CP and other Outer Automorphisms of Modular Flavor Symmetries

Andreas Trautner

contact: trautner AT mpi-hd.mpg.de

based on:

1402.0507 1612.08984 1808.07060 1901.03251 1908.00805 2105.08078 2112.06940 22xx.xxxxx
w/ M.-C. Chen, M. Fallbacher, K.T. Mahanthappa and M. Ratz w/ M. Ratz
w/ H.P. Nilles, M. Ratz, P. Vaudrevange
w/ A. Baur, H.P. Nilles, P. Vaudrevange
w/ A. Baur, H.P. Nilles, P. Vaudrevange w/ H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevange w/ A.Baur, H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevange w/ A.Baur, H.P. Nilles, S. Ramos-Sánchez, P. Vaudrevange

CP and other Outer Automorphisms

- Outer automorphisms and CP in Standard Model
- General vs. generalized CP
- Two types of groups
- $\Delta(54)$ example with CP-like symmetry
- CP properties of modular group
- Relevance of Outer automorphisms for derivation of the eclectic flavor symmetry
- Summary

Outer automorphisms 101

Example: \mathbb{Z}_{3} symmetry, generated by $a^{3}=i d$.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a, a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	a	a^{2}
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	1	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

Outer automorphisms 101

Example: \mathbb{Z}_{3} symmetry, generated by $\mathrm{a}^{3}=\mathrm{id}$.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a \stackrel{\leftrightarrow}{*} a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

\mathbb{Z}_{3}	id	a^{2}		
$\mathbf{1}$	1	1	1	
$\mathbf{1}^{\prime}$	1	ω	ω^{2}	
$\mathbf{1}^{\prime \prime}$	1	ω^{2}	ω	
		$\left(\omega:=e^{2 \pi \mathrm{i} / 3}\right)$		

Outer automorphisms 101

Example: \mathbb{Z}_{3} symmetry, generated by $\mathrm{a}^{3}=$ id.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a 乡 a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

\mathbb{Z}_{3}	id	a^{2}	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	1	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$$
u(a): a \mapsto a^{2} . \quad\left(\text { think: } \mathrm{ua}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. In words: Out is a "symmetry of the symmetry".

Outer automorphisms 101

Example: \mathbb{Z}_{3} symmetry, generated by $\mathrm{a}^{3}=$ id.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a \nLeftarrow a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

\mathbb{Z}_{3}	id	a^{2}	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	$\mathbf{1}$	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$$
u(\mathrm{a}): \mathrm{a} \mapsto \mathrm{a}^{2} . \quad\left(\text { think: } \mathrm{ua} \mathrm{u}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. In words: Out is a "symmetry of the symmetry".

Concrete: Out is a $1: 1$ mapping of representations $\boldsymbol{r} \mapsto \boldsymbol{r}^{\prime}$. Comes with a transformation matrix U, which is given by

$$
U \rho_{\boldsymbol{r}^{\prime}}(\mathrm{g}) U^{-1}=\rho_{\boldsymbol{r}}(u(\mathrm{~g})), \quad \forall \mathrm{g} \in G
$$

(consistency condition)

- $\rho_{\boldsymbol{r}}(g)$: representation matrix for group element $g \in G$
- $u: g \mapsto u(g)$: outer automorphism
- U unique only up to phase + central element

Outer automorphisms 101

Example: \mathbb{Z}_{3} symmetry, generated by ${ }^{3}=$ id.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a \neq a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

\mathbb{Z}_{3}	id	a^{2}	
$\mathbf{1}$	1	1	
1			
$\mathbf{1}^{\prime}$	1	ω	
$\mathbf{1}^{\prime \prime}$	1	$\omega \omega^{2}$	
	ω^{2}		
		$\left.==\mathrm{e}^{2 \pi i / 3}\right)$	

$$
u(\mathrm{a}): \mathrm{a} \mapsto \mathrm{a}^{2} . \quad\left(\text { think: } \mathrm{ua} \mathrm{u}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. In words: Out is a "symmetry of the symmetry".
Concrete: Out is a $1: 1$ mapping of representations $r \mapsto \boldsymbol{r}^{\prime}$. Comes with a transformation matrix U, which is given by

$$
U \rho_{\boldsymbol{r}^{\prime}}(\mathbf{g}) U^{-1}=\rho_{\boldsymbol{r}}(u(\mathbf{g})), \quad \forall \mathrm{g} \in G .
$$

(consistency

- $\rho_{r}(g)$: representation matrix for group elenic.
- $u: g \mapsto u(g)$: outer automorphism
- U unique only up to phase + central element

CP transformation in the Standard Model

In the Standard Model

$$
\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1) \quad \text { and } \quad \mathrm{SO}(3,1)
$$

physical CP is described by a simultaneous outer automorphism transformation of all symmetries which maps

$$
\begin{aligned}
\boldsymbol{r}_{i} & \longleftrightarrow \boldsymbol{r}_{i}^{*}, \\
\left(\text { e.g. }(\mathbf{3}, \mathbf{2})_{1 / 6}^{\mathrm{L}}\right. & \left.\longleftrightarrow(\overline{\mathbf{3}}, \overline{\mathbf{2}})_{-1 / 6}^{\mathrm{R}}\right),
\end{aligned}
$$

for all representations of all symmetries.
Conservation of such a transformation warrants $\bar{\theta}, \delta_{\text {CP }}=0$.
Violation of such a transformation is implied by experiment, and necessary requirement for baryogenesis.

General vs. generalized CP

Schematically, QFT with symmetry

$$
G_{1} \otimes G_{2} \otimes \cdots,
$$

and quantum fields

$$
\psi \in \boldsymbol{r}_{G_{1}} \otimes \boldsymbol{r}_{G_{2}} \otimes \cdots .
$$

CP trafo based on complex conjugation outer automorphism.

$$
\psi(x) \stackrel{\mathcal{C P}}{\longmapsto}\left(U_{\boldsymbol{r}_{G_{1}}} \otimes U_{\boldsymbol{r}_{G_{2}}} \otimes \cdots\right) \psi^{*}(\mathcal{P} x) .
$$

- Each U has to fulfill its own consistency condition. There is no choice: No "generalization" necessary or possible.
- Only in specific cases a basis maybe chosen such that $U=\mathbb{1}$.
- Often such a basis is actually an inconvenient choice.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
- This is different for unconstrained spaces \mathcal{H}. For example flavorspace of the SM! Here generalization is possible.

Notion of generalized CP for symmetry constrained spaces should be abandonned. There is only general CP!

General vs. generalized CP

Schematically, QFT with symmetry

$$
G_{1} \otimes G_{2} \otimes \cdots \otimes \mathcal{H}
$$

and quantum fields

$$
\psi \in \boldsymbol{r}_{G_{1}} \otimes \boldsymbol{r}_{G_{2}} \otimes \cdots \otimes \mathbb{1}_{\mathcal{H}}
$$

CP trafo based on complex conjugation outer automorphism.

$$
\psi(x) \stackrel{\mathcal{C P}}{\longmapsto}\left(U_{\boldsymbol{r}_{G_{1}}} \otimes U_{\boldsymbol{r}_{G_{2}}} \otimes \cdots \otimes \mathcal{U}_{\mathcal{H}}\right) \psi^{*}(\mathcal{P} x) .
$$

- Each U has to fulfill its own consistency condition. There is no choice: No "generalization" necessary or possible.
- Only in specific cases a basis maybe chosen such that $U=\mathbb{1}$.
- Often such a basis is actually an inconvenient choice.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
- This is different for unconstrained spaces \mathcal{H}. For example flavorspace of the SM! Here generalization is possible.

Notion of generalized CP for symmetry constrained spaces should be abandonned. There is only general CP!

The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry

$$
\mathscr{L}=\mathrm{i} \bar{\Psi} \gamma^{\mu}\left(\partial_{\mu}-\mathrm{i} g T_{a} W_{\mu}^{a}\right) \Psi-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a} .
$$

The most general possible CP transformation:

$$
\begin{aligned}
W_{\mu}^{a}(x) & \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} W_{\nu}^{b}(\mathcal{P} x), \\
\Psi_{\alpha}^{i}(x) & \mapsto \eta_{\mathrm{CP}} U^{i j} \mathcal{C}_{\alpha \beta} \Psi^{* j}{ }_{\beta}(\mathcal{P} x) .
\end{aligned}
$$

The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry $\quad\left[T_{a}, T_{b}\right]=\mathrm{i} f_{a b c} T_{c}$

$$
\mathscr{L}=\mathrm{i} \bar{\Psi} \gamma^{\mu}\left(\partial_{\mu}-\mathrm{i} g T_{a} W_{\mu}^{a}\right) \Psi-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}
$$

The most general possible CP transformation:

$$
\begin{aligned}
W_{\mu}^{a}(x) & \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} W_{\nu}^{b}(\mathcal{P} x), \\
\Psi_{\alpha}^{i}(x) & \mapsto \eta_{\mathrm{CP}} U^{i j} \mathcal{C}_{\alpha \beta} \Psi^{* j}{ }_{\beta}(\mathcal{P} x) .
\end{aligned}
$$

[Grimus, Rebelo,'95]
This is (can be) a conserved symmetry of the action iff,
\curvearrowright Three consistency conditions!

$$
\begin{align*}
R_{a a^{\prime}} R_{b b^{\prime}} f_{a^{\prime} b^{\prime} c} & =f_{a b c^{\prime}} R_{c^{\prime} c} \tag{i}\\
U\left(-T_{a}^{\mathrm{T}}\right) U^{-1} & =R_{a b} T_{b} \tag{ii}\\
\mathcal{C}\left(-\gamma^{\mu \mathrm{T}}\right) \mathcal{C}^{-1} & =\gamma^{\mu} \tag{iii}
\end{align*}
$$

This implies:
(i) CP is an automorphism of the gauge group.
(ii) CP maps representations to their complex conjugate representations. $\left(T_{a} \mapsto-T_{a}^{\mathrm{T}}\right)$
(iii) CP is an automorphism of the Lorentz group which maps representations to their complex conjugate representation. $\left(\chi_{\mathrm{L}} \mapsto\left(\chi_{\mathrm{L}}\right)^{\dagger}\right)$

The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry $\quad\left[T_{a}, T_{b}\right]=\mathrm{i} f_{a b c} T_{c}$

$$
\mathscr{L}=\mathrm{i} \bar{\Psi} \gamma^{\mu}\left(\partial_{\mu}-\mathrm{i} g T_{a} W_{\mu}^{a}\right) \Psi-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}
$$

The most general possible CP transformation:

$$
\begin{aligned}
W_{\mu}^{a}(x) & \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} W_{\nu}^{b}(\mathcal{P} x), \\
\Psi_{\alpha}^{i}(x) & \mapsto \eta_{\mathrm{CP}} U^{i j} \mathcal{C}_{\alpha \beta} \Psi^{* j}{ }_{\beta}(\mathcal{P} x) .
\end{aligned}
$$

[Grimus, Rebelo,'95]
This is (can be) a conserved symmetry of the action iff,
\curvearrowright Three consistency conditions!

$$
\begin{align*}
R_{a a^{\prime}} R_{b b^{\prime}} f_{a^{\prime} b^{\prime} c} & =f_{a b c^{\prime}} R_{c^{\prime} c} \tag{i}\\
U\left(-T_{a}^{\mathrm{T}}\right) U^{-1} & =R_{a b} T_{b} \tag{ii}\\
\mathcal{C}\left(-\gamma^{\mu \mathrm{T}}\right) \mathcal{C}^{-1} & =\gamma^{\mu}
\end{align*}
$$

This implies:

$$
\Rightarrow \mathcal{C}=\mathrm{e}^{\mathrm{i} \eta} \gamma_{2} \gamma_{0}
$$

(i) CP is an automorphism of the gauge group.
(ii) CP maps representations to their complex conjugate representations. $\left(T_{a} \mapsto-T_{a}^{\mathrm{T}}\right)$
(iii) CP is an automorphism of the Lorentz group which maps representations to their complex conjugate representation. $\left(\chi_{\mathrm{L}} \mapsto\left(\chi_{\mathrm{L}}\right)^{\dagger}\right)$

Outer automorphisms of groups

Outer automorphisms exist for continuous \& discrete groups.
There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the symmetries of the corresponding Dynkin diagram.

$\mathrm{An}_{\mathrm{n}} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{----O-O}$		Lie Group	Out	Action on reps
$\mathrm{D}_{\mathrm{n}} \mathrm{O}-\mathrm{O}-\mathrm{-}-\mathrm{-}$	$A_{n>1}$	$\mathrm{SU}(N)$	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
0	$D_{n>4}$	$\mathrm{SO}(2 N)$	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
$\mathrm{E}_{6} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$	E_{6}	E_{6}	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
$\mathrm{E}_{7} \mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$	$D_{n=4}$	SO(8)	S_{3}	$\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{j}$
	all others		/	/

Outer automorphisms of groups

Discrete groups:

Outer automorphisms of a discrete group are symmetries of the character table (not 1:1).

T_{7}	$C_{1 a}$	$C_{3 a}$	$C_{3 b}$	$C_{7 a}$	$C_{7 b}$
$\mathbf{1}_{0}$	1	1	1	1	1
$\subset \mathbf{1}_{1}$	1	ω	ω^{2}	1	1
$\subset \overline{\mathbf{1}}_{1}$	1	ω^{2}	ω	1	1
$\subset \mathbf{3}_{1}$	3	0	0	η	η^{*}
$\subset \overline{\mathbf{3}}_{1}$	3	0	0	η^{*}	η

$\Delta(54)$	$C_{1 a}$	$C_{3 a}$	$C_{3 b}$	$C_{3 c}$	$C_{3 d}$	$C_{2 a}$	$\stackrel{s}{C_{6 a}}$	$C_{6 b}$		$C_{3 f}$
1_{0}	1	1	1	1	1	1	1	1	1	1
1_{1}	1	1	1	1	1	-1	-1	-1	1	1
2_{1}	2	2	-1	-1	-1	0	0	0	2	2
$\mathbf{2}_{2}$	2	-1	2	-1	-1	0	0	0	2	2
- 2_{3}	2	-1	-1	2	-1	0	0	0	2	2
2_{4}	2	-1	-1	-1	2	0	0	0	2	2
${ }_{s} \mathbf{3}_{1}$	3	0	0	0	0	1	ω^{2}	ω	3ω	$3 \omega^{2}$
${ }^{1} \overline{3}_{1}$	3	0	0	0	0	1	ω	ω^{2}	$3 \omega^{2}$	3ω
${ }_{s} 3_{2}$	3	0	0	0	0	-1	$-\omega^{2}$	$-\omega$	3ω	$3 \omega^{2}$
${ }^{5} \overline{3}_{2}$	3	0	0	0	0	-1	- ω	$-\omega^{2}$	$3 \omega^{2}$	3ω

Group	Out	Action on reps
\mathbb{Z}_{3}	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$

The outer automorphisms group of any ("small") discrete group can easily be found with GAP
[GAP].

$$
\begin{aligned}
& \mathrm{A}_{n \neq 6} \\
& \mathrm{~S}_{n \neq 6}
\end{aligned}
$$

\mathbb{Z}_{2}
$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$

| $\Delta(27)$ | $\mathrm{GL}(2,3)$ | \boldsymbol{r}_{i} |
| :---: | :---: | :--- |$\rightarrow \boldsymbol{r}_{j}$,

Two types of groups (intiout matemaniaca igoon)

List of representations: $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{k}, \boldsymbol{r}_{k}{ }^{*}, \ldots$

$$
\text { Out in general : } \quad \boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{j} \quad \forall \text { irreps } i, j(1: 1)
$$

Criterion:
Is there an (outer) automorphism transformation that maps

$$
\boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{i}{ }^{*} \quad \text { for all irreps } i ?
$$

$$
\begin{gathered}
\text { No } \\
\Rightarrow \text { Group of "type I" } \quad \Rightarrow \text { Group of "type II" }
\end{gathered}
$$

This tells us whether a CP transformation is possible, or not!

Systematic classification of finite Groups G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_{u} (Backup slides)

Do CP transformations exist for all symmetries?

Do CP transformations exist for all symmetries?
 General answer: No.

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

G	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	T_{7}	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$
SG id	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$

Do CP transformations exist for all symmetries?

General answer: No.
For example: Discrete groups of type I:

\boldsymbol{G}	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	$\mathrm{~T}_{7}$	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$	\ldots
sGid	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$	

- These are inconsistent with the trafo $\boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{i}^{*} \forall i$.
\Rightarrow CP transformation is inconsistent with a type I symmetry.
(assuming sufficient \# of irreps are in the model)

> There are models in which CP is violated as a consequence of unbroken type I symmetry.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
The corresponding CPV phases are calculable and quantized (e.g. $\delta_{\text {\&F }}=2 \pi / 3, \ldots$) stemming from the necessarily complex Clebsch-Gordan coefficients of the "type I" group. This has been termed "explicit geometrical" CP violation.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
[Branco, '15], [de Medeiros Varzielas, '15]

Example with $\Delta(54)$ "CP Violation from String Theory"
 [Nilles, Ratz, Trautner, Vaudrevange '18]

CP violation from string theory

- Heterotic orbifold theory compactified on $\mathbb{T}^{2} / \mathbb{Z}_{3}$.
[lbáñez, Kim, Nilles, Quevedo '87]
- This theory has $\Delta(54)$ flavor symmetry.
[Kobayashi, Nilles, Plöger, Raby, Ratz '07]
- These models are "semi-realistic" (MSSM from heterotic orbifolds) SM families + RH ν 's are Δ (54)-triplets.
[Carballo-Perez, Peinado, Ramos-Sanchez '16]
- Light spectrum consist only of $\Delta(54)$ singlets and triplets.

- $\Delta(54)$ is a group of type I, can lead to "geometrical CP violation".
- Identification of source of CP violation:

Type I flavor symmetry \& presence of heavy winding strings.

CP violation from string theory

$\Delta(54)$ is

 group of type I$\operatorname{Out}[\Delta(54)] \cong \mathrm{S}_{4}$ does not contain simultaneous $C P$ trafo for all states.

- However, there exist trafos in Out [$\Delta(54)]$ which correspond to CP trafos for the singlets and triplets (the light spectrum!).
- Crucial: these are no physical CP transformations IF there are more than two doublet states $\mathbf{2}_{1,2,3,4}$!

This is what we call a "CP-like" transformation.

$\Delta(54)$	$C_{1 a}$	$C_{3 a}$	$C_{3 b}$	$C_{3 c}$	$C_{3 d}$	$C_{2 a}$	$C_{6 a}$	$C_{6 b}$	$\stackrel{\leftarrow}{C_{3 e}}$	$C_{3 f}$
1_{0}	1	1	1	1	1	1	1	1	1	1
1_{1}	1	1	1	1	1	-1	-1	-1	1	1
${ }_{2}$	2	2	-1	-1	-1	0	0	0	2	2
- $\mathbf{2}_{2}$	2	-1	2	-1	-1	0	0	0	2	2
${ }^{s} \mathrm{2}_{3}$	2	-1	-1	2	-1	0	0	0	2	2
$)_{24}$	2	-1	-1	-1	2	0	0	0	2	2
${ }_{s} \mathbf{3}_{1}$	3	0	0	0	0	1	ω^{2}	ω	3ω	$3 \omega^{2}$
${ }^{s} \overline{3}_{1}$	3	0	0	0	0	,	ω	ω^{2}	$3 \omega^{2}$	3ω
${ }_{s} \mathbf{3}_{2}$	3	0	0	0	0	-1	$-\omega^{2}$	$-\omega$	3ω	$3 \omega^{2}$
${ }^{s} \overline{\mathbf{3}}_{2}$	3	0	0	0	0	-1	$-\omega$	$-\omega^{2}$	$3 \omega^{2}$	3ω

- Are there doublets in the string model?

Doublets in the string model

Easy trick to see (three of) the doublets: Technical details see [Lauer, Mas, Nilles '89;91]

$$
\mathbf{3}_{i} \otimes \overline{\mathbf{3}}_{i}=\mathbf{1}_{0} \oplus \mathbf{2}_{1} \oplus \mathbf{2}_{2} \oplus \mathbf{2}_{3} \oplus \mathbf{2}_{4} .
$$

(Heavy) string winding modes transform as doublets.

Interactions between light (triplets) and heavy (doublet) modes:
EFT superpotential: $\quad \mathscr{W} \supset \sum_{k}\left(c_{k}\right)^{m a b} \phi_{m}^{\left(\mathbf{2}_{k}\right)} \chi_{a}^{\left(\mathbf{3}_{1}\right)} \psi_{b}^{\left(\overline{\mathbf{3}}_{1}\right)}$.

Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)
see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]
Lowest order invariant here is at four loop, and contains three doublets.

Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)
see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]
Lowest order invariant here is at four loop, and contains three doublets.

Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)
see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]
Lowest order invariant here is at four loop, and contains three doublets.

Explicit expression

$$
\mathcal{I}_{\mathrm{CP}-\mathrm{odd}}=\frac{1+3 \mathrm{e}^{4 \pi \mathrm{i} / 3}}{36}\left|c_{1}\right|^{2}\left|c_{3}\right|^{2}\left|c_{4}\right|^{2} .
$$

Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)
see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]
Lowest order invariant here is at four loop, and contains three doublets.

Explicit expression

$$
\mathcal{I}_{\mathrm{CP}-\mathrm{odd}}=\frac{1+3 \mathrm{e}^{4 \pi \mathrm{i} / 3}}{36}\left|c_{1}\right|^{2}\left|c_{3}\right|^{2}\left|c_{4}\right|^{2} .
$$

Comments on this example

- This is a proof-of-principle that type I groups and (thereby caused) geometrical CP violation exists in potentially realistic string theory models.
- There exist many more semi-realistic string theory examples with type I groups.
[Olguin-Trejo, Perez-Martinez, Ramos-Sanchez '18]
- Many (very model dependent) details remain to be worked out:
- Decay of heavy modes is CP violating: B/L violation? Baryogenesis?
- Does integrating out the heavy modes give rise to CP violation among the light modes? (no)
- Yukawa couplings and low energy CP violation (CKM and θ)?

CP transformation of Modular Symmetry

CP transformation of modular symmetry

$$
\begin{aligned}
& \mathrm{SL}(2, \mathbb{Z})=\left\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{4}=1, \mathrm{~s}^{2}=(\mathrm{st})^{3}\right\rangle \\
& \gamma:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \quad \tau \stackrel{\gamma}{\mapsto} \frac{a \tau+b}{c \tau+d}, \quad \Phi \stackrel{\gamma}{\mapsto}(c \tau+d)^{n} \rho(\gamma) \Phi,
\end{aligned}
$$

$$
\operatorname{PSL}(2, \mathbb{Z})=\operatorname{SL}(2, \mathbb{Z}) /\{\mathbb{1},-\mathbb{1}\}
$$

$$
\mathrm{s}: \tau \mapsto-\frac{1}{\tau}, \quad \mathrm{t}: \tau \mapsto \tau+1,
$$

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
$$

Class inverting outer automorphism?

CP transformation of modular symmetry

$$
\begin{aligned}
& \mathrm{SL}(2, \mathbb{Z})=\left\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{4}=1, \mathrm{~s}^{2}=(\mathrm{st})^{3}\right\rangle \\
& \gamma:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}), \quad \tau \stackrel{\gamma}{\mapsto} \frac{a \tau+b}{c \tau+d}, \quad \Phi \stackrel{\gamma}{\mapsto}(c \tau+d)^{n} \rho(\gamma) \Phi,
\end{aligned}
$$

$$
\operatorname{PSL}(2, \mathbb{Z})=\operatorname{SL}(2, \mathbb{Z}) /\{\mathbb{1},-\mathbb{1}\}
$$

$$
\begin{gathered}
\mathrm{s}: \tau \mapsto-\frac{1}{\tau}, \quad \mathrm{t}: \tau \mapsto \tau+1, \\
\mathrm{~S}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathrm{T}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),
\end{gathered}
$$

Class inverting outer automorphism?

$$
\mathrm{u}(\mathrm{~s})=\mathrm{s}^{-1}, \mathrm{u}(\mathrm{t})=\mathrm{t}^{-1}
$$

Coresponds to $\mathbb{Z}_{2}^{\mathcal{C P}} \mathcal{C P}$ transformation

$$
\mathrm{SL}(2, \mathbb{Z}) \rtimes \mathbb{Z}_{2}^{\mathcal{C}}=\mathrm{GL}(2, \mathbb{Z})
$$

CP transformation of modular symmetry

[Baur, Nilles, AT, Vaudrevange '19], [Novichkov, Penedo, Petcov, Titov '19]

$$
\begin{aligned}
& \mathrm{GL}(2, \mathbb{Z})=\left\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{4}=1, \mathrm{~s}^{2}=(\mathrm{st})^{3}, \mathrm{ut}=\mathrm{t}^{-1} \mathrm{u}, \mathrm{us}=\mathrm{s}^{-1} \mathrm{u}\right\rangle \\
& \operatorname{det}[\bar{\gamma} \in \mathrm{GL}(2, \mathbb{Z})]=-1, \quad \tau \stackrel{\bar{\gamma}}{\longmapsto} \frac{a \bar{\tau}+b}{c \bar{\tau}+d}, \quad \Phi \stackrel{\bar{\gamma}}{\longmapsto}(c \bar{\tau}+d)^{n} \rho(\bar{\gamma}) \bar{\Phi},
\end{aligned}
$$

$$
\operatorname{PGL}(2, \mathbb{Z})=\operatorname{GL}(2, \mathbb{Z}) /\{\mathbb{1},-\mathbb{1}\}
$$

$$
\mathrm{s}: \tau \mapsto-\frac{1}{\tau}, \quad \mathrm{t}: \tau \mapsto \tau+1, \quad \mathrm{u}: \tau \mapsto-\bar{\tau}
$$

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \mathrm{U}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Class inverting outer automorphism?

$$
\mathrm{u}(\mathrm{~s})=\mathrm{s}^{-1}, \mathrm{u}(\mathrm{t})=\mathrm{t}^{-1}
$$

Coresponds to $\mathbb{Z}_{2}^{\mathcal{C P}} \mathcal{C P}$ transformation

$$
\mathrm{SL}(2, \mathbb{Z}) \rtimes \mathbb{Z}_{2}^{\mathcal{C P}}=\mathrm{GL}(2, \mathbb{Z})
$$

Relevance of Outs for derivation of the Eclectic Flavor Symmetry

Origin of eclectic flavor symmetry in heterotic orbifolds Narain lattice formulation of heterotic string theory:
 [Narain '86]
 [Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa;'87],[Groot Nibbelink \& Vaudrevange '17]

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points. e.g. $\mathbb{T}^{2} / \mathbb{Z}_{3}$ (with $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$)

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.
e.g. $\mathbb{T}^{2} / \mathbb{Z}_{3}$ (with $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$)

Symmetries can have outer automorphisms.
"Symmetries of symmetries" [AT'16]

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa;'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.
e.g. $\mathbb{T}^{2} / \mathbb{Z}_{3}$ (with $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$)

Symmetries can have outer automorphisms.
"Symmetries of symmetries" [AT'16]
Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa;'87],[Groot Nibbelink \& Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.
e.g. $\mathbb{T}^{2} / \mathbb{Z}_{3}$ (with $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$)

Symmetries can have outer automorphisms.
"Symmetries of symmetries" [AT'16]
Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17] Lattice can have symmetries. Symmetries can have fixed points. e.g. $\mathbb{T}^{2} / \mathbb{Z}_{3}$ (with $\mathbb{T}^{2}:=\mathbb{R}^{2} / \mathbb{Z}^{2}$)

Symmetries can have outer automorphisms.
"Symmetries of symmetries" [AT'16]
Here, these leave the lattice symmetries invariant, but act non-trivially on the fixed points.
New insight: Flavor symmetries are given by outer automorphisms of the Narain lattice space group!
[Baur, Nilles, AT, Vaudrevange '19]
In this way we can unambiguously compute them in the top-down approach.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]

- Bosonic string coordinates, D right- and D left-moving, $y_{\mathrm{R}, \mathrm{L}}$, compactified on $2 D$ torus:

$$
\binom{y_{\mathrm{R}}}{y_{\mathrm{L}}} \equiv Y \sim \Theta^{k} Y+E \hat{N},
$$

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]

- Bosonic string coordinates, D right- and D left-moving, $y_{\mathrm{R}, \mathrm{L}}$, compactified on $2 D$ torus:

$$
\binom{y_{\mathrm{R}}}{y_{\mathrm{L}}} \equiv Y \sim \Theta^{k} Y+E \hat{N}, \quad \text { with } \quad \Theta=\left(\begin{array}{cc}
\theta_{\mathrm{R}} & 0 \\
0 & \theta_{\mathrm{L}}
\end{array}\right), \hat{N}=\binom{n}{m} .
$$

- $\Theta^{K}=\mathbb{1}$, is an "orbifold twist" with $\theta_{\mathrm{R}, \mathrm{L}} \in \mathrm{SO}(D)$.
- "Narain lattice":

$$
\Gamma=\left\{E \hat{N} \mid \hat{N} \in \mathbb{Z}^{2 D}\right\}
$$

(Γ is even, self-dual lattice with metric $\eta=\operatorname{diag}\left(-\mathbb{1}_{D}, \mathbb{1}_{D}\right)$.)

- $\hat{N}=(n, m) \in \mathbb{Z}^{2 D}, n$: winding number, m : Kaluza-Klein number of string boundary condition.
- E : "Narain vielbein", depends on moduli of the torus; $E^{\mathrm{T}} E \equiv \mathcal{H}=\mathcal{H}(T, U)$.

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]

- Bosonic string coordinates, D right- and D left-moving, $y_{\mathrm{R}, \mathrm{L}}$, compactified on $2 D$ torus:

$$
\binom{y_{\mathrm{R}}}{y_{\mathrm{L}}} \equiv Y \sim \Theta^{k} Y+E \hat{N}, \quad \text { with } \quad \Theta=\left(\begin{array}{cc}
\theta_{\mathrm{R}} & 0 \\
0 & \theta_{\mathrm{L}}
\end{array}\right), \hat{N}=\binom{n}{m} .
$$

- $\Theta^{K}=\mathbb{1}$, is an "orbifold twist" with $\theta_{\mathrm{R}, \mathrm{L}} \in \mathrm{SO}(D)$.
- "Narain lattice":

$$
\Gamma=\left\{E \hat{N} \mid \hat{N} \in \mathbb{Z}^{2 D}\right\}
$$

(Γ is even, self-dual lattice with metric $\eta=\operatorname{diag}\left(-\mathbb{1}_{D}, \mathbb{1}_{D}\right)$.)

- $\hat{N}=(n, m) \in \mathbb{Z}^{2 D}, n$: winding number, m : Kaluza-Klein number of string boundary condition.
- E : "Narain vielbein", depends on moduli of the torus;
$E^{\mathrm{T}} E \equiv \mathcal{H}=\mathcal{H}(T, U)$.

$$
\mathcal{H}(T, U)=\frac{1}{\operatorname{Im} T \operatorname{Im} U}\left(\begin{array}{cccc}
|T|^{2} & |T|^{2} \operatorname{Re} U & \operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} T \\
|T|^{2} \operatorname{Re} U & |T U|^{2} & |U|^{2} \operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U \\
\operatorname{Re} T \operatorname{Re} U & |U|^{2} \operatorname{Re} T & |U|^{2} & -\operatorname{Re} U \\
-\operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} U & 1
\end{array}\right)
$$

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink \& Vaudrevange '17]

- Bosonic string coordinates, D right- and D left-moving, $y_{\mathrm{R}, \mathrm{L}}$, compactified on $2 D$ torus:

$$
\binom{y_{\mathrm{R}}}{y_{\mathrm{L}}} \equiv Y \sim \Theta^{k} Y+E \hat{N}, \quad \text { with } \quad \Theta=\left(\begin{array}{cc}
\theta_{\mathrm{R}} & 0 \\
0 & \theta_{\mathrm{L}}
\end{array}\right), \hat{N}=\binom{n}{m} .
$$

- $\Theta^{K}=\mathbb{1}$, is an "orbifold twist" with $\theta_{\mathrm{R}, \mathrm{L}} \in \mathrm{SO}(D)$.
- "Narain lattice":

$$
\Gamma=\left\{E \hat{N} \mid \hat{N} \in \mathbb{Z}^{2 D}\right\}
$$

(Γ is even, self-dual lattice with metric $\eta=\operatorname{diag}\left(-\mathbb{1}_{D}, \mathbb{1}_{D}\right)$.)

- $\hat{N}=(n, m) \in \mathbb{Z}^{2 D}, n$: winding number, m : Kaluza-Klein number of string boundary condition.
- E : "Narain vielbein", depends on moduli of the torus; $E^{\mathrm{T}} E \equiv \mathcal{H}=\mathcal{H}(T, U)$.
Narain space group $g=\left(\Theta^{k}, E \hat{N}\right) \in S_{\text {Narain }}$ is given by multiplicative closure of all twist and shifts

$$
S_{\text {Narain }}:=\left\langle(\Theta, 0),\left(\mathbb{1}, E_{i}\right) \text { for } i \in\{1, \ldots, 2 D\}\right\rangle .
$$

Outs of the Narain lattice

Maps beween Narain lattice Γ to an equivalent lattice Γ^{\prime} are given by outer automorphisms of the Narain lattice

$$
\left.\mathrm{O}_{\hat{\eta}}(D, D, \mathbb{Z}):=\langle\hat{\Sigma}| \hat{\Sigma} \in \operatorname{GL}(2 D, \mathbb{Z}) \quad \text { with } \quad \hat{\Sigma}^{\mathrm{T}} \hat{\eta} \hat{\Sigma}=\hat{\eta}\right\rangle .
$$

Outs of the Narain lattice

Maps beween Narain lattice Γ to an equivalent lattice Γ^{\prime} are given by outer automorphisms of the Narain lattice

$$
\left.\mathrm{O}_{\hat{\eta}}(D, D, \mathbb{Z}):=\langle\hat{\Sigma}| \hat{\Sigma} \in \operatorname{GL}(2 D, \mathbb{Z}) \quad \text { with } \quad \hat{\Sigma}^{\mathrm{T}} \hat{\eta} \hat{\Sigma}=\hat{\eta}\right\rangle .
$$

For example, specializing to $D=2$, \curvearrowright d.o.f. in E are Kähler (T) and complex strucutre moduli (U). Outs of Narain lattice:

$$
\mathrm{O}_{\hat{\eta}}(2,2, \mathbb{Z}) \cong\left[\left(\mathrm{SL}(2, \mathbb{Z})_{T} \times \mathrm{SL}(2, \mathbb{Z})_{U}\right) \rtimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right] / \mathbb{Z}_{2} .
$$

With $\mathrm{SL}(2, \mathbb{Z})$ and action on the moduli $M=\{T, U\}$ given by

$$
\begin{gathered}
\mathrm{SL}(2, \mathbb{Z})=\left\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{4}=1, \mathrm{~s}^{2}=\mathrm{st}^{3}\right\rangle . \\
\mathrm{s}: M \mapsto-\frac{1}{M} \quad \text { and } \quad \mathrm{t}: M \mapsto M+1,
\end{gathered}
$$

Outs of the Narain lattice

Maps beween Narain lattice Γ to an equivalent lattice Γ^{\prime} are given by outer automorphisms of the Narain lattice

$$
\left.\mathrm{O}_{\hat{\eta}}(D, D, \mathbb{Z}):=\langle\hat{\Sigma}| \hat{\Sigma} \in \operatorname{GL}(2 D, \mathbb{Z}) \quad \text { with } \quad \hat{\Sigma}^{\mathrm{T}} \hat{\eta} \hat{\Sigma}=\hat{\eta}\right\rangle .
$$

For example, specializing to $D=2$, \curvearrowright d.o.f. in E are Kähler (T) and complex strucutre moduli (U). Outs of Narain lattice:

$$
\mathrm{O}_{\hat{\eta}}(2,2, \mathbb{Z}) \cong\left[\left(\mathrm{SL}(2, \mathbb{Z})_{T} \times \mathrm{SL}(2, \mathbb{Z})_{U}\right) \rtimes\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)\right] / \mathbb{Z}_{2} .
$$

With $\mathrm{SL}(2, \mathbb{Z})$ and action on the moduli $M=\{T, U\}$ given by

$$
\begin{gathered}
\mathrm{SL}(2, \mathbb{Z})=\left\langle\mathrm{s}, \mathrm{t} \mid \mathrm{s}^{4}=1, \mathrm{~s}^{2}=\mathrm{st}^{3}\right\rangle . \\
\mathrm{s}: M \mapsto-\frac{1}{M} \quad \text { and } \quad \mathrm{t}: M \mapsto M+1,
\end{gathered}
$$

Outer automorphisms of Γ contain the modular transformations, including T-duality transformations, $T \leftrightarrow U$ mirror symmetry and a $\mathcal{C P}$-like transformation $M \mapsto-\bar{M}$.

Outs of the Narain space group

For the full Narain space group, the outer automorphisms are given by transformations $h:=(\hat{\Sigma}, \hat{T}) \notin S_{\text {Narain }}$ such that

$$
g \stackrel{h}{\mapsto} h g h^{-1} \stackrel{!}{\in} S_{\text {Narain }} .
$$

Outs are given by the solutions to the consistency conditions

$$
\begin{aligned}
\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1} & \stackrel{!}{=} \Theta^{k^{\prime}} \\
\left(\mathbb{1}-\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1}\right) \hat{T} & \stackrel{!}{=} \hat{N}^{\prime} .
\end{aligned}
$$

Solutions yield a set of generators of the Out group as

$$
\left\{\left(\hat{\Sigma}_{1}, 0\right),\left(\hat{\Sigma}_{2}, 0\right), \ldots,\left(\mathbb{1}, \hat{T}_{1}\right),\left(\mathbb{1}, \hat{T}_{2}\right), \ldots\right\}
$$

Outs of the Narain space group

For the full Narain space group, the outer automorphisms are given by transformations $h:=(\hat{\Sigma}, \hat{T}) \notin S_{\text {Narain }}$ such that

$$
g \stackrel{h}{\mapsto} h g h^{-1} \stackrel{!}{\in} S_{\text {Narain }} .
$$

Outs are given by the solutions to the consistency conditions

$$
\begin{aligned}
\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1} & \stackrel{!}{=} \Theta^{k^{\prime}} \\
\left(\mathbb{1}-\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1}\right) \hat{T} & \stackrel{!}{=} \hat{N}^{\prime} .
\end{aligned}
$$

Solutions yield a set of generators of the Out group as

$$
\left\{\left(\hat{\Sigma}_{1}, 0\right),\left(\hat{\Sigma}_{2}, 0\right), \ldots,\left(\mathbb{1}, \hat{T}_{1}\right),\left(\mathbb{1}, \hat{T}_{2}\right), \ldots\right\} .
$$

Note: These Outs also act on the moduli. $M \equiv T, U$

$$
\begin{array}{ll}
M \stackrel{h}{\longmapsto} M^{\prime}=M & \rightarrow \text { "traditional flavor trafo" } \\
M \stackrel{h}{\longmapsto} M^{\prime} \neq M & \rightarrow \text { "modular flavor trafo" }
\end{array}
$$

Outs of the Narain space group

For the full Narain space group, the outer automorphisms are given by transformations $h:=(\hat{\Sigma}, \hat{T}) \notin S_{\text {Narain }}$ such that

$$
g \stackrel{h}{\mapsto} h g h^{-1} \stackrel{!}{\in} S_{\text {Narain }} .
$$

Outs are given by the solutions to the consistency conditions

$$
\begin{aligned}
\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1} & \stackrel{!}{=} \Theta^{k^{\prime}} \\
\left(\mathbb{1}-\hat{\Sigma} \Theta^{k} \hat{\Sigma}^{-1}\right) \hat{T} & \stackrel{!}{=} \hat{N}^{\prime} .
\end{aligned}
$$

Solutions yield a set of generators of the Out group as

$$
\left\{\left(\hat{\Sigma}_{1}, 0\right),\left(\hat{\Sigma}_{2}, 0\right), \ldots,\left(\mathbb{1}, \hat{T}_{1}\right),\left(\mathbb{1}, \hat{T}_{2}\right), \ldots\right\} .
$$

Note: These Outs also act on the moduli. $M \equiv T, U$

$$
\begin{array}{ll}
M \stackrel{h}{\longmapsto} M^{\prime}=M & \rightarrow \text { "traditional flavor trafo" } \\
M \stackrel{h}{\longmapsto} M^{\prime} \neq M & \rightarrow \text { "modular flavor trafo" }
\end{array}
$$

Outer automorphisms of Narain space group unify flavor symmetries with modular transformations, including $\mathcal{C P}$-like transformations.

The eclectic flavor symmetry of $\mathbb{T}^{2} / \mathbb{Z}_{3}$

	nature symmetry	outer automorphism of Narain space group	flavor groups			
	modular	rotation $S \in \operatorname{SL}(2, \mathbb{Z})_{T}$ rotation $\mathrm{T} \in \mathrm{SL}(2, \mathbb{Z})_{T}$	T^{\prime}			$\Omega(2)$
	traditional flavor	translation A translation B	\mathbb{Z}_{3} $\Delta(27)$ \mathbb{Z}_{3}	$\Delta(54)$	$\Delta^{\prime}(54,2,1)$	
		rotation $\mathrm{C}=\mathrm{S}^{2} \in \mathrm{SL}(2, \mathbb{Z})_{T}$	\mathbb{Z}_{2}^{R}			
		rotation $\mathrm{R} \in \mathrm{SL}(2, \mathbb{Z})_{U}$	\mathbb{Z}_{9}^{R}			

table from [Nilles, Ramos-Sánchez, Vaudrevange '20]
Action on the T modulus as

$$
\begin{gathered}
\mathrm{S}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \mathrm{T}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
\mathrm{K}_{*}^{\mathcal{C P}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{R}: \text { trivial! }
\end{gathered}
$$

The eclectic flavor symmetry of $\mathbb{T}^{2} / \mathbb{Z}_{3}$

(For this specific orbifold, $\langle U\rangle=\exp (2 \pi \mathrm{i} / 3)$.)
The outer automorphisms of the corresponding Narain space group yield the following symmetries:
[Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]

- a $\Delta(54)$ traditional flavor symmetry,
- an $\operatorname{SL}(2, \mathbb{Z})_{T}$ modular symmetry which acts as a $\Gamma_{3}^{\prime} \cong T^{\prime}$ finite modular symmetry on matter fields and their couplings,
- a \mathbb{Z}_{9}^{R} discrete R-symmetry as remnant of $\operatorname{SL}(2, \mathbb{Z})_{U}$, and
- $\mathrm{a} \mathbb{Z}_{2}^{\mathcal{C} \mathcal{P}} \mathcal{C} \mathcal{P}$-like transformation.

$$
G_{\text {eclectic }}=G_{\text {traditional }} \cup G_{\text {modular }} \cup G_{\mathrm{R}} \cup \mathcal{C P}
$$

Together, the full eclectic group of this setting is of order 3888 given by

$$
G_{\text {eclectic }}=\Omega(2) \rtimes \mathbb{Z}_{2}^{\mathcal{C P}}, \quad \text { with } \quad \Omega(2) \cong[1944,3448] .
$$

Summary

- CP is a special outer automorphism, corresponding to complex conjugation outer automorphism of every group.
- Groups which don't have such an automorphism (type I) violate CP in generic settings.
- Example: $\Delta(54)$, arising in semi-realistic string theory models.
- CP doesn't need to be "generalized", just applied correctly.
- Modular symmetry is of type II (has class-inverting Out).
- Outer automorphisms beyond CP: The complete eclectic flavor symmetry in top-down approach (modular+traditional+R+CP) can unambiguously be derived by the outer automorphisms of the Narain space group:

$$
G_{\text {eclectic }}=G_{\text {traditional }} \cup G_{\text {modular }} \cup G_{\mathrm{R}} \cup \mathcal{C P} .
$$

Backup slides

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis-invariants, e.g. J.

$$
\varepsilon_{i \rightarrow f}=\frac{|\Gamma(i \rightarrow f)|^{2}-|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}}{|\Gamma(i \rightarrow f)|^{2}+|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}} \Leftrightarrow J=\operatorname{det}\left[M_{u} M_{u}^{\dagger}, M_{d} M_{d}^{\dagger}\right]
$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0$.

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis-invariants, e.g. J.

$$
\varepsilon_{i \rightarrow f}=\frac{|\Gamma(i \rightarrow f)|^{2}-|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}}{|\Gamma(i \rightarrow f)|^{2}+|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}} \Leftrightarrow J=\operatorname{det}\left[M_{u} M_{u}^{\dagger}, M_{d} M_{d}^{\dagger}\right]
$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0 . \quad$ see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]
To warrant this: need a map $M_{u / d} \rightarrow M_{u / d}^{*}$.
Equivalently:

$$
\mathscr{L} \supset c \mathcal{O}(x)+c^{*} \mathcal{O}^{\dagger}(x) \quad \Rightarrow \quad \text { Fields } \xrightarrow{\mathcal{C P}}(\text { Fields })^{*}
$$

Physical CP transformations

Physical observable: Asymmetry \Leftrightarrow Basis-invariants, e.g. J.

$$
\varepsilon_{i \rightarrow f}=\frac{|\Gamma(i \rightarrow f)|^{2}-|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}}{|\Gamma(i \rightarrow f)|^{2}+|\Gamma(\bar{\imath} \rightarrow \bar{f})|^{2}} \Leftrightarrow J=\operatorname{det}\left[M_{u} M_{u}^{\dagger}, M_{d} M_{d}^{\dagger}\right]
$$

CP conservation: $\varepsilon, J \stackrel{!}{=} 0$.
To warrant this: need a map $M_{u / d} \rightarrow M_{u / d}^{*}$.
Equivalently:

CP symmetries in settings with discrete G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_{u} (Backup slides)

Twisted Frobenius-Schur indicator

Criterion to decide: existence of a CP outer automorphism.
\curvearrowright can be probed by computing the
"twisted Frobenius-Schur indicator" FS $_{u}$

$$
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}(g u(g))
$$

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

$$
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1 \text { or }-1 \quad \forall i, & \Rightarrow u \text { is good for CP, } \\ \text { different from } \pm 1, & \Rightarrow u \text { is no good for } \mathrm{CP} .\end{cases}
$$

In analogy to the Frobenius-Schur indicator
FS $\gamma_{\gamma}\left(\boldsymbol{r}_{i}\right)=+1,-1,0$ for real / pseudo-real / complex irrep.

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
x no type I point groups in 2D (SO(2)), 3D (SO(3)).
X no type I subgroups of $\mathrm{SU}(2)$.
X no type I subgroups of the Lorentzgroup.
(Open question: Type I "spacetime crystals"? [wiczek'12]).
\checkmark In $\geq 4 \mathrm{D}$: crystals with type I point groups
[Fischer, Ratz, Torrado and Vaudrevange '12]

Do type I groups occur in Nature?

- Discrete groups? \rightarrow Crystals?
x no type I point groups in 2D (SO(2)), 3D (SO(3)).
x no type I subgroups of $\mathrm{SU}(2)$.
X no type I subgroups of the Lorentzgroup.
(Open question: Type I "spacetime crystals"? [wiczek'12]).
\checkmark In $\geq 4 \mathrm{D}$: crystals with type I point groups
[Fischer, Ratz, Torrado and Vaudrevange '12]
- Discrete flavor symmetries?
- Many models with type I groups:

$$
\begin{array}{r}
\qquad \mathrm{T}_{7}, \Delta(27), \Delta(54), \mathcal{P S} \mathcal{L}_{2}(7), \ldots \\
\text { e.g. [Björkeroth, Branco, Ding, de Anda, Ishimori, King, Medeiros Varzielas, Neder, Stuart et al. '15-'18] } \\
\text { [Chen, Pérez, Ramond '14], [Krishnan, Harrison, Scott '18] }
\end{array}
$$

- These can originate from extra dimensions, e.g. in string theory.
[Kobayashi et al. '06], [Nilles, Ratz, Vaudrevange '12]

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super -)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential

$$
\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} K(T, \bar{T}, \Phi, \bar{\Phi})+\int d^{4} x d^{2} \theta W(T, \Phi)+\int d^{4} x d^{2} \bar{\theta} \bar{W}(\bar{T}, \bar{\Phi})
$$

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super -)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential
$\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} K(T, \bar{T}, \boldsymbol{\Phi}, \overline{\mathbf{\Phi}})+\int d^{4} x d^{2} \theta W(T, \boldsymbol{\Phi})+\int d^{4} x d^{2} \bar{\theta} \bar{W}(\bar{T}, \overline{\mathbf{\Phi}})$.

- "traditional" Flavor symmetries

$$
\Phi \mapsto \rho(\mathrm{g}) \Phi, \quad \mathrm{g} \in G
$$

for a review, see e.g. [King \& Luhn '13]

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super -)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential
$\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} \boldsymbol{K}(\boldsymbol{T}, \overline{\boldsymbol{T}}, \boldsymbol{\Phi}, \overline{\boldsymbol{\Phi}})+\int d^{4} x d^{2} \theta \boldsymbol{W}(\boldsymbol{T}, \boldsymbol{\Phi})+\int d^{4} x d^{2} \bar{\theta} \overline{\boldsymbol{W}}(\overline{\boldsymbol{T}}, \overline{\mathbf{\Phi}})$.

- "traditional" Flavor symmetries
- modular Flavor symmetries

$$
\Phi \stackrel{\gamma}{\longmapsto}(c T+d)^{n} \rho(\gamma) \Phi, \quad T \stackrel{\gamma}{\longmapsto} \frac{a T+b}{c T+d}, \quad \gamma:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z}) .
$$

Couplings are modular forms: $Y=Y(T), Y(\gamma T)=(c T+d)^{k_{Y}} \rho_{Y}(\gamma) Y(T)$.

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, Φ : (Super-)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential
$\mathcal{S}=\int d^{4} x \boldsymbol{d}^{2} \boldsymbol{\theta} \boldsymbol{d}^{2} \overline{\boldsymbol{\theta}} K(\boldsymbol{T}, \overline{\boldsymbol{T}}, \boldsymbol{\Phi}, \overline{\boldsymbol{\Phi}})+\int d^{4} x \boldsymbol{d}^{2} \boldsymbol{\theta} \boldsymbol{W}(\boldsymbol{T}, \boldsymbol{\Phi})+\int d^{4} x \boldsymbol{d}^{2} \overline{\boldsymbol{\theta}} \overline{\boldsymbol{W}}(\overline{\boldsymbol{T}}, \overline{\boldsymbol{\Phi}})$.

- "traditional" Flavor symmetries
- modular Flavor symmetries
- R symmetries for non-Abelian discrete R flavor symmetries see [Chen, Ratz, AT '13]

$$
\Phi(x, \theta)=\phi(x)+\sqrt{2} \boldsymbol{\theta} \boldsymbol{\psi}(x)+\theta \theta F(x), \Longrightarrow \phi \mapsto e^{i q_{\Phi} \alpha} \phi, \psi \mapsto e^{i\left(q_{\Phi}-q_{\theta}\right) \alpha} \psi .
$$

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super -)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $\quad W(T, \Phi)$: Superpotential
$\mathcal{S}=\int \boldsymbol{d}^{4} \boldsymbol{x} d^{2} \theta d^{2} \bar{\theta} \boldsymbol{K}(\boldsymbol{T}, \overline{\boldsymbol{T}}, \boldsymbol{\Phi}, \overline{\boldsymbol{\Phi}})+\int \boldsymbol{d}^{4} \boldsymbol{x} d^{2} \theta \boldsymbol{W}(\boldsymbol{T}, \boldsymbol{\Phi})+\int \boldsymbol{d}^{4} \boldsymbol{x} d^{2} \bar{\theta} \overline{\boldsymbol{W}}(\overline{\boldsymbol{T}}, \overline{\boldsymbol{\Phi}})$.

- "traditional" Flavor symmetries
- modular Flavor symmetries
- R symmetries
- general CP(-like) symmetries

$$
\Phi \stackrel{\bar{\gamma}}{\longmapsto}(c \bar{T}+d)^{n} \rho(\bar{\gamma}) \bar{\Phi}, \quad T \stackrel{\bar{\gamma}}{\longmapsto} \frac{a \bar{T}+b}{c \bar{T}+d}, \quad \operatorname{det}[\bar{\gamma} \in \mathrm{GL}(2, \mathbb{Z})]=-1 .
$$

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super-)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $W(T, \Phi)$: Superpotential
$\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} K(T, \bar{T}, \Phi, \bar{\Phi})+\int d^{4} x d^{2} \theta W(T, \Phi)+\int d^{4} x d^{2} \bar{\theta} \bar{W}(\bar{T}, \bar{\Phi})$.

- "traditional" Flavor symmetries
- modular Flavor symmetries
- R symmetries
- general $\mathcal{C} \mathcal{P}$ (-like) symmetries

From the bottom-up: All kinds known, individually!
\rightarrow See talks by Penedo, Feruglio, de Medeiros Varzielas.

Types of (discrete) flavor symmetries

Schematically for the example of $\mathcal{N}=1$ SUSY.
x : spacetime, θ : superspace, $\Phi:($ Super -)fields, T : modulus. $K(T, \Phi)$: Kähler potential, $\quad W(T, \Phi)$: Superpotential
$\mathcal{S}=\int d^{4} x d^{2} \theta d^{2} \bar{\theta} K(T, \bar{T}, \Phi, \bar{\Phi})+\int d^{4} x d^{2} \theta W(T, \Phi)+\int d^{4} x d^{2} \bar{\theta} \bar{W}(\bar{T}, \bar{\Phi})$.

- "traditional" Flavor symmetries
- modular Flavor symmetries
- R symmetries
- general $\mathcal{C} \mathcal{P}$ (-like) symmetries

From the top-down: all, at the same time!

$$
G_{\text {eclectic }}=G_{\text {traditional }} \cup G_{\text {modular }} \cup G_{\mathrm{R}} \cup \mathcal{C P}
$$

see works by [Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sánchez, Vaudrevange '20]
\rightarrow See also talk by Ramos-Sánchez.

Top down flavor symmetries

- We identify points $Y \sim g Y$ with $g \in S_{\text {Narain }} \Rightarrow$ fixed points.
- g constitutes boundary condition for closed strings
\Rightarrow "Strings are localized at fixed points."
[Dixon, Harvey, Vafa, Witten '85,'86]
- Each fixed point corresponds to a whole conjugacy class $[g]=\left\{f g f^{-1} \mid f \in S_{\text {Narain }}\right\}$ of space group elements
- each c.c. corresponds to a different fixed point.

Top down flavor symmetries

- We identify points $Y \sim g Y$ with $g \in S_{\text {Narain }} \Rightarrow$ fixed points.
- g constitutes boundary condition for closed strings
\Rightarrow "Strings are localized at fixed points."
[Dixon, Harvey, Vafa, Witten '85,'86]
- Each fixed point corresponds to a whole conjugacy class $[g]=\left\{f g f^{-1} \mid f \in S_{\text {Narain }}\right\}$ of space group elements
- each c.c. corresponds to a different fixed point.
- Trivial: inner auts of $S_{\text {Narain }}$: map c.c.'s to themselves.
- Non-trivial: outer auts of $S_{\text {Narain }} \Leftrightarrow$ permutation of c.c.'s
\Rightarrow non-trivial maps between strings at different f.p.s!
New insight: Flavor symmetries are given by outer automorphisms of the Narain space group!
[Baur, Nilles, AT, Vaudrevange '19]

Top down flavor symmetries

- We identify points $Y \sim g Y$ with $g \in S_{\text {Narain }} \Rightarrow$ fixed points.
- g constitutes boundary condition for closed strings
\Rightarrow "Strings are localized at fixed points."
[Dixon, Harvey, Vafa, Witten '85,'86]
- Each fixed point corresponds to a whole conjugacy class $[g]=\left\{f g f^{-1} \mid f \in S_{\text {Narain }}\right\}$ of space group elements
- each c.c. corresponds to a different fixed point.
- Trivial: inner auts of $S_{\text {Narain }}$: map c.c.'s to themselves.
- Non-trivial: outer auts of $S_{\text {Narain }} \Leftrightarrow$ permutation of c.c.'s
\Rightarrow non-trivial maps between strings at different f.p.s!
New insight: Flavor symmetries are given by outer automorphisms of the Narain space group!
[Baur, Nilles, AT, Vaudrevange '19]
- The thus derived flavor symmetries automatically contain the so-called "space-group selection rules".
[Hamidi and Vafa '86]
- They agree with previously derived non-Abelian flavor symmetries.
[Kobayashi, Nilles, Plöger, Raby, Ratz '06]

Narain vielbein

The Narain vielbein can be parameterized as (in absence of Wilson lines)

$$
E:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{e^{-\mathrm{T}}}{\sqrt{\alpha^{\prime}}}(G-B) & -\sqrt{\alpha^{\prime}} e^{-\mathrm{T}} \\
\frac{e^{-\mathrm{T}}}{\sqrt{\alpha^{\prime}}}(G+B) & \sqrt{\alpha^{\prime}} e^{-\mathrm{T}}
\end{array}\right) .
$$

In this definition of the Narain vielbein, e denotes the vielbein of the D-dimensional geometrical torus \mathbb{T}^{D} with metric $G:=e^{\mathrm{T}} e$, $e^{-\mathrm{T}}$ corresponds to the inverse transposed matrix of e, B is the anti-symmetric background B-field ($B=-B^{\mathrm{T}}$), and α^{\prime} is called the Regge slope.
World-sheet modular invariance requires E to span even, self-dual lattice $\Gamma=\left\{E \hat{N} \mid \hat{N} \in \mathbb{Z}^{2 D}\right\}$ with metric η of signature (D, D). Consequently, one can always choose E such that $E^{\mathrm{T}} \eta E=\hat{\eta}$, where $\eta:=\left(\begin{array}{cc}-\mathbb{1} & 0 \\ 0 & \mathbb{1}\end{array}\right)$ and $\hat{\eta}:=\left(\begin{array}{ll}0 & \mathbb{1} \\ \mathbb{1} & 0\end{array}\right)$.

Transformation of moduli

To compute the transformation properties of the moduli T and U we use the generalized metric $\mathcal{H}=E^{\mathrm{T}} E$. As the Narain vielbein depends on the moduli $E=E(T, U)$ so does the generalized metric $\mathcal{H}=\mathcal{H}(T, U)$. It transforms as

$$
\mathcal{H}(T, U) \stackrel{\hat{\Sigma}}{\longmapsto} \mathcal{H}\left(T^{\prime}, U^{\prime}\right)=\hat{\Sigma}^{-\mathrm{T}} \mathcal{H}(T, U) \hat{\Sigma}^{-1} .
$$

This equation can be used to read off the transformations of the moduli

$$
T \stackrel{\hat{\Sigma}}{\longmapsto} T^{\prime}=T^{\prime}(T, U) \quad \text { and } \quad U \stackrel{\hat{\Sigma}}{\longmapsto} U^{\prime}=U^{\prime}(T, U) .
$$

For a two-torus \mathbb{T}^{2}, the generalized metric in terms of the torus moduli reads

$$
\mathcal{H}(T, U)=\frac{1}{\operatorname{Im} T \operatorname{Im} U}\left(\begin{array}{cccc}
|T|^{2} & |T|^{2} \operatorname{Re} U & \operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} T \\
|T|^{2} \operatorname{Re} U & |T U|^{2} & |U|^{2} \operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U \\
\operatorname{Re} T \operatorname{Re} U & |U|^{2} \operatorname{Re} T & |U|^{2} & -\operatorname{Re} U \\
-\operatorname{Re} T & -\operatorname{Re} T \operatorname{Re} U & -\operatorname{Re} U & 1
\end{array}\right) .
$$

Explicit generators of $\Omega(2)$ for $\mathbb{T}^{2} / \mathbb{Z}_{3}$

$\mathrm{SL}(2, \mathbb{Z})_{T}$ modular generators S and T arise from rotational outer automorphisms and act on the modulus via

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Reflectional outer automorphism coresponding to $\mathbb{Z}_{2}^{\mathcal{C P}} \mathcal{C P}$-like transformation:

$$
\begin{gathered}
\mathrm{K}_{*}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
\rho(\mathrm{S})=\frac{\mathrm{i}}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega^{2} & \omega \\
1 & \omega & \omega^{2}
\end{array}\right) \quad \text { and } \quad \rho(\mathrm{T})=\left(\begin{array}{ccc}
\omega^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

The traditional flavor symmetry $\Delta(54)$ is generated by two translational outer automorphisms of the Narain space group A and B, together with the \mathbb{Z}_{2} rotational outer automorphism $\mathrm{C}:=\mathrm{S}^{2}$.

$$
\rho(\mathrm{A})=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \rho(\mathrm{B})=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \text { and } \rho(\mathrm{C})=-\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\rho(\mathrm{S})^{2},
$$

Example toy model:
 "CP violation with an unbroken CP transformation"

[Ratz, AT '16]

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

An interesting observation

Observation:
Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

$$
\operatorname{Out}(\mathfrak{s u}(3)) \cong \mathbb{Z}_{2}
$$

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

Note: $\operatorname{Out}(\mathfrak{s u}(3))$ acts on the $\mathrm{T}_{7} \subset \mathrm{SU}(3)$ subgroup as $\operatorname{Out}\left(\mathrm{T}_{7}\right)$!

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT'16]

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), & \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT'16]

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT ${ }^{16]}$

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), & \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

- VEV of the 15-plet $\langle\phi\rangle$ breaks $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$. [Lunn, '11], [Mere, Zwicky '11]
- $\operatorname{Out}(\mathfrak{s u}(3)) \cong \mathbb{Z}_{2} \rightarrow \operatorname{Out}\left(\mathrm{~T}_{7}\right) \cong \mathbb{Z}_{2}$; Out unbroken by VEV.

$$
\mathrm{SU}(3) \rtimes \mathbb{Z}_{2} \xrightarrow{\langle\phi\rangle} \mathrm{T}_{7} \rtimes \mathbb{Z}_{2} ;
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Name	SU(3)	$\xrightarrow{\langle\phi\rangle}$	Name	T_{7}	mass
A_{μ}	8	,	Z_{μ}	$\mathbf{1 1}_{1}$	$m_{Z}^{2}=7 / 3 g^{2} v^{2}$
		।	W_{μ}	3	$m_{W}^{2}=g^{2} v^{2}$
ϕ	15	।	$\operatorname{Re} \sigma_{0}$	1_{0}	$m_{\operatorname{Re} \sigma_{0}}^{2}=2 \mu^{2}$
		।	$\operatorname{Im} \sigma_{0}$	1_{0}	$m_{\operatorname{Im} \sigma_{0}}^{2}=0$
		1	σ_{1}	1_{1}	$m_{\sigma_{1}}^{2}=-\mu^{2}+\sqrt{15} \lambda_{5} v^{2}$
		,	τ_{1}	3	$m_{\tau_{1}}^{2}=m_{\tau_{1}}^{2}\left(\mu, \lambda_{i}\right)$
		1	τ_{2}	3	$m_{\tau_{2}}^{2}=m_{\tau_{2}}^{2}\left(\mu, \lambda_{i}\right)$
		1	τ_{3}	3	$m_{\tau_{3}}^{2}=m_{\tau_{3}}^{2}\left(\mu, \lambda_{i}\right)$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Name	SU(3)	$\xrightarrow{\langle\phi\rangle}$	Name	T_{7}	mass
A_{μ}	8	1	Z_{μ}	$1{ }_{1}$	$m_{Z}^{2}=7 / 3 g^{2} v^{2}$
		।	W_{μ}	3	$m_{W}^{2}=g^{2} v^{2}$
ϕ	15	1	$\operatorname{Re} \sigma_{0}$	10	$m_{\operatorname{Re} \sigma_{0}}^{2}=2 \mu^{2}$
		1	$\operatorname{Im} \sigma_{0}$	1_{0}	$m_{\operatorname{Im} \sigma_{0}}^{2}=0$
		!	σ_{1}	1_{1}	$m_{\sigma_{1}}^{2}=-\mu^{2}+\sqrt{15} \lambda_{5} v^{2}$
		!	τ_{1}	3	$m_{\tau_{1}}^{2}=m_{\tau_{1}}^{2}\left(\mu, \lambda_{i}\right)$
		,	τ_{2}	3	$m_{\tau_{2}}^{2}=m_{\tau_{2}}^{2}\left(\mu, \lambda_{i}\right)$
		1	τ_{3}	3	$m_{\tau_{3}}^{2}=m_{\tau_{3}}^{2}\left(\mu, \lambda_{i}\right)$

The action is invariant under the \mathbb{Z}_{2} - Out transformation:

$\mathrm{SU}(3)$	
	$W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x)$,
$A_{\mu}^{a}(x) \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} A_{\nu}^{b}(\mathcal{P} x)$,	$\sigma_{0}(x) \mapsto \sigma_{0}(\mathcal{P} x)$,
$\phi_{i}(x) \mapsto U_{i j} \phi_{j}^{*}(\mathcal{P} x)$.	$\tau_{i}(x) \mapsto \tau_{i}^{*}(\mathcal{P} x)$,
	$Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x)$,
	$\sigma_{1}(x) \mapsto \sigma_{1}(\mathcal{P} x)$.
physical CP \checkmark	
	physical CP X

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)-\mathrm{CP}$ transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

$$
\mathbb{Z}_{\mathbf{2}} \text { - Out: } \begin{aligned}
& { }^{\mathbf{1 5}} \rightarrow \mathbf{1}_{\mathbf{0}} \oplus \mathbf{1}_{\mathbf{1}} \oplus \overline{\mathbf{1}}_{\mathbf{1}} \oplus \mathbf{3} \oplus \mathbf{3} \oplus \overline{\mathbf{3}} \oplus \overline{\mathbf{3}} \\
& \\
& \frac{\downarrow}{\mathbf{1 5}} \rightarrow \mathbf{1}_{\mathbf{0}} \oplus \overline{\mathbf{1}}_{\mathbf{1}} \oplus \mathbf{1}_{\mathbf{1}} \oplus \overline{\mathbf{3}} \oplus \overline{\mathbf{3}} \oplus \mathbf{3} \oplus \mathbf{3}
\end{aligned}
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)-\mathrm{CP}$ transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)-\mathrm{CP}$ transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

\Rightarrow The \mathbb{Z}_{2}-Out is conserved at the level of T_{7}, but it is not interpreted as a physical CP trafo,

$$
\mathrm{SU}(3) \rtimes \mathbb{Z}_{2}^{(\mathrm{CP})} \xrightarrow{\langle\phi\rangle} \mathrm{T}_{7} \rtimes \mathbb{Z}_{2}
$$

- There is no other possible allowed CP transformation at the level of T_{7} (type I).
- Imposing a transformation $\boldsymbol{r}_{\mathrm{T}_{7}, i} \leftrightarrow \boldsymbol{r}_{\mathrm{T}_{7}, i}{ }^{*}$ enforces decoupling, $g=\lambda_{i}=0$.

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Explicit crosscheck: compute decay asymmetry.

$$
\varepsilon_{\sigma_{1} \rightarrow W} W^{*}:=\frac{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}-\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}}{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}+\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}} .
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Explicit crosscheck: compute decay asymmetry.

$$
\varepsilon_{\sigma_{1} \rightarrow W} W^{*}:=\frac{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}-\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}}{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}+\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}} .
$$

Contribution to $\varepsilon_{\sigma_{1} \rightarrow W} W^{*}$ from interference terms, e.g.

corresponding to non-vanishing CP-odd basis invariants

$$
\begin{aligned}
& \mathcal{I}_{1}=\left[Y_{\sigma_{1} W W^{*}}^{\dagger}\right]_{k \ell}\left[Y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}\right]_{i j}\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{i m k}\left[\left(Y_{\tau_{2}^{*} W W^{*}}\right)^{*}\right]_{j m \ell}, \\
& \mathcal{I}_{2}=\left[Y_{\sigma_{1} W W^{*}}^{\dagger}\right]_{k \ell}\left[Y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}\right]_{i j}\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{i \ell m}\left[\left(Y_{\tau_{2}^{*} W W^{*}}\right)^{*}\right]_{j k m} .
\end{aligned}
$$

\checkmark Contribution to $\varepsilon_{\sigma_{1} \rightarrow W} W^{*}$ is proportional to $\operatorname{Im} \mathcal{I}_{1,2} \neq 0$.
\checkmark All CP odd phases are geometrical, $\mathcal{I}_{1}=\mathrm{e}^{2 \pi \mathrm{i} / 3} \mathcal{I}_{2}$.
$\checkmark \quad\left(\varepsilon_{\sigma_{1} \rightarrow W} W^{*}\right) \rightarrow 0$ for $v \rightarrow 0$, i.e. CP is restored in limit of vanishing VEV.

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a}
$$

is forbidden by \mathbb{Z}_{2} - Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2} \text { - Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a},
$$

is forbidden by \mathbb{Z}_{2} - Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2}-\text { Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.
Physical scalars (T_{7} singlets and triplets):

$$
\begin{aligned}
\operatorname{Re} \sigma_{0} & =\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{1}^{*}\right), \quad \operatorname{Im} \sigma_{0}=-\frac{\mathrm{i}}{\sqrt{2}}\left(\phi_{1}-\phi_{1}^{*}\right), \\
\sigma_{1} & =\phi_{2}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right)=\left(\begin{array}{lll}
V_{11} & V_{12} & V_{13} \\
V_{21} & V_{22} & V_{23} \\
V_{31} & V_{32} & V_{33}
\end{array}\right)\left(\begin{array}{l}
T_{2} \\
\bar{T}_{3}^{*} \\
T_{1}
\end{array}\right) .
$$

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a}
$$

is forbidden by $\mathbb{Z}_{2}-$ Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2} \text { - Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.
Possible application to strong CP problem?

- Starting point: CP conserving theory based on

$$
\left[G_{\mathrm{SM}} \times G_{\mathrm{F}}\right] \rtimes \mathrm{CP}
$$

- break $G_{\mathrm{F}} \rtimes \mathrm{CP} \longrightarrow$ Type I \rtimes Out.
\curvearrowright CP broken in flavor sector but not in strong interactions.
- Main problem: finding realistic model based on Type I group allowing for outer automorphism.

