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Outer automorphisms 101
Example: Z3 symmetry, generated by a® = id.

2
e All elements of Zs : {id, a, a*}. Z13 | '1d ? ?
e Quter automorphism group (“Out”) 1 |1 w  W?
of Zs: generated by 17 |1 w? w
(w = &2 i/3)

u(a)rarra’  (thinkiuau™' = a%)
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Outer automorphisms 101
Example: Z3 symmetry, generated by a® = id.

i —42

e All elements of Zs : {id, a¥a?}. Z13 | '1d ? ?
e Quter automorphism group (“Out”) 1 |1 w  W?
of Zs: generated by (17 |1 w0 w

u(a)rarra’  (thinkiuau™' = a%)
Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a “symmetry of the symmetry”.
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Outer automorphisms 101
Example: Z3 symmetry, generated by a® = id.

i —42
e All elements of Zj : {id, a¥a?}. Zs | id a—a

1|1 1 1
e Quter automorphism group (“Out”) 1 |1 w  W?
of Zs: generated by (17 |1 w0 w
9 o= e27ri/3)

u(a)rarra’  (thinkiuau™' = a%)

Abstract: Out is a reshuffling of symmetry elements.

In words: Out is a “symmetry of the symmetry”.

Concrete: Out is a 1:1 mapping of representations r > 7’.
Comes with a transformation matrix U, which is given by

Upr (U™ = pr(u(g)), VE€G.

nsisten ndition
(CO siste EYACO ditio ) [Holthausen, Lindner, Schmidt, '13]

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
[Fallbacher, AT, "15]

- pr(g): representation matrix for group element g € G
- u: g +— u(g) : outer automorphism
- U unique only up to phase + central element
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Outer automorphisms 101
Example: Zs; symmetry, generated by a® = id.

i —42
e All elements of Zs : {id, a¥a?}. Z13 '1d ? ?
e Quter automorphism group (“Out”) 1 |1 w  W?
of Z3: generated by (1 |1 o w
(w = e i/3)

u(a)rarra’  (thinkiuau™' = a%)
Abstract: Out is a reshuffling of symmetry elements.
In words: Out is a “symmetry of the symmetry”.

Concrete: Out is a 1:1 mapping of representations r — r’.

Comes with a transformation matrix U, which is given by

Up,,,/(g)U_l = pr(u(g)) VgeG.

(consistency

- pr(g): representation matrix for group ele
- u: g — u(g) : outer automorphism
- U unique only up to phase + central element
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CP transformation in the Standard Model
In the Standard Model

SUB)®SU(2)®U(1) and  SO(3,1),

physical CP is described by a simultaneous outer
automorphism transformation of all symmetries which maps

T T’i*a

(eg (3, )1/6 — (3,2) 1/6> ;

[Grimus, Rebelo '95]

for all representations of all symmetries. EEEIEEC )

of such a transformation warrants 6, o = 0.

Violation of such a transformation is implied by experiment, and
necessary requirement for baryogenesis. [Sakharov '67]

However: Why Sk ~ O(1) while O, < 10710 2

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 4/ 28



General vs. generalized CP
Schematically, QFT with symmetry
GG -,

and quantum fields
YETG OTrg, ® - .

CP trafo based on complex conjugation outer automorphism.
$(@) s (Ung, @ Upg, ® ) 9*(Px) .

Each U has to fulfill its own consistency condition.
There is no choice: No “generalization” necessary or possible.

¢ Only in specific cases a basis maybe chosen such that U = 1.
see e.g. [Ecker, Grimus, Neufeld '87]

Often such a basis is actually an inconvenient choice.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]

This is different for unconstrained spaces 7. For example
flavorspace of the SM! Here generalization is possible.

Notion of generalized CP for symmetry constrained spaces should
be abandonned. There is only general CP!
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The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry [Ta, Ty] = ifabe Te
U g a 1 a v,a
&L = iUAy* (O 71gTaWM)\I/f ZG”,,G# a
The most general possible CP transformation:
bpv b
Wi(z) — R*™P;/W,(Pz),
Wi (z) = nep U Cop U*(Pa) .

[Grimus, Rebelo,95]
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The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry [Ta, Ty] = ifabe Te
U g a 1 a v,a
L = iUk (B —igTa WS) W — ZGW/G# a
The most general possible CP transformation:
ab p v b
Wg(x) — R ?u W, (Pz),
Wi (z) = nep U Cop U*(Pa) .

[Grimus, Rebelo,95]
This is (can be) a conserved symmetry of the action iff,
~ Three consistency conditions!

(i) Roar Royr farvre = faber Rere
(i) U(-T)U™' = Rap T,
(i) CrTyet =

This implies:
(i) CP is an automorphism of the gauge group.
(i) CP maps representations to their complex conjugate representations. (Ta I )
(iii) CP is an automorphism of the Lorentz group which maps representations to their
complex conjugate representation. (XL — (XL)T)
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The most general CP transformation

One generation of (chiral) fermion fields with gauge symmetry [Ta, Ty] = ifabe Te
U g a 1 a v,a
L = iUk (B —igTa WS) W — ZGW/G# a
The most general possible CP transformation:
a ab p v b
Wu (z) —» R ?u W, (Pz),
Wi (z) = nep U Cop U*(Pa) .

[Grimus, Rebelo,95]
This is (can be) a conserved symmetry of the action iff,
~ Three consistency conditions!

(i) Roar Ryy farvre = faber Bete s
(i) U(-T)U™' = Rap T,
(iii) C(—y*Tyec=t = 4.
This implies: = C =" Y20

(i) CP is an automorphism of the gauge group.
(i) CP maps representations to their complex conjugate representations. (Ta I )
(iii) CP is an automorphism of the Lorentz group which maps representations to their
complex conjugate representation. (XL — (XL)T)
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Outer automorphisms of groups

Outer automorphisms exist for continuous & discrete groups.

There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the
symmetries of the corresponding Dynkin diagram.

Ay 0—0—0------ o0—o
Lie Group Out Action on reps

Droo------ %; Apsi SU(N) Zo r — r’

Dn>4 SO(QN) Zio r — r*
Eco—0 E 00
¢ E6 E6 ZQ r — r*
E7C o i 0—0—0 Dp—y SO(8) S3 TP — Tj

g all others / /

EB
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Discrete groups:

Outer automorphisms of groups

Outer automorphisms of a discrete group are symmetries of the
character table (not 1:1).

o 0 Yy

Cia C3a Cz Crg

1y
G
G1n
31
31

1 1 1 1

1 w w? 1
1 W w 1
3 0 0 n
3 0 0 n*

The outer automorphisms group of any
(“small”) discrete group can easily be

found with cap

Andreas Trautner

e, s s
A(G4) | Cla Csa Oz Cse Caa Caa Coa  Ca  Cie  Cyy
L 1 1 T 1 1 T 1 1 1 1 1
n iy 1 111 o= =i = 1 1
1 2, 2 2 -1 -1 -1 0 0 0 2 2
1 J 2 2 -1 2 -1 -1 0 0 0 2 2
1 \ 2 2 -1 -1 2 -1 0 0 0 2 2
- 2, n =il =i =il 20 0 0 2 2
~63' 3 0 0 0 0 1 W w 3w 3
Ui 13, 3 0 0 0 0 1 w W 3 3w
*C32 3 0 0 0 0 -1 W —w 3w 3w?
3 3 0 0 0 0 -1 -—w -o® 3 3w
Group Out Action on reps
Z3 Z2 r — r
Anse Zioy r — r
Sn7£6 / /
[GAP] . A(27) GL(Z, 3) i — T
A(54) Sy T, — T

CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 8/ 28



TWO typeS Of grOUpS (without mathematical rigor)

List of representations: r1, ra, ..., rg, 7", ...
Out in general : r; — 1 Virrepsi,j (1:1)

Criterion:
Is there an (outer) automorphism transformation that maps

= o for all irreps i ?

No Yes
= Group of “type I’ = Group of “type II”

This tells us whether a CP transformation is possible, or not!

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 9/ 28



Systematic classification of finite Groups G

there is

Group G with au-
a class—

tomorphisms u

inverting

Type II: u de-
fines a physical
CP transformation

there is an
involutory u

for which all
FS() are +1

Type I: generic settings
based on G do not
allow for a physical
CP transformation

Type II A: there is
a CP basis in which
all CG’s are real

Type II B: there
is no basis in which
all CG’s are real

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator F'S,, (Backup slides)

Andreas Trautner

CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Do CP transformations exist for all symmetries?
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Do CP transformations exist for all symmetries?
General answer: No.

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 11/28



Do CP transformations exist for all symmetries?

General answer: No.
For example: Discrete groups of type I:

G| Zsx7qy Tr A7) ZyxZs

SGid ‘ (20, 3) (21,1) (27, 3) (27, 4)
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Do CP transformations exist for all symmetries?
General answer: No.
For example: Discrete groups of type I:

G| Zsx7qy Tr A7) ZyxZs

SGid ‘ (20, 3) (21,1) (27, 3) (27, 4)

® These are inconsistent with the trafo r, — =} V.

= CP transformation is inconsistent with a type | symmetry.

(assuming sufficient # of irreps are in the model)

There are models in which CP is violated
as a consequence of unbroken type | symmetry.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]

The corresponding CPV phases are calculable and quantized (e.g. dp = 27/3, ...)
stemming from the necessarily complex Clebsch-Gordan coefficients of the “type I”

group. This has been termed “explicit geometrical” CP violation.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
[Branco, '15], [de Medeiros Varzielas, '15]
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Example with A(54)

“CP Violation from String Theory”

[Nilles, Ratz, Trautner, Vaudrevange '18]
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CP violation from string theory

¢ Heterotic orbifold theory compactified ¢
on T2/Zg. [Ib4fiez, Kim, Nilles, Quevedo '87]

® This theory has A(54) flavor symmetry.

[Kobayashi, Nilles, Pléger, Raby, Ratz '07]

® These models are “semi-realistic”
(MSSM from heterotic orbifolds) 7
SM families + RHv’s are A(54)-triplets.

[Carballo-Perez, Peinado, Ramos-Sanchez '16]

e Light spectrum consist only of A(54)
singlets and triplets. X Y

e A(54) is a group of type |, can lead to “geometrical CP violation”.

e |dentification of source of CP violation:
Type | flavor symmetry & presence of heavy winding strings.

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 13/28



CP violation from string theory

A(54) is ~  Out[A(54)] = S, does not contain
group of type | simultaneous CP trafo for all states.

¢ However, there exist trafos in Out [A(54)] which correspond to
CP trafos for the singlets and triplets (the light spectrum!).

e Crucial: these are no physical CP transformations
IF there are more than two doublet states 21 2 3 4!

This is what we call a “CP-like” transformation.

A (54) Cla Ciiu Ciib Clic Clid C 2a C()‘u C()‘b C{is C 3f
Ty 1 1 1 1 1 1 1 1 1
1, 1 1 1 1 1 -1 =i =i 1 1
2; 2 2 -1 -1 =il 0 0 0 2 2
X < 2, 2 =il 2 -1 =il 0 0 0 2 2
23 2 =1 =i 2 =il 0 0 0 2 2
2 2 =1 =1 =i 2 0 0 0 2 2
o 31 3 0 0 0 0 1 w? w 3w 3w?
3, 3 0 0 0 0 1 w w?  3w? 3w
o 3, 3 0 0 0 0 -1 -w? —w 3w 3w?
3, 3 0 0 0 0 -1 —w —w? 3w 3w

¢ Are there doublets in the string model?
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Doublets in the string model

Easy trick to see (three of) the doublets: Technical detais see [Lauer, Mas, Nilles '89,91]

3,03, =102, B 2,825 2y.

(Heavy) string winding modes transform as doublets.

Z Z Z

Interactions between light (triplets) and heavy (doublet) modes:

m

EFT superpotential: % > Z (ci)™® ¢(2k)xt(131)¢£§1) .
k

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 15/ 28



Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)

see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]

Lowest order invariant here is at four loop, and contains three
doublets.
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Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)

see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]

Lowest order invariant here is at four loop, and contains three
doublets.

Explicit expression

1+ 3e4ﬂ'i/3
Zcp—odd = TM\Z |es|? |eal? .
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Explicit identification of CPV

Convenient explicit proof for presence of CP Violation:
Construct CP-odd basis invariants (like Jarlskog Inv.)

see e.g. [Bernabeau, Branco, Gronau '86], [Lavoura, Silva '94]
[Botella, Silva '94], [Branco et al. '14], [Varzielas et al. '16]

Lowest order invariant here is at four loop, and contains three
doublets. 6

P2 ——om

Explicit expression

1 o 3e4ﬂ'i/3
Zcp—odd = TM\Z |es|? |eal? .
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Comments on this example

e This is a proof-of-principle that type | groups and (thereby
caused) geometrical CP violation exists in potentially realistic
string theory models.

® There exist many more semi-realistic string theory examples
with type | groups.

[Olguin-Trejo, Perez-Martinez, Ramos-Sanchez '18]

e Many (very model dependent) details remain to be worked out:
- Decay of heavy modes is CP violating: B/L violation? Baryogenesis?

- Does integrating out the heavy modes give rise to CP violation among the
light modes? (no)

- Yukawa couplings and low energy CP violation (CKM and 6)?

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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CP transformation of
Modular Symmetry
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CP transformation of modular symmetr

[Baur, Nilles, AT, Vaudrevange '19], [Novichkov, Penedo, Petcov, Titov '19]

SL(2,Z) = (s,t|s* = 1,52 = (st)°)

b
7= (i b>€SL(2,Z), P52 0 e+ d)n (1),

d ct+d’
> t
PSL(2,Z) = SL(2,Z)/ {1, —1}
1
s:TH—H——, t:T—>T4+1, S
T 1
st ts
0 1 1 1
S:(—1 0)’T:(o 1)’
172 172 Re T

Class inverting outer automorphism?
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CP transformation of modular symmetry

[Baur, Nilles, AT, Vaudrevange '19], [Novichkov, Penedo, Petcov, Titov '19]

SL(2,Z) = (s,t|s* = 1,52 = (st)°)

7::@ Z)eSL(Q’Z)’ T’LZZIZ © 5 (T +d)"p(1)®,
= t
PSL(2,7Z) = SL(2,Z)/{1,-1}
1
s:TH—H——, t:T—>T4+1, S
T
st ! ts
0 1 1 1
S:(—1 0)’T:(0 1)’
/2 12 Re 1

Class inverting outer automorphism?
u(s) =s" u(t) =tt.
Coresponds to ZS” CP transformation
SL(2,7Z) x 757 = GL(2,7)
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CP transformation of modular symmetr

[Baur, Nilles, AT, Vaudrevange '19], [Novichkov, Penedo, Petcov, Titov '19]

GL(2,Z) = < s, t | st=1,s2= (st)g,ut =t tu,us =s"tu >

det[T€ L2, Z)] = -1, =5 T8 & 3 (4 d)mp()
cT+d
)
Im<
PGL(2,Z) = GL(2, Z)/ {1, -1} i N
s:’rb—>—l7 t:7t—>74+1, uiT— —T
T 1 S
0 1 1 1 -1 0
s=(4 o) 7= 1) v= (@ 9)
/2 1/2 Re T

Class inverting outer automorphism?
us) =s L ut)=t"*.
Coresponds to ZS” CP transformation
SL(2,Z) x Z57 = GL(2,7)
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Relevance of Outs
for derivation of the
Eclectic Flavor Symmetry

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 20/ 28



Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries.
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:

[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries.

discrete translations
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:

[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries.

reflections / inversions
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:

[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries.

discrete rotations
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.

e.g. T?/Zs (with T? := R?/7Z?)
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries. Symmetries can have fixed points.
e.g. T?/Zs (with T? := R?/7Z?)

X and X

Symmetries can have outer automorphisms.
“Symmetries of symmetries” (a6
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Origin of eclectic flavor symmetry in heterotic orbifolds
Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.
e.g. T?/Zs (with T? := R?/7Z?)

X and X

Symmetries can have outer automorphisms.

“Symmetries of symmetries” (a6
Here, these leave the lattice symmetries invariant, but act non-trivially
on the fixed points.
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17]
Lattice can have symmetries. Symmetries can have fixed points.

e.g. T?/Zs (with T? := R?/7Z?)

e2! e2!

X and X el X and X e1 X and X e1

Symmetries can have outer automorphisms.

“Symmetries of symmetries” (a6
Here, these leave the lattice symmetries invariant, but act non-trivially
on the fixed points.
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[Narain '86]

Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory:
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,'87],[Groot Nibbelink & Vaudrevange '17]

Lattice can have symmetries. Symmetries can have fixed points.
e.g. T?/Zs (with T? := R?/7Z?)

e2!

X and X X and X

Symmetries can have outer automorphisms.
“Symmetries of symmetries” (a6

Here, these leave the lattice symmetries invariant, but act non-trivially

on the fixed points.
New insight: Flavor symmetries are given by outer automorphisms of
the Narain lattice space group! [Baur, Nilles, AT, Vaudrevange '19]
In this way we can unambiguously compute them in the top-down

approach.
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

® Bosonic string coordinates, D right- and D left-moving, yr 1.,
compactified on 2D torus:

(yR> =Y ~O0*Y+EN,
yL
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

¢ Bosonic string coordinates, D right- and D left-moving, yr L,
compactified on 2D torus:

YR\ —y oby4EN, with o=( % O ) x=( ™).
yL 0 6 m

e O =1, is an “orbifold twist” with 6 1, € SO(D).
¢ “Narain lattice”: o
I={EN|N ez}
(T is even, self-dual lattice with metric n = diag(—1p,1p).)
* N = (n,m) € Z*", n: winding number, m: Kaluza-Klein number
of string boundary condition.
e FE: “Narain vielbein”, depends on moduli of the torus;
ETE =M =H(T,U).
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

¢ Bosonic string coordinates, D right- and D left-moving, yr L,
compactified on 2D torus:

YR\ —y oby4EN, with o=( % O ) x=( ™).
yL 0 6 m

e O =1, is an “orbifold twist” with 6 1, € SO(D).
¢ “Narain lattice”: o
I={EN|N ez}
(T is even, self-dual lattice with metric n = diag(—1p,1p).)
* N = (n,m) € Z*", n: winding number, m: Kaluza-Klein number
of string boundary condition.
e FE: “Narain vielbein”, depends on moduli of the torus;
ETE =M =H(T,U).

|T)? ITI?ReU  ReTReU —ReT
HTU) = — |T|> Re U T U|? |U2ReT —ReTReU
’ ImnTImU [ ReTReU  |U>ReT U2 —ReU
—ReT —ReT ReU —ReU 1
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Origin of eclectic flavor symmetry in heterotic orbifolds

Narain lattice formulation of heterotic string theory: [Narain '86]
[Narain, Samardi, Witten '87],[Narain, M. H. Sarmadi, and C. Vafa,87],[Groot Nibbelink & Vaudrevange '17]

¢ Bosonic string coordinates, D right- and D left-moving, yr L,
compactified on 2D torus:

YR\ —y oby4EN, with o=( % O ) x=( ™).
yL 0 6 m

e O =1, is an “orbifold twist” with 6 1, € SO(D).

¢ “Narain lattice”: o
I={EN|N ez}
(T is even, self-dual lattice with metric n = diag(—1p,1p).)
* N = (n,m) € Z*", n: winding number, m: Kaluza-Klein number
of string boundary condition.
e FE: “Narain vielbein”, depends on moduli of the torus;
ETE =M =H(T,U). A
Narain space group g = (0%, EN) € Sxarain iS given by
multiplicative closure of all twist and shifts
SNarain = ((0,0) , (1,E;) for i € {1,...,2D}) .
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Outs of the Narain lattice
Maps beween Narain lattice T' to an equivalent lattice T’ are given by
outer automorphisms of the Narain lattice

04(D,D,Z) := (2 |% € GL(2D,Z) with XTH% = 7).

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Outs of the Narain lattice
Maps beween Narain lattice T' to an equivalent lattice T’ are given by
outer automorphisms of the Narain lattice

04(D,D,Z) := (2 |% € GL(2D,Z) with XTH% = 7).

For example, specializing to D = 2, ~ d.o.f. in E are Kahler (') and
complex strucutre moduli (U). Outs of Narain lattice:

Oﬁ(2,2,Z) = [(SL(Q, Z)T X SL(2, Z)U) X (ZQ X Zz)] /ZQ .
With SL(2,Z) and action on the moduli M = {T, U} given by
SL(2,Z) = (s, t|s*=1,s>=st’ ).

1
s:MH—M and t:M—M+1,
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Outs of the Narain lattice
Maps beween Narain lattice T' to an equivalent lattice T’ are given by
outer automorphisms of the Narain lattice

04(D,D,Z) := (2 |% € GL(2D,Z) with XTH% = 7).

For example, specializing to D = 2, ~ d.o.f. in E are Kahler (') and
complex strucutre moduli (U). Outs of Narain lattice:

Oﬁ(2,2,Z) = [(SL(2, Z)T X SL(2, Z)U) X (ZQ X Zz)] /ZQ .
With SL(2,Z) and action on the moduli M = {T, U} given by
SL(2,Z) = (s, t|s*=1,s>=st’ ).

1
s:Mw— —— and t:M—M+1,
M
Quter automorphisms of T" contain the modular transformations,
including T-duality transformations, T' <» U mirror symmetry and a
CP-like transformation M — —M.

[Baur, Nilles, AT, Vaudrevange '19]
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Outs of the Narain space group
For the full Narain space group, the outer automorphisms are given
by transformations h := (X, T") & SNarain SUch that

g hgh™' € Snaran -
Outs are given by the solutions to the consistency conditions
sekyt
(11 -yet 2*1) T
Solutions yield a set of generators of the Out group as

{(21,0)7 (2,0, ..., (1,T1), (1,T3), } :
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Outs of the Narain space group
For the full Narain space group, the outer automorphisms are given
by transformations h := (X, T") & SNarain SUch that

g% hgh™! S Sty

Outs are given by the solutions to the consistency conditions
sekyt
(11 -yet 2*1) T

Solutions yield a set of generators of the Out group as
{(21,0)7 (£2,0), ..., (1,71), (1,T), .. } .

Note: These Outs also act on the moduli. M = T,U

M M =M — “traditional flavor trafo”

M Mo+ M — “modular flavor trafo”
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Outs of the Narain space group
For the full Narain space group, the outer automorphisms are given
by transformations h := (X, T") & SNarain SUch that

g% hgh™! S Sty

Outs are given by the solutions to the consistency conditions
sekyt
(11 -yet 2*1) T

Solutions yield a set of generators of the Out group as
{(21,0)7 (£2,0), ..., (1,71), (1,T), .. } .

Note: These Outs also act on the moduli. M = T,U

M M =M — “traditional flavor trafo”

M Mo+ M — “modular flavor trafo”

Outer automorphisms of Narain space group unify flavor symmetries
with modular transformations, including CP-like transformations.

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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The eclectic flavor symmetry of T?/Zs

nature outer automorphism
) ) flavor groups
of symmetry of Narain space group
rotation S € SL(2,Z)r Zy ,
modular . T
rotation T € SL(2,Z)p Zs
o
= translation A Z:
A - . °laen (2)
e traditional translation B Zs A(54) A(54,2,1)
54,2,
flavor rotation C = S? € SL(2,%)r T o
rotation R € SL(2,Z)y Z§

Action on the 7" modulus as

0 1 11
o= (ho)m= o),

ecr _ (10
K = (3]

A, B, C, R : triviall

Andreas Trautner

table from [Nilles, Ramos-Sanchez, Vaudrevange '20]

Im. T

S AG421)

AP

N(54,2,1)

N (54,2,1)

CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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The eclectic flavor symmetry of T?/Zs
(For this specific orbifold, (U) = exp(2i/3).)

The outer automorphisms of the corresponding Narain space group
yield the following symmetries:

[Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sanchez, Vaudrevange '20]

a A(54) traditional flavor symmetry,

an SL(2,Z)r modular symmetry which acts as a I'; = 7" finite
modular symmetry on matter fields and their couplings,

a ZE discrete R-symmetry as remnant of SL(2,Z)y, and

a 7ZS” CP-like transformation.

Geclectic = Gtraditional U CYYmodular ) GR ) CPa

Together, the full eclectic group of this setting is of order 3888 given by

Gocloctic = Q(2) X ZEP,  with  Q(2) = [1944, 3448] .

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Summary

e CP is a special outer automorphism,
corresponding to complex conjugation outer automorphism of
every group.

e Groups which don’t have such an automorphism (type |) violate
CP in generic settings.

e Example: A(54), arising in semi-realistic string theory models.
e CP doesn’'t need to be “generalized”, just applied correctly.
® Modular symmetry is of type Il (has class-inverting Out).

e Quter automorphisms beyond CP: The complete eclectic flavor
symmetry in top-down approach (modular+traditional+R+CP)
can unambiguously be derived by the outer automorphisms of
the Narain space group:

Geclectic = Gtraditional U Gmodular U GR uCP. ‘

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 28/ 28



Thank You
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Backup slides
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Physical CP transformations
Physical observable: Asymmetry < Basis-invariants, e.g. J.

I's — INGESS
Eisf = | (. ] i G & J = det {MUMJ,MdMg
|(z—>f|—|—‘Fz—>f)‘
CP Conservation: g, J ; 0 see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Physical CP transformations
Physical observable: Asymmetry < Basis-invariants, e.g. J.

Eisf =
r <Hf| +\FHf>\
CP conservation: g, J ; 0. see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]
To warrant this: need a map M, ;q — M, 4.
Equivalently:

Z D cO(x) +c Ofx) = Fields <% (Fields)™

R A
cP
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Physical CP transformations
Physical observable: Asymmetry < Basis-invariants, e.g. J.

Eisf =
r <Hf| +\FHf>\
CP conservation: g, J ; 0. see also [Bernabéu, Branco, Gronau '86], [Botella, Silva '94]
To warrant this: need a map M, /q — My 4.
Equivalently:

Z D cO(x) +c Ofx) = Fields <% (Fields)™

CP ¢t
@ @,= P ®.-)
\ /

negative charge positive charge T

Oy Wome=(3F) P cp
gR l

left handed right handed

o ; ) @ o b
electron positron (R,+) (L,+)

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 31/28
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CP symmetries in settings with discrete G

there is
a class—
inverting

Group G with au-
tomorphisms u

Type II: u de-
fines a physical
CP transformation

there is an
involutory u

for which all
FS() are +1

yes
Type I: generic settings
based on G do not Type II A: there is
allow for a physical a CP basis in which
CP transformation all CG’s are real

Type II B: there
is no basis in which
all CG’s are real

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator F'S,, (Backup slides)

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Twisted Frobenius—Schur indicator

Criterion to decide:  existence of a CP outer automorphism.
~ can be probed by computing the

“twisted Frobenius—Schur indicator” FS,,

FSu(r:) = ,(1;‘ S xrfau(g)

G
US ( Xr;(g) Character )
[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

FS,(r;) — +lor —1 Vi, = wuis good for CP,
AT different from 41, = w is no good for CP.

In analogy to the Frobenius—Schur indicator
FSX(ri) = +1,—1, 0 for real / pseudo—real / complex irrep.

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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Do type | groups occur in Nature?

¢ Discrete groups? — Crystals?
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Do type | groups occur in Nature?

e Discrete groups? — Crystals?

X no type | point groups in 2D (SO(2)), 3D (SO(3)).

X no type | subgroups of SU(2).

X no type | subgroups of the Lorentzgroup.
(Open question: Type | “spacetime crystals”? (wiczek 12] ).
In > 4D: crystals with type | point groups

[Fischer, Ratz, Torrado and Vaudrevange '12]
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Do type | groups occur in Nature?

e Discrete groups? — Crystals?

X no type | point groups in 2D (SO(2)), 3D (SO(3)).
X no type | subgroups of SU(2).
X no type | subgroups of the Lorentzgroup.
(Open question: Type | “spacetime crystals”? (wiczek 12] ).
In > 4D: crystals with type | point groups
[Fischer, Ratz, Torrado and Vaudrevange '12]

¢ Discrete flavor symmetries?

® Many models with type | groups:
T7, A(27), A(54), PSLo(7), ...

e.g. [Bjorkeroth, Branco, Ding, de Anda, Ishimori, King, Medeiros Varzielas, Neder, Stuart et al. '15-'18]
[Chen, Pérez, Ramond '14], [Krishnan, Harrison, Scott '18]

® These can originate from extra dimensions, e.g. in string
theory. [Kobayashi et al. '06], [Nilles, Ratz, Vaudrevange "12]

Andreas Trautner CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22 34/28



Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.
x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

S= /d4xd26d2§K(T,T,¢,$)+/d4xd29 W (T, ®) +/d4xd2§W(T,6).
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.
x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

S= /d4xd29d2§K(T,T,«1>,$) +/d4:cd29 W (T, ®) +/d4xd2§W(T,$).

e “traditional” Flavor symmetries O p(g)®, gel

for a review, see e.g. [King & Luhn *13]
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.

x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential
S = /d4xd29d2§K(T T,®, %) +/d4xd29 W (T, ®) +/d4xd2§W(T D) .

e “traditional” Flavor symmetries Gtraditional
* modular Flavor symmetries [Feruglio '17]

T+b a b
& (cT+d)"p(m)®, T2 , ::( SL(2,7Z) .
(T +d)"p(v) v R . q) €SL.Z)

Couplings are modular forms: Y = Y(T), Y (T) = (¢ T + d)*Y py () Y(T).
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.

x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

s:/d4xd20d2§K(T,T,«1>,$)+/d4xd20W(T, q>)+/d4xd2§W(T,$).

e “traditional” Flavor symmetries Crmdiionel
® modular Flavor symmetries Gmodular
R Symmetries for non-Abelian discrete R flavor symmetries see [Chen, Ratz, AT '13]

O(z,0) = p(x) + V20 () + 00F () , —> ¢+ "2%¢, 1) 1y ' a7 00) %,
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.

x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

S= /d“md?ed?@K(T,f@,EH/d4w d20W (T, ®) +/d4wd2§W(T,$).

e “traditional” Flavor symmetries Crmdiionel

® modular Flavor symmetries Gmodular

* R symmetries Gr

¢ general CP(-like) symmetries [Novichkov, Penedo et al. '19],[Baur et al. '19]
¥ 5 aT+b

L (cT+d)"p(7)®, T &

7 det[7 € CGL(2,Z)] = —1.
g detl7eCLR.Z)]
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.

x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

S= /d4xd29d2§K(T,T,¢,$)+/d4xd29 W (T, ®) +/d4xd2§W(i$).

e “traditional” Flavor symmetries Crmdiionel
® modular Flavor symmetries Gmodular
* R symmetries Gr
e general CP(-like) symmetries CP

From the bottom-up: All kinds known, individually!
— See talks by Penedo, Feruglio, de Medeiros Varzielas.

for an up-to-date review see [Feruglio&Romanino '19]
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Types of (discrete) flavor symmetries

Schematically for the example of A/ = 1 SUSY.

x: spacetime, 6: superspace, @ : (Super-)fields, 7': modulus.
K (T, ®): Kahler potential, W (T, ®): Superpotential

S= /d4xd29d2§K(T,T,¢,$)+/d4xd29 W (T, ®) +/d4xd2§W(i$).

e “traditional” Flavor symmetries Crmdiionel
® modular Flavor symmetries Gmodular
* R symmetries Gr
e general CP(-like) symmetries CP

From the top-down: all, at the same time!

’ Geclectic = Gtraditional @ Gmodular ) GR ) CP,

see works by [Baur, Nilles, AT, Vaudrevange '19; Nilles, Ramos-Sanchez, Vaudrevange '20]

— See also talk by Ramos-Sanchez.
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Top down flavor symmetries
e We identify points Y ~ gY with g € Snarain = fixed points.
® ¢ constitutes boundary condition for closed strings
= “Strings are localized at fixed points.” [Dixon, Harvey, Vafa, Witten '85,86]

e Each fixed point corresponds to a whole conjugacy class
[9] ={f 9" | f € SNarain} Of SPace group elements

e each c.c. corresponds to a different fixed point.
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Top down flavor symmetries
e We identify points Y ~ gY with g € Snarain = fixed points.
® ¢ constitutes boundary condition for closed strings
= “Strings are localized at fixed points.” [Dixon, Harvey, Vafa, Witten '85,86]

e Each fixed point corresponds to a whole conjugacy class
[9] ={f 9" | f € SNarain} Of SPace group elements

e each c.c. corresponds to a different fixed point.

- Trivial: inner auts of Syarain: Map c.c.’s to themselves.
- Non-trivial: outer auts of Snarain < permutation of c.c.’s
= non-trivial maps between strings at different f.p.s!

New insight: Flavor symmetries are given by outer automorphisms of
the Narain space group! [Baur, Nilles, AT, Vaudrevange '19]
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Top down flavor symmetries
e We identify points Y ~ gY with g € Snarain = fixed points.
® ¢ constitutes boundary condition for closed strings
= “Strings are localized at fixed points.” [Dixon, Harvey, Vafa, Witten '85,86]

e Each fixed point corresponds to a whole conjugacy class
[9] ={f 9" | f € SNarain} Of SPace group elements

e each c.c. corresponds to a different fixed point.

- Trivial: inner auts of Syarain: Map c.c.’s to themselves.
- Non-trivial: outer auts of Snarain < permutation of c.c.’s
= non-trivial maps between strings at different f.p.s!

New insight: Flavor symmetries are given by outer automorphisms of
the Narain space group! [Baur, Nilles, AT, Vaudrevange '19]

e The thus derived flavor symmetries automatically contain the
so-called “space-group selection rules”. [Hamidi and Vafa '86]

* They agree with previously derived non-Abelian flavor
sym metries. [Kobayashi, Nilles, Pléger, Raby, Ratz '06]
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Narain vielbein
The Narain vielbein can be parameterized as (in absence of
Wilson lines)

—r
e
(G-B) —Va'e T
/
E = \}5 \/_i
% (G + B) \/07€7T
«
In this definition of the Narain vielbein, e denotes the vielbein of

the D-dimensional geometrical torus T? with metric G := eTe,

e~ T corresponds to the inverse transposed matrix of e, B is the
anti-symmetric background B-field (B = —BT), and ' is called
the Regge slope.

World-sheet modular invariance requires E to span even,
self-dual lattice I = {E N | N e 7P} with metric 1 of signature
(D, D). Consequently, one can always choose E such that

-1 0 0 1
T - i -
E'nE =17, where n := (0 ]1> and 7 = (]1 0) .
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Transformation of moduli

To compute the transformation properties of the moduli 7" and U we use the
generalized metric H = ET E. As the Narain vielbein depends on the moduli
E = E(T,U) so does the generalized metric # = #(T,U). It transforms as

H(T,U) V= HT',U') = S~TH(T,U)S L.

This equation can be used to read off the transformations of the moduli
T = T'=T/(T,U) and U —> U =U'(T,U).

For a two-torus T2, the generalized metric in terms of the torus moduli reads

|T? IT?ReU  ReTReU —ReT
H(T,U) = ——— IT|* ReU |TU|? |UP?ReT —ReTRelU
’ ImTImU | ReTReU  |[U?ReT |U|? —ReU
—ReT —ReTReU —ReU 1
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Explicit generators of Q(2) for T?/Zs
SL(2, Z)r modular generators S and T arise from rotational outer automorphisms and
act on the modulus via

0 1 1 1
g = (_1 0) and T = (0 1),

Reflectional outer automorphism coresponding to ZSP C’P-like transformation:

-1 0
K*_(o 1)’

(1 11 w? 0 0
p(S)=— (1 w? w and p(T)=(0 1 0],
V31 o W2 0 0 1

The traditional flavor symmetry A(54) is generated by two translational outer
automorphisms of the Narain space group A and B, together with the Z rotational

outer automorphism C := S2.
0 0 1 0 O
w 0] and p(C)=—(0 0 1] = p(9)?,
0 w? 0 1 0

01 0
p(A) = (0 0 1) » p(B) = (
1 0 0
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Example toy model:

“CP violation with an unbroken CP transformation”
[Ratz, AT '16]
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An interesting observation
Observation:
Type | groups can arise as subgroups of type Il groups.

For example: small finite subgroups of simple Lie groups.

SU(B) O Tr
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An interesting observation
Observation:
Type | groups can arise as subgroups of type Il groups.

For example: small finite subgroups of simple Lie groups.
SU(3) O Tr

Structure of outer automorphisms:
Out(su(3)) = Zo

O0—O

N

T, < Ti* Vi
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An interesting observation

Observation:
Type | groups can arise as subgroups of type Il groups.

For example: small finite subgroups of simple Lie groups.
SU(3) O Tr

Structure of outer automorphisms:
Out(su(3)) = ZQ Out(T7) = ZQ

n 0 oy
T7 | Ca C3a C3p Cra Cp

1, | 1 1 1 1 1
G111 w w1 1
G1; | 1 W ow 1 1
<I 3 3 0 0 n n*
\_/ 3 3 0

0 ntm
r, < rt Vi r;xx ;T Vi X
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An interesting observation
Observation:
Type | groups can arise as subgroups of type Il groups.

For example: small finite subgroups of simple Lie groups.
SU(3) O Tr

Structure of outer automorphisms:
Out(su(3) ) = ZQ Out( T7 ) = ZQ
o 0 Yy

T7 | Cia Csa O Cra Cp

1y 1 1 1 1 1

G L 1 w w? 1 1

G1 | 1 Wwow 1 1

<I 3 3 0 0 n n*

\_/ 31 3 0 0 n n
r, & Tt Wi risrr,S Vi X

Note: Out(su(3)) acts on the T, C SU(3) subgroup as Out(T7)!
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Toy model overview
Facts:

e SU(3) is consistent with a physical CP transformation.

¢ The T subgroup of SU(3) is inconsistent with a physical CP
transformation.

Question: How is CP violated in a breaking SU(3) — T7?
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Toy model overview
Facts:

e SU(3) is consistent with a physical CP transformation.

¢ The T subgroup of SU(3) is inconsistent with a physical CP
transformation.

Question: How is CP violated in a breaking SU(3) — T7?
Toy model: gauged SU(3) + complex scalar SU(3) 15-plet ¢. [Ratz, AT 16]
1
2 = (Du9)' (D" ¢) = 7 G, G = V(9),

5
V(g) = —p’¢To+ Z Ai 154)(@ . with \; € R

i=1
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Toy model overview
Facts:

e SU(3) is consistent with a physical CP transformation.

¢ The T subgroup of SU(3) is inconsistent with a physical CP
transformation.

Question: How is CP violated in a breaking SU(3) — T7?
Toy model: gauged SU(3) + complex scalar SU(3) 15-plet ¢. [Ratz, AT 16]

# = (D)l (D"9) — § Ga, G = V(9),

5
V(g) = —p’¢To+ Z Ai 154)(@ . with \; € R
=1l

calculation enabled by SUSYNO [Fonseca '11]
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Toy model overview
Facts:

e SU(3) is consistent with a physical CP transformation.

¢ The T subgroup of SU(3) is inconsistent with a physical CP
transformation.

Question: How is CP violated in a breaking SU(3) — T7?
Toy model: gauged SU(3) + complex scalar SU(3) 15-plet ¢. [Ratz, AT 16]

# = (D)l (D"9) — § Ga, G = V(9),

5
V(e) = —u26To+> NIV (9). with \; € R
=1
calculation enabled by SUSYNO [Fonseca '11]

e VEV of the 15-plet (¢) breaks SU(3) — T7.  [Lunn, 111, Merle, Zwicky '11]
® Qut(su(3)) 2 Zs — Out(T;) = Zsy; Out unbroken by VEV.

SU(3) X ZQ ﬁi} T7 X ZQ; o
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CP violation in SU(3) — T toy model

[Ratz, AT "16]

Name SU(3) 19, Name T7 mass

. Z 1 2 =17/39%0?

T O
W 3 myy =g v
i Reog 1o m%{eao = 2u2
: Imog 10 m?, oo =0

& 15 | o1 11 mil = 7}1,2 + V15 A5 v?
: 1 3 m72'1 = m72'1 (/J“7 )‘7«)
I T2 3 m?‘g = m?‘g (/1’7 )‘Z)
Cm 3 ml=mE(uA

Andreas Trautner
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CP violation in SU(3) — T toy model

[Ratz, AT "16]

Name SU(3) ﬂ Name T7 mass
| Zy, 11 m% =7/3¢%v?
Ap 8 I 2 _ 2.2
W 3 myy =g v
i Reog 1o m%{eao = 2u2
2
: Imog lo mp, oo = 0
P 15 | o1 11 m(z,.l = 7}1,2 + V15 A5 v?
: 1 3 m72'1 = m72'1 (/J“7 )\7«)
I T2 3 m?‘g = m?‘g (/1/7 )‘1)
8 ml=ml )
The action is invariant under the Zs — Out transformation:
SU(3) } T7
 Wa@) — Py W, (Pa),
|
oo(z) — oo(Px),
A%(z) = R®DPYAL(Pa), | o(@) 2( )
L) o U g | Ti(@) o T (Pa),
’ ERCh | Zu(@) = =P Zu(Pa),
I o1(x) — o1(Px).
physical CP ! physical CP x
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CP violation in SU(3) — T toy model

® The VEV does not break the CP transformation, U{¢)* = (¢).
® However, at the level of Tz, the SU(3)-CP transformation merges to Out(T7 ):

15 - 10 & 11 & 1. © 3 & 3 & 3 & 3
Zo — Out : l
B > 1o0® 1; @1, ® 3d 3@ 3 & 3
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CP violation in SU(3) — T toy model

® The VEV does not break the CP transformation, U{¢)* = (¢).
® However, at the level of Tz, the SU(3)-CP transformation merges to Out(T7 ):

15 - 1o ® 11 & 11 ©® 3 ® 3 & 3 ® 3
won TS
15 > 1o @1, @1, 3 ® 3 ® 3 & 3
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Andreas Trautner

CP violation in SU(3) — T toy model

The VEV does not break the CP transformation, U(¢)* = (¢).
However, at the level of Tz, the SU(3)-CP transformation merges to Out(T7 ):

15 - 1o ® 11 & 11 ©® 3 ® 3 & 3 ® 3
won TS
15 > 1o @1, @1, 3 ® 3 ® 3 & 3

The Z2-Out is conserved at the level of T, but it is not interpreted as a physical
CP trafo,

SUE) x 7P 12y 0 2R

There is no other possible allowed CP transformation at the level of T (type ).
Imposing a transformation r¢,, ; <+ v, ;" enforces decoupling, g = A\; = 0.

CP and other Outer Automorphisms of Modular Flavor Symmetries, Bonn, 3.5.22
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CP violation in SU(3) — T toy model

Explicit crosscheck: compute decay asymmetry.

| (01 = WWH? — | (0] = WW*)|?
| (01 = WW? 4 | (cF = WW*)|*

o1 W W* =
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CP violation in SU(3) — T toy model

Explicit crosscheck: compute decay asymmetry.
| (01 = WWH? — | (0] = WW*)|?

g W W =
i |t (o1 = W W) + |t (0F — W W)|?

Contribution to e, .y w~ from interference terms, e.g.

v v 2
v w X X
0 : W ! w
\ T2 - 2,
@il cocmoo + o1 ==yl g + o1 - Z s
I N
1T N 1Ty N
) DR we ; | we
w* 1>< X l>< ¢
corresponding to non-vanishing CP-odd basis invariants
T *
L = [Y‘HWW*] ke [ ‘71’—275} ij [YT2* WW*]imk [(YTQ*WW*) ]jmz ’
_ [yt ]
Iy = [YmWW*]k |:YU17'27'2*}”_ [YTSWW*]wm |:<YT§WW*) ik .

Contribution to €5, .y w is proportional to Im Z; > # 0.

All CP odd phases are geometrical, T; = 2™ 1/3 T,
(eglﬁw W*) — 0 for v — 0, i.e. CP is restored in limit of vanishing VEV.
45/ 28
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Natural protection of 6 = 0

Topological vacuum term of the gauge group

92

Sy =0
o 3272

a pv,a
G,u,u G P

is forbidden by Zy — Out (the SU(3)-CP transformation).
The unbroken Out

Zo —Out : Wy(z) = Py W7 (Pz), Zu(x) = =P, Z,(Pz),

still enforces 0 = 0 even though CP is violated for the physical T; states.
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Natural protection of 6 = 0

Topological vacuum term of the gauge group

92

Sy =0
o 3272

a pv,a
G,u,u G P

is forbidden by Zy — Out (the SU(3)-CP transformation).
The unbroken Out

Zo —Out : Wy(z) = Py W7 (Pz), Zu(x) = =P, Z,(Pz),

still enforces 0 = 0 even though CP is violated for the physical T; states.

Physical scalars (T singlets and triplets):

Tionn = %(%Jﬂﬁ) : ey = —%(m—ﬁ) :
b2 ,

1 Vii Vi Viz\ (Tp
T2 | = (Va1 Va2 Vag T3] -
T3 Va1 Viz2 Va3 T
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Natural protection of 6 = 0

Topological vacuum term of the gauge group

g2

Ly =0
0 3272

Gl G
is forbidden by Zo — Out (the SU(3)-CP transformation).
The unbroken Out
Zo —Out : Wy(z) = Py W7 (Pz), Zu(x) = —P)Z,(Pz),

still enforces 6 = 0 even though CP is violated for the physical T states.
Possible application to strong CP problem?
® Starting point: CP conserving theory based on

[Gsm X Gp] x CP .

® break Gg x CP — Type I x Out.
~ CP broken in flavor sector but not in strong interactions.

® Main problem: finding realistic model based on Type | group allowing for outer
automorphism.
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