0221\substack{+0.0019\\-0.002}$	
$\sin^2 \theta_{23}$	$0.539\substack{+0.0522\\-0.099}$	
m_1, eV	0	
m_2, eV	$0.0086\substack{+0.0002\\-0.00026}$	
m_3, eV	$0.0502\substack{+0.00046\\-0.00043}$	
$\Sigma_i m_i$, eV	$0.0588\substack{+0.0002\\-0.0002}$	
$ \langle m \rangle , \mathrm{eV}$	$0.00144\substack{+0.00035\\-0.00033}$	
δ/π	$1\pm \mathcal{O}(10^{-6})$	
α_{21}/π	0	
$lpha_{31}/\pi$		
Νσ	0.563	

Combining modular and CP symmetries



Constraints on the Kähler potential?

- Kähler not constrained by the symmetry.
- Under a modular transformation, invariant up to: $K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) \rightarrow K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) + f(\chi_i; \tau) + f(\overline{\chi}_i; \overline{\tau})$
- Minimal choice:

$$K(\chi_i, \overline{\chi}_i; \tau, \overline{\tau}) = -h \Lambda_0^2 \log(-i(\tau - \overline{\tau})) + \sum_i \frac{|\chi_i|^2}{(-i(\tau - \overline{\tau}))^{k_i}}$$

should be justified from the top-down

Chen, Ramos-Sánchez and Ratz, 1909.06910

• Further constraints may arise from combining modular group + traditional finite flavour symmetry

Nilles, Ramos-Sanchez, Vaudrevange, 2004.05200

SUSY breaking effects?

- **RGEs & threshold corrections** need to be considered, depend on tan β and unknown SUSY spectrum
- **SUSY-breaking** corrections can be made negligible via separation of scales (power counting argument)
- Under reasonable conditions, predictions may be unaffected

Feruglio and Criado, 1807.01125

Extrema at $\tau = i, \omega$

Gonzalo, Ibáñez and Uranga, 1812.06520

	$V\left(T=1\right)$	Type of Extrema	Η	$\frac{dH}{dT}$	SUSY
m > 1	V = 0	Min	0	0	Yes
m = 1	$\frac{1}{T_{I}^{3} \eta ^{12}}\left\{\left a\right ^{2} C ^{2}\right\} > 0$	$Max - 2.57 < \frac{H'''}{H'} < -1.57$	0	$\neq 0$	No
	- 99,000 PMB - 99	SP $\frac{H^{\prime\prime\prime\prime}}{H^\prime} < -2.57$ or $\frac{H^{\prime\prime\prime\prime}}{H^\prime} > -1.57$			
m = 0	$\propto rac{ P(0) ^2}{T_I^3 \eta ^{12}} \{-3\} < 0$	$\operatorname{Min}\left \frac{H''}{H} + 1.19\right > \frac{3}{2}$	$\neq 0$	0	Yes
		$Max - \frac{3}{4} < \frac{H''}{H} + 1.19 < \frac{3}{4}$			
		SP (Saddle Point) if else			

Table 2. Classification of the extrema found at T = i.

	$V\left(T=\rho\right)$	Type of Extrema	Н	$\frac{dH}{dT}$	SUSY
n > 1	V = 0	Minimum	0	0	Yes
n = 1	$\frac{1}{ \eta ^{12}} \left\{ \frac{4}{3} \left \mathcal{P}(1728) \right ^2 \left D \right ^2 \right\} > 0$	Maximum	0	$\neq 0$	No
n = 0	$\propto \frac{1728^m \mathcal{P}(1728) ^2}{T_I^3 \eta ^{12}} \left\{ -3 \right\} < 0$	Maximum	$\neq 0$	0	Yes

Table 3. Classification of the extrema found at $T = \rho$.

No, there is no tuning in choosing this form of the superpotential (arguably)

$$H(\tau) \propto (J(\tau) - 1)^{m/2}$$

Subset of all possible $H(\tau)$ which vanish only at the symmetric point $\tau=i$ (itself distinguished by modular symmetry)

 $J(\tau) \equiv j(\tau)/1728$